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An analysis of  the effects of  time-sampling on the obseroer error lineariza- 
tion design methodology shows that requiring the method to be applicable 
for an open set of  sampling times trioializes the class of  allowable systems. 

Key Wordls--Control theory; digital control; nonlinear systems; observers; sampled data systems. 

Abstract--The effects of time-sampling on the solvability 
conditions for the observer linearization design methodology 
are investigated. It is shown that the class of systems for 
which this design method can be applied for an open set of 
sampling times is quite small. In particular, when the 
dimension of the state space is two, it consists only of those 
systems that are state-equivalent to a linear system. The 
practical implication is that digital implementations of this 
methodology will have to be approximate. 

1. INTRODUCTION 

RECEh'rLV, there has been considerable interest 
in the design of nonlinear observers. One 
approach has focused on identifying a class of 
nonlinear systems that can be transformed into 
linear systems through the application of output 
injection and state coordinate transformations. 
In this case, the error dynamics of the observer 
is (exactly) linearizable and the observer design 
theory for the class of linear systems can be 
applied. 

This design methodology, called observer 
linearization, was proposed independently by 
Krener and Isidori (1983) and Bestle and Zeitz 
(1983) for the class of scalar output systems. The 
extension to systems with multiple outputs, and 
to systems with inputs, has been done by Krener 
and Respondek (1985). Xia and Gao (1988, 
1989) correct an error in Krener and Respondek 
(1985) and also give a new necessary and 
sufficient condition for the solvability of the 
observer linearization problem for time-varying 
systems. 
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Here, we wish to investigate the effect of 
time-sampling on the observer design methodol- 
ogy of Krener and Isidori. In particular, we want 
to understand when the methodology is robust 
with respect to the introduction of sampling, that 
is, when the procedure can be successfully 
applied to sampled-data representations of a 
plant for an open set of sampling times. This 
property is crucial from an engineering design 
point of view because otherwise, the probability 
of choosing a "good" sampling time would be 
nil. 

Our results can be viewed as being dual to 
those of Arapostathis et al. (1989) on the 
feedback linearization problem, which were 
motivated by an example in Grizzle (1986). 

In Section 2, we summarize the main results of 
Krener and Isidori (1983). In Section 3, we show 
that their results carry over to the class of 
discrete-time systems with only minor modifica- 
tions; one hindrance, however, is that there is no 
equivalent of the Jacobi identity. Section 4 
contains the main results. It is first shown that 
there exists an open set of sampling times for 
which sampled-data representations of a system 
are locally state-equivalent to a linear system if, 
and only if, the underlying continuous time 
system is locally state-equivalent to a linear 
system. Next we establish that a certain set of 
parameterized linear equations with a singularity 
admits an analytic solution. This technical result 
is crucial for proving that whenever there exists 
an open set of sampling times for which the 
observer linearization problem is solvable for 
sampled-data representations of a given plant, 
the problem must also be solvable for a 
continuous-time representation of the plant. This 
gives a necessary condition for the "robust" 
solvability of the observer linearization problem 
with respect to time-sampling. We then show 
that this condition is far from sufficient because 
we prove that, when the dimension of the state 
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space equals two, the only systems for which the 
problem is robustly solvable are those that are 
state-equivalent to a linear system. As an 
example, it follows that there does not exist any 
T*> 0 such that, for every T ~ (0, T*) one can 
successfully apply the observer linearization 
design methodology to a sampled-data repre- 
sentation Za(T) of the system (a simple 
pendulum) 

.tl =x2 

X: -~2 = - s i n  (xl)  (1.1) 

y=x~  

even though the methodology can be applied to 
(1.1), yielding an observer in differential 
equation form that can in turn be approximately 
discretized and then implemented digitally. The 
implications are that, if one wishes to apply this 
methodology, it is important to start with a 
continuous-time model of the system, or one 
must seek an approximate solution with respect 
to the sampling time, possibly along the lines of 
Lee et al. (1988). 

The complexity of obtaining a precise 
characterization for the robust solvability of the 
observer linearization problem for higher dim- 
ensional systems is prohibitive. However, our 
development will make it clear that robust 
solvability with respect to time-sampling is a very 
stringent requirement, and hence the implica- 
tions discussed in the preceding paragraph are 
valid. 

