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A~traet--This paper presents the exact dimensionless equations of motion and the necessary conditions 
for the computation of the optimal trajectories of a hypervelocity vehicle flying through a non-rotating 
spherical planetary atmosphere. Numerical solution is then presented for the case when the vehicle makes 
several passages through the atmosphere near the perigee of its orbit. While the orbit is slowly contracting, 
aerodynamic maneuver is performed to obtain the maximum plane change. Several plots were presented 
to show the optimal variations of the lift coefficient and the bank angle and the various elements of the 
orbit. 

1. I N T R O D U C T I O N  

In recent years, there has been strong interest in 
the problem of optimal aeroassisted orbit transfer. A 
recent survey by Mease [1] has provided an extensive 
list of references. For the sake of generality Vinh et aL 
have advocated the use of dimensionless variables 
and in particular the so called Chapman's variable to 
write the equations of motion [2,3]. In this way, the 
formulation is free of the physical characteristics of 
the vehicle, except for the maximum lift-to-drag ratio, 
E*, while the characteristic of the atmosphere is simply 
represented by a constant parameter k 2=/~r (= 900 
for the Earth). The only minor deficiency is that 
Chapman's altitude variable, Z, which is essentially 
the dimensionless density, can become negative during 
the integration if the altitude becomes very large. If 
the maneuver consists of one single passage through 
the atmosphere, then we can consider the point Z ~ 0 
as the exit point. But for the case where, after reaching 
the apogee, the vehicle returns for another passage, to 
maintain the continuity for the numerical integration, 
it is necessary to retain the exponential nature of the 
atmospheric density. 

In this paper, we first derive the exact dimensionless 
equations of motion and the necessary conditions for 
the computation of the optimal trajectories of a lifting 
hypervelocity vehicle flying through a non-rotating 
spherical planetary atmosphere to accommodate the 
case where the flight reaches the near vacuum. It will 
be shown that, in addition to the maximum lift-to- 
drag, the characteristics of the vehicle include a certain 
ballistic factor, B. But, fortunately, just as in the case 
of the contraction of the orbit, this factor is insensitive 

to the relationship between the major axis and the 
eccentricity of the current orbit. Hence, in this new 
formulation, the generality of the results is preserved. 

As an application, we present the numerical solution 
of the problem of optimal aeroassisted plane change 
by multiple passages through the Earth's atmosphere. 

2. EQUATIONS OF MOTION 

For the flight over a spherical, non-rotating planet 
of a non-thrusting, aerodynamic vehicle with the lift 
coefficient CL and the drag coefficient CD, it is 
customary to use the equations of motion with the 
notation in Fig. 1. We have [2] 

dr 
- - =  V sin 7, 
dt 

dO V cos ? cos ~k 

dt r cos q~ ' 

d~b V cos 7 sin q/ 

dt r ' 

dV pSCD V 2 
dt 2m g sin 7, (1) 

V a t -  2m c o s a -  g -  cos?, 

vdO p S Q  V 2 V 2 
- -  sin e - - -  cos 7 cos ~, tan q~ 

dt 2m cos 7 r 

where the bank angle a is defined as the angle between 
the local vertical plane containing the velocity and the 
plane containing the velocity and the aerodynamic 
force. 
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Fig. 1. Spherical coordinates for atmospheric flight. 

For  a smooth transition between atmospheric flight 
and flight in the vacuum, we define the dimensionless 
variables 

V 2 
u - , ( 2 )  

go ro 

h -  r - r o _  Y . (3) 
ro r0 

to represent the speed and the altitude variables and 
the dimensionless arc length 

s = r cos 7 dt (4) 

to replace the time as the independent variable• The 
reference distance r0 is the initial perigee distance. The 
drag polar used is the parabolic drag polar 

C D -~- CDo "Jr- KC~ (5) 

with the condition at maximum lift-to-drag ratio 

C t = C* = ~-~Do/K, 

C D = C ~  = 2CDo, (6) 

E* * * = CL/CD. 