Our results will be stated for exact sampled- 
data representations of a system. Of course, for 
a nonlinear system, this is usually not calculable. 
There are two good reasons, however, for 
working with such representations. Firstly, there 
are many degrees of approximation and we 
avoid having to choose amongst them. More 
importantly, any reasonable approximation 
technique should converge to the exact sampled- 
data representation as more and more terms are 
taken in the approximation. Our results imply 
that increasing the accuracy of the approxima- 
tion does not get one closer to meeting the 
solvability conditions of the (perfect) observer 
linearization problem because they fail for the 
exact sampled-data representation. Instead, a 
solution to the approximate observer lineariza- 
tion problem should be sought. 

In the remainder of the introduction we recall 
the few concepts from advanced calculus 
(Boothby, 1975) that will be used repeatedly 
throughout the paper. If h : R  "---,R is a 
C~-function, then dh will denote its differential; 
that is dh(x)= ( ~ h ( x ) / a x t , . . . ,  ah(x)/Ox~), or, 

equivalently, dh(x) = ~ (ah(x) /ax i )dx , .  If 
i=1 

f :R" - - - ,R"  is a C-%vector field, that is, the 
right-hand-side of a differential equation defined 
on R n, then the directional derivative of h along 

f is Lih(x  ) = ~ (ah(x)/axi)fi(x),  where f ( x ) =  
i=1 

(fl(x) . . . . .  fn(x))'. Note that LIh:Rn--- ,R and, 
hence, higher order directional derivatives can 
be defined recursively as L~+~h = Lf(L~h).  At 
times, in order to avoid putting f as a sub- 
script, the notation (dh, f )  is used; that is, 
(dh, f )  (x) = Lih(x ). This notation also symbol- 
izes the "duality pairing" that exists between 
differentials and vector fields. If g :Rn ~ R n is 
another C~-vector field, the Lie bracket of f with 
g is the new vector field 

If, g](x) = ~ x ) f ( x )  - a/(x) g(x) 
ax 

In order that higher order Lie brackets of f with 
g can be defined conveniently, one also uses the 
"operator notation" ad ig (x )=[ f , g ] ( x  ) and 
defines, recursively, ad~*tg(x) = [f, ad~g](x). 
Finally, it is straightforward to show that the Lie 
bracket and the directional derivative are related 
by Lli.glh(x ) = LiLuh(x)  - LuLih(x  ). 

2. BACKGROUND:  SCALAR OUTPUT 
CONTINUOUS-TIME SYSTEMS 

Consider an uncontrolled dynamics 

,f = Ax,  x ~ R n, (2. la) 

with observations 

y = C x ,  y ~ R .  (2. lb) 

As is well-known, if (A, C) is an observable 
pair, then one can choose a vector G and set up 
a differential equation for an approximation $(t) 
of x(t), 

= A i  - G(y  - Ci) ,  (2.2) 

such that, upon defining e = x - S ,  ~ = (A + 
GC)e is asymptotically stable. Consequently, 
i ( t ) - -~x(t)  as t--*~ and (2.2) constitutes an 
observer for (2.1). 

Now, suppose we are trying to observe the 
state of a nonlinear system; 

,f =f (x) ,  (2.3a) 

y = h(x). (2.3b) 

In general, this is a difficult task. However, it is 
conceivable [Krener and Isidori (1983); for a 
physical example Kantor (1988)] that the system 
(2.3) is the result of applying nonlinear output 
injection and a change of coordinates to a linear 
system (2.1). When this is the case, then after a 
nonlinear change of coordinates, the system 
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would have the form 

2 = A z  + q~(y) (2.4) 
y = Cz. 

Then, given qg(y) and z = ~ ( x ) ,  we can 
construct an observer for (2.3) almost as easily 
as for (2.1). Indeed, let the approximation 2 
satisfy 

= A2 - G(y  - C2) + cp(y). (2.5) 

Then, the error e = z - 2 satisfies 

= (A + GC)e, (2.6) 

as before, and it follows that 2(t) := O-1(2(t))---~ 
x(t) as t---) ~. 