The aerodynamic control can be modeled as the 
modulation of the vertical and the lateral component 
of the normalized lift coefficient 2 

where 

C = 2 c o s a ,  S = 2 s i n c r ,  (7) 

CL 
= - - .  (8) 

ct  
Using a Newtonian gravitational field 

g r20 
go r2 (9) 

and a locally exponential atmosphere 

P = P0 exp( - fly) = Po exp( - fir o h) = P0 exp( - h/e) 
(lO) 

we obtain the universal equations for flight in both 
inside the atmosphere and in the vacuum: 

dh 
-~  = (1 + h ) t a n  y, 

dO cos 0 

ds cos ¢ '  

--=d~b sin0,  
ds 

dO B2 sin a(1 + h ) e x p ( - h / e )  

ds cos2y 

- cos 0 tan q~, (11) 

du B(1 + h)u(l + 2Z)exp(-h/e)  

ds E* cos y 

2 
- -  tan y, 
( l + h )  

dy B(1 + h)2 costr e x p ( - h / e )  

ds cos ), 

1 

+1 
u(l + h) 

In the equations above, we have defined 

Po SC~ ro 
e = l / ~ r  0 and B = - -  (12) 

2m 

In these equations the only physical characteristics 
of the vehicle are its maximum lift-to-drag ratio, E*, 
and the ballistic coefficient B specifying the starting 
flight altitude. We consider the case E* = 1.5 for the 
computation, and take a value B low enough for 
the vehicle to stay in orbit for several revolutions. 
The value 1/e = fir0 = 900 used is representative of the 
Earth's atmosphere. 

3. NECESSARY CONDITIONS FOR OPTIMALITY 

Introducing the adjoint variables Px, we form the 
Hamiltonian 

COS I// 
H =ph(1 + h ) t a n 7  + P o - -  

COS ~b 

I B2 sin a (1 + h)exp( - h / , )  
+ P~ c os2 7 

- cos 0 tan ~b 1 

I B(1 + h)u(1 + 2 2 ) e x p ( - h / e )  
--Pu E* cos ), 

+ ~ t a n ~  + p ,  sin 0 

I B(1 + h)2 cos a exp ( -h /~ )  
+ Pr cos y 

+ l  . ( l + h ~  ' (13) 
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The maximization of the Hamiltonian with respect 
to the controls 2 and a leads to the optimal law 

E*pr S = E*p¢ (14) 
C = 2--~u' 2p.u cos 7 '  

Along the optimal trajectory, the adjoint variable 
Px, for any state variable x, satisfies the adjoint 
equation 

dpx OH 
d--~ = - ~ - '  (15) 

Explicitly, we have 

dph-ds B exp(-h/E)(1 - 1  +h)e 

[p~2sin~r p.u(1 + )2) ~_pr_2co_so~] 

x [_ cos27 E ' c o s 7  cosy d 

2p. py 
- p h t a n y  ( l + h )  2tany u ( l + h )  2' 

dP--d° = O, 
ds 

sin 
dp~ = -P~ cos qJ + ( -p~  sin ~b + Po), 
ds cos ~b 

dp, _ cos 
- -  (P0 sin q~  - p , ) ,  

ds cos 2 ~b 

dp~ p~B(1 + h)(1 + ;2) exp(--h/E) pr 

ds E* cos y u2(1 + h) '  

(16) 
dp~,_ Ph ( l+h ) sec  27 
ds 

2p~,B2 sin a sin y(1 + h)exp(-h/E) 
cos37 

puuB(1 + 22)sin 7(1 + h) exp(-h/E) q 
E* COS 2 7 

p;,B2 cos tr sin 7(1 + h)exp(-h/E) 
COS2 7 

sec 2 
+ 2 p ~ - -  

(1 + h )  

It is known that the problem has the following 
integrals [3] 

n = Co, 

PO : Cl , 

p, = c2 sin 0 - c 3 cos 0, (17) 

p,  = c~ sin ~b + (c2 cos 0 + c3 sin 0)cos ~b, 

where the c,. are constants of integration. In this 
problem of optimal plane change, we are concerned 
with speed depletion and heading angle without 
prescribing the final arc length sf and final longitude 
0 r. Hence, by the transversality condition 

c 0=0,  c l=0 .  (18) 

With the four integrals, only two of the remaining 
adjoint equations need to be integrated. The inte- 

gration requires guessing two initial values which, 
together with c2 and c3, constitute a four-parameter 
problem. By normalizing the adjoint variables, we are 
led to a three-parameter problem. The difficulty in 
guessing these parameters can be slightly alleviated 
by using the controls C and S, as given in eqn (14), to 
replace the adjoint variables. By taking the derivatives 
of these equations, using the equations for the adjoint 
variables according to the optimal condition (16), we 
have directly the equations for the controls 

dC 1 I-B(1 + h)exp(-h/E) 
/ ds COS2 7 2 

x (1 - C 2 - 3S2)sin 7 -t- u(1 + h~ F 

2C 
+ [C + E* tan 71 (19) 

E 'u(1 + h) 

and 

dS 
- -  = - S sin ~b tan q~ + S tan ~, 
ds 

1 B(1 +h)Cexp(-h/E)] 
x l q  u(l+h--------~ + '~os~ ] 

2SC - G cos ~ + (20) 
cosy E 'u(1  + h )  

where F and G are defined as the ratios 

F - E*ph(1 + h) G = E'p,  (21) 
2up, ' 2upu " 

The equations for F and G can also be easily 
obtained as 

dF B( l+h)exp( -h / , ) [  (1 + h ) ]  
= 2 cos 7 1 

x (1 - S 2 - C 2) 

2F - E* 
+ [C + E* tan 7] (22) 

E*u(l + h) 

and 

dG cos ~k cos 7 2G 
d---s = S q- [C + E* tan 7]. cos 2 q~ E*u(l + h) 

(23) 

In summary, besides the six state equations (11), we 
have four equations providing directly the controls 
C and S and the accessory variables F and G. Their 
integration requires guessing three initial parameters 
So, F0 and Go at the initial time, while Co can be 
computed from the Hamiltonian integral, with 
C o = C 1 = O: 

2up, I H = - - ~ -  F t a n T + G s i n ~ k  B ( l + h ) e x p ( - h / E )  
2 cos 7 

× (1 - S 2 - C 2) - S cos 7 cos ~k tan ~b 

u ( l + h )  + C  1 u ( l + h i  =0.  (24) 



752 NGUYEN X. VINH and DER-MING MA 

Notice that we can use this integral and the integrals 
(17) to eliminate the equations for F and G. From 
eqns (14) and (21), we have 

S cos 7 _ P~ (25) 
G p~" 

With the integrals (17), we obtain 

S cos 7 (c2 cos 0 + c3 sin 0)cos q~ 

G c2 sin 0 - c 3 cos 0 

sin(r/+ 0) 
- O) cos ¢ 

cos(r/+ 

or  

where 

S cos 7 + G tan(r/+ 0)cos 4) = 0 (26) 

t /=  tan 1(c2/c3). (27) 

In practice, we integrate all four adjoint equations 
and use eqns (24) and (26) as verification of the 
accuracy of the numerical solution. 

It is proposed for a prescribed speed depletion to 
maximize the plane change, L Hence, we have the 
cost function to be minimized. 

J = cos Ir = cos q~f cos ~Of. (28) 

By the transversality conditions 

~J 
p¢~ = -~-~f = sin Cfcos Of, 

0J 
p~ = - ~ f  = cos Cf sin ~bf. (29) 

Then, at the final time 

Sf cos ~f_ P~ t an  []/f 
- -  = - t an (q  + 0r)cos Cf. (30) 

Gf P,~ tan ~b r 

Explicitly, the transversality condition to be satisfied 
at the final time is 

tan qJr+ sin 4~f tan(r/+ 00 = 0. (31) 

4. EXACT SOLUTIONS FOR OPTIMAL 
PLANE CHANGE 

The difficulty in solving the optimal control prob- 
lem in three dimensions with lift and bank control is 
in the sensitivity of the initial values of the adjoint 
variables. The initial value of any arbitrary adjoint 
variable may vary widely. Unless the initial adjoint 
values are not sensitive to small changes in the final 
values, a problem can be extremely difficult to solve. 

The four parameters C, S, F and G defined in 
Section 3 can partially alleviate this problem. S and 
C are physical variables: they represent the lateral 
and vertical components of the normalized lift co- 
efficient, respectively. Hence, the initial values of 
these two variables can be estimated from physical 
knowledge, such as the fact that an optimal trajectory 
is likely to be flown near maximum lift-to-drag ratio 

which means C~+S:o'~ 1. This in itself severely 
restricts the possible values of S O and Co. Further 
simplification results because the problem is reduced 
to determining three parameters as a result of the 
Hamiltonian integral (24). 

There are ten equations to be integrated; namely 
eqns (11), (19), (20), (22) and (23L There are four 
initial parameters, C 0, S O , b~ and t?)'~ T.o be considered. 
The integration must satisfy the transversality con- 
dition (31) and suitable terminal conditions for given 
initial conditions. 