We now summarize the results of Krener and 
Isidori (1983) characterizing those systems 
obtainable from a linear system by output 
injection and a change of coordinates. Let Z 
denote the system 

2 = f ( x )  
3": (2.7) 

y = h ( x ) ,  

where x(t) eR" ,  y(t)  e R ,  and f and h are 
analytic functions of x. Suppose that x ° is an 
equilibrium point of Y. Then,  Z is said to satisfy 
the observability condition if the one forms 
d h , . . .  , dLT-th are linearly independent at x °. 
Z is said to be locally state-equivalent to a linear 
system if there exists an open neighborhood U of 
x ° and a change of coordinates z = q~(x), with 
O(x °) = 0, defined on U such that, in the new 
coordinates, 5, has the form 

= A z  
5,': (2.8) 

y = C z ,  

where the pair (A, C) is assumed observable. 
Finally, 5" is locally state-equivalent to a linear 
system with (nonlinear) output injection if the 
above holds with 5,' replaced by 

= A z  + cp(y) 
5,": (2.9) 

y = C z ,  

where q9 is an analytic function of y such that 
~ ( 0 )  = O. 

The two main results of Krener and Isidori 
(1983) are: 

Theorem 1. The nonlinear system 5, is locally 
state-equivalent to a linear system under a 
change of state coordinates z =<b(x) where 
O ( x ° ) = 0  if, and only if, Z satisfies the 
observability condition, f (x °) = O, h(x °) = 0 and 
dLTh is an R-linear combination of dL~h for 
k = 0 , 1  . . . . .  n - 1 .  

Theorem 2. The nonlinear system Z is locally 

state-equivalent to a linear system with (non- 
linear) output injection under a change of state 
coordinates z = ~(x)  where ~ (x  °) = 0  if, and 
only if, Z satisfies the observability condition, 
h(x °) = O, f ( x  °) = 0 and the unique vector field 
g(x) defined by 

0, O < - k ~ - n - 2  (2.10) 
LgLfh = 1, k = n - 1  

satisfies [ad}g, ad}g] = 0 for all 0 ~ i, j -< n - 1, 
or equivalently, [g, ad}g] = 0 for all 0 ~ i -< 
2n - 3. 

Remark 1. (a) In Krener and Isidori (1983), it is 
shown that the vector field g defined by (2.10) 
satisfies [ad'ig, ad}g] = 0 for all 0 -< i, j <- n, if, 
and only if, 5' is locally state-equivalent to a 
linear system under a change of state coordin- 
ates. It is also shown that this condition is 
equivalent to the condition, [g, ad~g] = 0 for all 
0 _ < k _ 2 n -  1. 

(b) If (A, C) is only detectable, then condi- 
tions guaranteeing the existence of the coordin- 
ate transformation z = ~(x)  are not known; such 
an extension would be nontrivial. 

3. OBSERVER LINEARIZATION FOR DISCRETE- 
TIME SYSTEMS 

Before we can consider the effects of time 
sampling on the observer linearization problem, 
we must obtain criteria for its solvability in the 
case of discrete-time nonlinear systems. The 
development largely parallels that of Krener and 
Isidori (1983); the proofs will be accordingly 
abridged. 

In the following, we use the convention that, if 
h and F are two functions, h being real valued, 
F : R " - ~ R " ,  then d h o F : = d ( h o F ) ;  that is, 
composition takes precedence over the 
differential. Also, F k equals F composed with 
itself k times and F - * =  (F- t )  * whenever F is 
invertible. 

Let Ya denote the system 

x(k  + 1) = F(x(k))  
5,,t: (3.1) 

y(k)  = h(x(k) ) ,  

where x(k)  e R", y (k)  e R, F and h are analytic 
functions of x, and F is a local diffeomorphism. 
Suppose that x ° is an equilibrium point of (3.1); 
that is, F(x °) = x °. Then 5,d is said to satisfy the 
observability condition if the one forms dh(x),  
dhoF(x)  . . . . .  dhoF~-l (x)  are linearly inde- 
pendent at x °. 3Zd is said to be locally 
state-equivalent to a linear system if there exists 
an open neighborhood U of x ° and a change of 
coordinates z = ~(x)  with ~ (x  °) = 0 defined on 
U such that in the new coordinates Yd has the 
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form 

z(k  + i) = A z ( k )  
ZS: (3.2) 

y(k )  = Cz(k) ,  

where the pair (A, C) is observable. Finally, Yd 
is locally state-equivalent to a linear system with 
(nonlinear) output injection if the above holds 
with Z~ replaced by 

z (k  + 1) = A z ( k )  + q)(y(k)) 
Z,~: (3.3) 

y(k)  = Cz(k),  

where (p is an analytic function of y such that 
qg(0)=0. We note that if (3.1) satisfies the 
observability condition, then it is always possible 
to apply (in any given coordinate system) a 
linear output injection which makes F a local 
diffeomorphism in a neighborhood of an 
equilibrium point. Hence,  our assumption on F 
was without loss of generality. Of  course, as in 
the case of a continuous-time system, the 
interest of (3.3) is that one may locally construct 
an exact observer by 

2(k + 1) = A2(k)  - G ( y ( k )  - C2(k)) (3.4) 

+ q)(y(k)) 

and if G is selected appropriately, then 
2, := dP-t(2,)--->x(k), as k tends toward infinity. 