In the following, two types of optimal aerodynamic 
maneuver are considered. First, the one with the hard 
maneuver is studied. For this kind of maneuver, the 
vehicle will initially pull itself into the atmosphere, 
perform the skip maneuver with plane change, and 
subsequently exit to hr.= h0 = (k with a prescribed 
velocity depletion. The second kind of maneuver, 
which is studied next, is such that the vehicle stays at 
high altitude for the whole duration of the maneuver. 
Over each revolution, the motion is nearly Kepterian 
with small change in the energy, eccentricity and 
inclination during each passage through the perigee 
where the aerodynamic force is effective. The reason to 
study the single-pass maneuver is to show the useful- 
ness of the set of equations of motion (11) we propose 
in this study. This kind of maneuver has been studied 
by Vinh and Hanson [4] using the modified Chapman 
variable Z [5] as the dimensionless altitude. But the 
variable Z is not suitable for the study of high altitude 
maneuvers, because in the numericai computation the 
Z variable, which is essentially the dimensionless 
density of the atmosphere, may become negative whe~ 
the vehicle reaches very high altitude near the apogee. 
It will be apparent by the end of this section that the 
new equations cover the whole range of altitude. 

4. I. Optimal plane change ~ith .~mgle-pass maneuver 

It has been shown by Vinh et ,/. [2] thaL tot deep 
reentry trajectories, the initial e~try altitude can be 
somewhat arbitrarily selected. Then, in the problem 
of the single-pass maneuver, the choice of B = 0.006 
does not affect the quantitative results. On the other 
hand, 7,~ is chosen to be a shallo~ angle, but the one 
which is steep enough to allow maneuverability in the 
atmosphere. By entering at too small an angle, the 
vehicle will exit the atmosphere without being able to 
do much maneuvering unless very tfigh lift coefficients 
are used. On the other hand. too great an entry angle 
will be counterproductive because the vehicle will 
rapidly descend into the dense atmosphere and will 
lose velocity quickly. Hence the best effect is achieved 
by choosing the smallest 7o which allows effective 
maneuvers at reasonable values of lift coefficient. 
The values of 70 found to be appropriate for this 
study are 

--;,,,~ = 3.5, for an entry speed u~ - 1.3 

- 7 0 = 4 . 0 ,  for an entry speed u0=l .6 .  (32) 
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Table 1. Solutions of optimal fin~e-passmaneuver 

uo 1.3 1.6 

Co 0.1722642 -0.3950000 
S o 0.9294202 1.0146500 
G O -0.1633919 -0.1888347 
F 0 0.6499545 --2.1182770 

10.60 ° 19.61 ° 

The initial values 

00 = ~o = ~bo = ho = 0 (33) 

are applied. 
The initial values C 0, S o, F 0 and G o must be chosen 

to satisfy the end conditions and from eqn (24) 
evaluated at the initial time as 

B 
Fotanyo - -  (1 - S o  2 -  Co:) 

2 cos Y0 

E* tany°Fu0 C°( 1 _ 1 ) = 0 .  (34) 

In this problem, the procedure will be to choose Co, 
So, and Go and to solve for Fo. The final longitude Or 
and the flight path angle Yr are free. For  a given final 
value of uf = 1.0, I r is to be maximized. Hence, the 
transversality condit ion (31) and in addition, the 
condit ion 

Prf= 0 or Cr=  0 (35) 

must be satisfied. The integration will stop at 

hf = h 0 = 0. (36) 

The condit ion 7f = 0 is very difficult to satisfy. This 
difficulty arises because the natural  tendency of  the 
trajectory is for ~ to increase when u > 1. Since y > 0 
for the ascending par t  of  the trajectory, the vehicle 
must use a very high lift coefficient pointing down- 
ward to cause ~)f = 0. Therefore, Prr = 0 was chosen as 
the better final condition. The solutions are shown in 
Table 1. 

- -  - -  - -  Uo= 1.6 
- -  Uo= 1.3 • 4.00 

:", 0.00 

-4.OO I I I I I 

0 - 0 . 0 2  

.t: - 0 . 0 6  ~ I - /  

- 0 . 1 0 [  I ~ . ~ /  I I I 

1"80 I - -  - - - -  ~ 

:~ 1 . 2 0  

0.60 p-  

1 ] ] I ] I 
0 5 10 15 20 25 

8 (deg)  

Fig. 2. The flight path angle, the altitude and the velocity vs 
the longitude (single-pass maneuver solution). 
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Fig. 3. The bank angle and the lift coefficient (single-pass 
maneuver solution). 
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Fig. 4. The inclination angle vs the longitude (single-pass 
maneuver solution). 