Theorem 3. The nonlinear system Zd is locally 
state-equivalent to a linear system of the form Z~ 
under a change of state coordinates z - - -~ (x)  
where ~ (x  °) = 0 if, and only if, Zd satisfies the 
observability condition, F(x °) = x °, h(x °) = 0 
and dhoF~(x) is an R-linear combination of 
dhoF~(x) for k =0 ,  1 . . . . .  n - 1. 

Proof. The proof is the same as in continuous- 
time case; see Krener and Isidori (1983) [] 

In the sequel, we define, following Jakubczyk 
and Sontag (1990), for a given vector field g'(x),  
Adeg'(x)  := ( f .g ' ) (F-~(x) ) ,  and Ad~F÷~g'(x) := 
(F, AdkFg')(F-L(x)). It follows easily that 
Ad~g'(x) = (Fk, g')(F-k(x)) = Adg,g'(x). This  is 
also valid for k < 0. 

Theorem 4. The nonlinear system Zd is locally 
state-equivalent to a linear system with output 
injection under a change of state coordinates 
z = ~ ( x )  where ~ (x  ° ) = 0  if, and only if, Z 
satisfies the observability condition, F(x °) = x  °, 
h(x °) = 0 and there exists an open neighborhood 
U of x ° such that the unique vector field g'(x)  
defined on U by 

0; O < - k ~ n - 2  (3.5) 
Lg 'h°Fk= 1; k = n - 1  

satisfies 

[g',Ad'~g']=O for - ( n - 1 ) < - i < - n - 1 .  (3.6) 

In order to prove the above Theorem, we 
need the following lemmas. 

Lemma 1. The condition (3.5) is equivalent to 

0; O<--k<-n-2  (3.7) 
Laa~g,h= 1; k = n - 1 .  

Proof 

OhoF x (L<hoF)(x)= -ax g'(x) 

Oh F(x) OF x = Sx 7x g'(x) 

Oh F(x) F*g'(F-a(F(x)) 
Ox 

= (Lad~g,h)(F(x)), 

and therefore, Lad~s,h =0.  In the same way, 
it follows that (Lg,h o Fk)(x) = (LAa~8,h)(Fk(x)), 
proving the Lemma. 

Lemma 2. [Adipg ', Ad~g'] = 0 for 0 --< i, ] -< n - 
1, if, and only if, [g', Ad~vg '] = 0 for - ( n  - 1) -< 
k < _ n - 1 .  

Proof. (Necessity) We only need to prove the 
result for k < 0 .  Since F k is a local 
diffeomorphism, 

0 = (Fk.[g ', Ad~g'])(F-k(z))  

= [(Fk, g')(F-*(z)), (Fk, Ad~g')(F-k(z))] 
= [Adkvg ', g'](z).  

(Sufficiency) The same argument works. [] 

Lemma 3. The condition 

0; O<-<-k<-n-2 (3.8) 
LAd~g,h = 1; k = n - 1 

coupled with the observability condition, implies 
that the set of vectors (g'(x °) . . . . .  
Ad"F-lg'(x°)} spans R ~. 

Proof. We note the following identity holds for 
O<_i , j<_n-1  

( dh oF', Ad~g')(x °) = (dh ,  ad'F÷,g')(x°). (3.9) 

See Appendix A for the proof. Then (3.9) yields 

0; O ~ i + j ~ n - 2  
( d h ° F " A d ~ g ' ) ( x ° ) =  1; i + ] = n - 1 .  



Sampled-data observer error linearization 

Therefore, 

dh 

L(dh .F'-', g' > (x °) (dh oF -', Ad~-'g')(x°)J 

[0 0il 
0 1 " 
1 * 

This final matrix has rank n, and thus 
{g'(x °) . . . . .  Ad}-tg'(x°)} is a linearly inde- 
pendent set. [] 

We return to the proof of Theorem 4 
(Sufficiency). By Lemmas 1 and 3, 
{g'(x °) . . . . .  Ad~-lg'(x°)} spans R", and by 
Lemma 2, [Ad~g',Ad~g']=O, O<-i , j<_n-1 .  
Hence, the Frobenius Theorem (Boothby, 1975; 
Isidori, 1985) guarantees the existence of local 
coordinates z = ~(x)  such that ¢ (x  °) = 0 and for 
k = O, I , . . . ,  n - 1, (O/OZ,_k) = Ad~g'. In these 
coordinates, for 0 -< k -< n - 2 

F, I~  a'~'-)(F-'(z)) = F,{Ad~g'}(F- ' (z ) )  
L ~ Z  n - 4  ,I a 

= Ad~+lg'(z) = aZ._k-l '  

and, for O <_ k ~_ n - 1 

t OZn-kJ ~ t  OZ.-k 

Thus, for O<-k<_n-2 ,  

aF~ ={1;  i = n - k - 1  

az-..- k O; otherwise. 

Also, from Lemma 1 

ah(z) = {0; 
az,,-k LAa~g,h(z) = 1; 

Thus 

0 - k < n - 1  

k = n - 1 .  

(zi) = -- O) : y Cz (1,0 ..... 

F(z) = 

Z I ,  

(i o o) 1 0 " "  
• • 1 

• " "  0 

(Zi)z I. t x + q~zlZt) 

\ % i z O I  
= Az + qg(y). 

and 
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(Necessity) It is straightforward and left to the 
reader. [] 

We remark that the constant 1 used in 
Theorem 4, Equation (3.5), can be replaced by 
any nonzero constant E and the same results 
hold; this is because the vector field g' is just 
scaled by 1/e. 

4. THE EFFECTS OF SAMPLING ON OBSERVER 
LINEARIZATION 

We are now in a position to investigate the 
effects of time-sampling on the solvability of the 
observer linearization problem of Sections 2 and 
3. Let 

Zd(T): Xk+, = Fr(xk) 
Yk = h(xk) (4.1) 

be the result of time-sampling the system (2.7); 
that is, Xk := x(kT),  where x(t) is the solution of 
(2.7), and y , :=y (kT) .  Of course, (4.1) may 
only be defined for T sufficiently small unless the 
vector field f (x )  in (2.7) is complete (Boothby, 
1975). To begin with, note that if x ° is an 
equilibrium point of (2.7), then it is also an 
equilibrium point of (4.1). Next, (2.7) satisfies 
the observability condition at x ° if, and only if, 
(4.1) satisfies the observability condition at x ° for 
all T sufficiently small, but not equal to zero. 
This is because dL~h(x°)=C,4 k, where A =  
af / ax(x°)_ and 0 = ah / ax(x°), and dh o F k r ( x  °)  = 
C exp(kAT) ,  as a simple computation shows; 
hence, since observability is preserved for linear 
systems for sufficiently small sampling times 
(Sontag, 1984), the result follows. Finally, we 
recall the following formula (Isidori, 1985; 
Varadarajan, 1984) which makes explicit the 
relation between the sampled system (4.1) and 
the underlying continuous-time system (2.7): 

for sufficiently small T, h o Fr(x) 

T* 
= ~ L~h(x)--~.. (4.2) 

k=O 

In this section, we always work in a 
neighborhood of a given equilibrium point x °. 
Our first result addresses the property of being 
state-equivalent to a linear system with outputs. 
See Theorem 3.1 in Arapostathis et al. (1989) for 
the corresponding result for systems with inputs, 
but no outputs. 

Theorem 5. The following two statements are 
equivalent. 
(a) The continuous-time system Z is locally 
state-equivalent to a linear system. 
(b) There exists T * > 0  such that for each 
T ¢ (0, T*), the sampled data system Xd(T) is 
locally state-equivalent to a linear system. 
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Proof. 
( a ) ~ ( b )  is straightforward and left to the 
reader. 
( b ) ~ ( a )  When n, the dimension of the state 
space, equals 1, the proof is easy and also left to 
the reader. Now, in order to simplify the 
notation, we assume that n equals 2; the same 
proof works for n -> 3. Since Yd(T) satisfying the 
observability condition for an open set of 
sampling times implies that Y satisfies the 
observability condition, it follows that dh and 
dLih locally span T*R 2, the cotangent bundle of 
R 2. Therefore, there locally exist analytic 
functions a~ and fl such that 

dh ° FT(x) = o~(x, T) dh(x) + fl(x, T) dLrh(x ). 