The variations of the flight path angle, altitude and 
speed for the two optimal skip trajectories are shown 
in Fig. 2. The variations of the bank angle and the 
normalized lift coefficient are shown in Fig. 3 while 
Fig. 4 displays the increase in the inclination. 

4.2. Optimal plane change for multiple -pass maneuver 

In this section the optimal trajectory for plane 
change of multiple-pass maneuver is studied. The 
equations to be integrated are the same as those used 
previously. The differences are the initial values of 
the four parameters So, Co, Fo and Go and the initial 
flight path angle 70 which is taken as the value of  0 
to ensure that the vehicle will not fly into the atmos- 
phere. The vehicle will stay in the orbit  for several 
revolutions and accomplish the plane change at high 
altitude. 

The value of the maximum lift-to-drag ratio to be 
used in this section is 1.5, as used before. The planet 
is the Earth, and hence E = 1/900. The value of B to 
be used is B = 0.09. It is low enough for the vehicle 
to stay in orbit  for several revolutions. We also 
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Table 2. Optimal solutions for multiple-pass maneuver 

u o 1.3 1.6 

C O - 0.0002692 - 0.00016567 
So 1.00069 1.00069 
Go 0.000285 0.000285 
F 0 1.81683 1.7170 
If 11.23 ° 20.13 ° 

consider two cases, u o = 1.3 and Uo = 1.6. With the 
initial conditions, we have from eqn (24) 

-B(12 -S~-C~)+Co(I-1)=O. (37) 

This means that Co and So are not independent of each 
other. Hence, instead of adjusting the parameters Co, 

So and Go as has been done before, the parameters Fo, 
So and Go must be given initially. The value of  Co is 
obtained from eqn (37). Hence, So is the only par- 
ameter with a physical meaning. This will increase the 
difficulty in solving the problems. The final longitude 
0f is free. The problem is that, as stated before, for 
a prescribed final velocity us = 1.0, I s is to be maxi- 
mized. Hence the transversality condition (31) must 
be satisfied. To ensure that, after the plane change is 
accomplished, the vehicle is still in orbit, the final flight 
path angle 7f = 0 and the final altitude hs = 0 must be 
enforced. In summary, we integrate the equations 
with the given initial values of the state variables and 
the selected parameters So, F0 and Go and the com- 
puted value Co. The integration will continue until 

0.5 

0 I 

1 . 6  - 

0 . 8  

I 1 I I I I I I 
3 6 0  7 2 0  1 0 8 0  1 4 4 0  1800  2160  7 '520 2 8 8 0  

8 ( d e g )  

F i g .  5. The  altitude and the velocity vs the longitude (opt imal  solution,  u o = 1.3). 

0 5 0  

v 
),.  

0 .2 .5  

\ 
I I I I I I I 

2 0 0  - 

0 

- 20.0 I I I [ [ 1 I I 
0 3 6 0  7 2 0  1 0 8 0  1 4 4 0  1 8 0 0  2 1 6 0  2 5 2 0  2 8 8 0  

8 ( d e g )  

F i g .  6. The  eccentricity and the flight path angle vs the longitude (optimal  solution,  uo = 1.3). 
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Fig. 7. The bank angle and the lift coe~cient vs the longitude (optimal solution, u 0 = 1.3). 
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Fig. 8. The vertical and the lateral components of lift coefficient vs the longitude (optimal solution, 
u 0 = 1.3). 
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Fig. 9. The inclination angle vs the longitude (optimal 
solution, u0 = 1.3). 

Ur= 1.0. Then the transversality condition (31) and 
the final conditions ~,f = 0 and hr = 0 are checked for 
compliance. It can be shown through small flight 
path approximation for the first passage that So ~ I, 
F0 ~ E*. This restricts the range of  parameter guess- 
ing and the solutions are shown in Table 2. These 
solutions are obtained with the accuracy of 

JVfJ, Ihf[ , I tan ~ f +  sin ~ f t an ( r /+  0r)[ ~<0.001. (38) 

To try to shrink the region is time consuming without 
much improvement in the plane change. 