(4.3) 

Expanding oc and /3 in a Maclaurin series with 
respect to T, 

T 2 
o4x, T) = :  ao(x ) + al(x ) T + ~ adx ) 

T k 
+ "'" + ~ .  ak(x) + ' ' ' ,  

T2 (4.4) 
fl(x, T) =: bo(x) + bt(x)T + -~. bz(x) 

T ~ 
+...  + ~b~(x) + . . . .  

From (4.2), one obtains, for each k - 0, 

d k 
d T  k dh ° FT(X)[r=o = dL~h(x). (4.5) 

This, combined with (4.4), yields 

dL}h(x) = a,(x) dh(x) + b,(x) dLfh(x), (4.6) 

from which one deduces that ao(x) -  1, 
affx) =- O, bo(x) =-- O, and bffx) -- 1. The goal is 
simply to show that a2(x) and b2(x) are actually 
constants (recall Theorem 1). Combining now 
hypothesis (b) with Theorem 3, one deduces that 

dh o F2r(x) = co(T) dh(x) + c,( T) dh o Fr(x) 

(4.7) 

where co, c~ are analytic functions of T. 
Substituting (4.3) into (4.7) gives 

dh OF2T(X) = {Co(V) + cI(T)ce(x, T)} dh(x) 

+ c,(T)~(x, T) dLfh(x). (4.8) 

Since dhoF2r(x)=dhoFzr(x), (4.3) and (4.7) 
yield 

cdT)fl(x, T) = fl(x, 2T), (4.9) 

co(T) = -c,(T)oc(x, T) + at(x, 2T). 
(4.10) 

Therefore, for all k -> 0. 

d k 
dT* [c,( T)fl(x, T)] Jr=,, = 2*b,(x ) 

(4.11) 
d k 

a T  k [co(T)  + c , ( T ) c r ( x ,  r ) l  IT=o = 2*a,(x). 

(4.12) 

Recalling that ao(x) - 1, a~(x) -~ O, bo(x) =- 0 and 
bf fx) -=l ,  a straightforward calculation then 
gives that a2 and b 2 are  independent of x. This 
completes the proof. [] 

Motivated by Theorem 5, we introduce the 
following definition. 

Definition i. Z is said to be sampled-data 
observer linearizable if there exists a T* > 0 such 
that for all T e (0, T*), the sampled-data system 
Zd(T) is locally state-equivalent to a linear 
system with output injection (and hence the 
observer error dynamics can be linearized). 

Then, from the results for discrete-time 
systems of Section 3, the following lemma is 
immediate. 

Lemma 4. Z is sampled-data observer iineariz- 
able if, and only if, Z satisfies the observability 
condition, and there exist a T* > 0, such that the 
unique auxiliary vector field g'(x, T) defined by 

Lg,h o F~ 

= { 0 ;  O < - k < - n - 2  
Tn-1; k = n - 1 

for all T e (0, T*), 

(4.13) 
satisfies 

[g, ,  , , AdeTg ]=O for - ( n - 1 ) < - i < - n - 1  

and for all T ~ (0, T*). (4.14) 

Proof. The proof is parallel to that of Theorem 
4, and hence is omitted. [] 

The vector field g '  in (4.13) is obtained by 
solving the set of linear equations EdhxJ 

dhoFr(x), g'(x, T)= " 

dh o F~--l(x) T"- '  

(4.15) 

Since the matrix on the left hand side has rank n 
for 0 < T < T*, and is an analytic function of x 
for x near x °, and of T for 0 < T < T*, it follows 
that g'(x, T) is an analytic function of x for x 
near x °, and of T for 0 < T < T * .  In the 
following, we actually need g'  to be analytic in T 
for T in an open neighborhood of the origin and 
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we now show that (4.15) admits such a solution. 
When T "-1 is replaced by 1, for example as in 
equation (3•5), then this is impossible. 

To begin with, choose T* sufficiently small so 
that Fk(x) exists for all - T* < T < T*, for all x 
in an open neighborhood of x °, and for all 
1 _< k -< n. Recall from (4.2) that 

dhoFT= ~ T--~'v dLifh. (4.16) 
i = 0  l .  