Figures 5-9  are the plots that show the variations 
of the state variables and the control along the 
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3.2 

i 
~.6 I 

1.6 

0.8 

I I t I I I I I 
0 720.00 2160.00 3600.00 5038.99 6479.96 

O (deg) 

Fig. 10. The altitude and the velocity vs the longitude (optimal solution, u 0 = 1.6). 

trajectory for u0 = 1.3. For u 0 = 1.6, the plots are 
Figs 10-14. 

By comparing the results from Tables 1 and 2, we 
see that the plane change for slow aerodynamic 
maneuver is nearly the same as for the case of hard 
maneuver. Hence plane change by multiple passages 
is of  interest since it allows the vehicle to stay longer 
in orbit for other missions while it is obvious that 
slow motion incurs less heating protection. 

The two sets of  figures display similar behavior so 
that we discuss the case of high entry speed u 0 = 1.6 
which corresponds to an initial eccentricity of 
e0 = 0.6. 

As shown in Fig. 10, the apogee altitude decreases 
after each passage while the perigee altitude remains 
constant to avoid deep entry. The speed is slightly 
depleted after each passage through the perigee. 

Figure 11 shows the stepwise decreases of the 
eccentricity for each atmosphere passage. Also the 
flight path angle tends nearly periodically toward 
circularization. 

In Fig. 12 are the plots of the bank angle (r and 
the normalized lift coefficient 2 as computed from the 
values of C and S obtained through the numerical 
integration. By using a positive 2, a bank angle la[ in 
absolute value greater than 90 ° means that the lift 

0.8 

0.4 

0.0  

! • 

L.,,,.,.. I 

7 
i 

I I I 

t | 

i I 
I ,  

1 
I I I I I 

4O 

! 
i 

- 4 C  

0 7 " 2 0 0 0  
I I I I ~ I I I I 

216000 3600.00 5039.99 64799.9 

8 (deg) 

Fig. 11. The eccentricity and the flight path angle vs the longitude (optimal solution, uo = 1.6). 
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Fig. 12. The bank angle and the lift coefficient vs the longitude (optimal solution, u 0 = 1.6). 

force is pointed downward. During each revolution 
the vehicle has a roll motion. The bank angle starts out 
near 9 0  at the perigee and increases to overcome the 
tendency of  the vehicle to skip out with positive flight 
path angle. It reaches 180 at apex where the latitude 
is a maximum. It continues to roll and becomes 
- 180 ~ to be reduced at - 9 0  ° at apogee. It is 0 ° when 
the latitude is a minimum and continues to increase 
toward 90  when the vehicle returns to the perigee. 

Figure 13 shows the variations of  the lateral 
component  S = 2 sin cr and the vertical component  

C = 2  c o s a  of  the normalized lift coefficient. 
Finally Fig. 14 shows the stepwise increase in the 
inclination. 

Through the change from the trajectory variables 
used in this study to the orbital elements of  the 
osculating orbit, it can be shown that the major axis 
decreases stepwise during the decay process while the 
longitude of  the ascending node and the argument 
of  the perigee remains nearly stationary. Hence while 
the orbit is contracting, it has a rotation stepwise 
about its line of  apsides. 

'1.2 

0.0 

- 1 . 2  

i,l 
I r I I I I I I 

1.2 

u3 0 

- ' 1 . 2  I t I r I I I 
0 7 2 0 0 0  2 1 6 0 . 0 0  3 6 0 0 . 0 0  5 0 3 9 . 9 9  

I I 
6 4 7 9 9 8  

8 ( d e g )  

Fig. 13. The vertical and the lateral components of lift coefficient vs the longitude (optimal solution, 
u 0 = 1.6). 
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Fig. 14. The inclination angle vs the longitude (optimal 
solution, u0 = 1.6). 

which is here the maximum plane change for a 
prescribed energy loss. 

The equations, and the associated variational 
equations obtained in the optimization process, can be 
used for the computation of the optimal atmospheric 
trajectories at orbital speed. 

For the plane change, we can use the short dur- 
ation maneuver with high deceleration or the long 
duration maneuver with low deceleration and heat 
rate with essentially the same resulting plane change. 
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5. CONCLUSIONS 

In this paper, we have presented the exact dimen- 
sionless equations of motion of a lifting hypervelocity 
vehicle flying through the atmosphere of a spherical 
and non-rotating planet. The characteristic of the 
planetary atmosphere is specified by the parameter 
[3ro, taken as 900 for the Earth. The characteristics of 
the vehicle are specified by its maximum lift-to-drag 
ratio E*, and the ballistic coefficient B. Only the value 
of E* has a definite influence on the performance 
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