Because Z satisfies the observability condition, 
dL~h (k>_n) can be represented as a linear 
combination of dh . . . . .  dLT-~h. Thus, let 

k dL F-,h (4.17) dL~h : = cl~ dh + • • • + d,_ t 

where d~(x) . . . . .  d,~_l(x) are appropriate 
analytic functions of x. Then, 

n - - I  

dho Fr = ~'~ y,(x, T) dL)h, (4.18) 
i = 0  

where 
T i ~ T m 

T) = + din(x) 
m-~ ' 

and it follows that 

el--I 

dho F k = dho Fkr = ~, yi(x, kT) dL~rh. (4.19) 
i = 0  

Substituting (4.18) and (4.19) into equation 
(4.15), we have the following expression in local 
coordinates, 

where 

R = 

R/-Ig'(x, T)= 

and 

I ,o x 1, 

7o(x, (n - 1)T) 

, . • 

71(x, T) "'" 

?,(x, ( n -  1)T) . . -  

0 

y,,_l(x, T) 

y,_t(x, (n - 1)T) 

H =  

Oh ah Oh 
. . o  

Ox] ax2 Ox~ 

aLsh aLrh . . .  atrh 
ax~ Ox2 ax, 

• o 

OLT-th OLT-lh OLT-Uh 

Ox~ ax2 . . .  Ox, 

1 

The matrix H has rank n near x ° due to the 
observability condition, but R only has rank n 
for 0 < I T I < T * ,  for T* sufficiently small. 
Define 

so that 

g(x, T ) :=  Hg'(x, T) (4.20) 

1 
The goal now is to show that (4.21) admits an 
analytic solution g(x, T) for T in an open 
neighborhood of 0. By Cramer's rule (Hoffman 
and Kunze, 1971), 

In 0 ] g(x, T) := (det R) -t  T - t ( - 1 ) Z + " d e t R ( n [ 2 )  , 

L T " - I ( - 1 )  "+" det R(n [ n) J 

where det R(n I i) is the (n, i) cofactor of R; i.e. 
the determinant of R when the nth row and ith 
column are deleted. This represents each 
component of g as a meromorphic function (the 
ratio of two analytic functions). However, from 
direct calculations, the lowest order in T of 
det R is (n - 1)n/2, and the lowest possible order 
in T o f d e t R ( n J i )  (i ~-- 2) is (n - 1 ) n / 2 -  (i - 1 )  
[see Appendix B]. Thus, each term 
T" - I ( -1 )  i+" detR(n[ i )  has the lowest order in 
T not less than that of detR,  and therefore 
g(x, T) is analytic in T, for T sufficiently 
small• [] 

Using the above results, we can now prove the 
following theorem which gives an "upper 
bound" on the class of continuous-time systems 
for which the observer linearization property is 
robust with respect to time-sampling. We will 
show later that the class of system is actually 
much smaller than proved here. See Theorem 
4.1 in Arapostathis et al. (1989) for the 
corresponding result on the feedback lineariza- 
tion problem. 

Theorem 6. If the system Z is sampled data 
observer linearizable, then Z is locally state- 
equivalent to a linear system with output 
injection. 

Proof. If Z is sampled data observer linearizable 
with output injection, then from the above 
results, Z satisfies the observability condition 
and we have a T * >  0 and an analytic auxiliary 
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vector field g'(x, T) which satisfies 

dh o F~--'(x).J T --1 

and the Lie bracket condition [g', Ad~rg' ] =0 
for - ( n -  1 )<-k< .n -  1 and for all - T * <  T <  
T*. Since g'(x, T) is analytic in T, for T near 0, 
we can expand g'  as 

,o 

g'(x, T):= ~', g,(x)T', (4.23) 
i = 0  

where the &(x)'s are analytic functions of x. 
Substitute (4.23) and (4.16) into (4.22). Then, 
we have 

(dh oF~(x), g'(x, T)) 

= ~ ~ Z  v, ,  Lg, ,Lith(x)~T ~ (4.24) 
~=o (~=o j! ' -  ) 

which yields the set of equations 

dh~F~ g'(.,T)= [L~oh]+ ! 1 

[_dhoF~ --t 1 ( n -  1) 

[ Lg,h "l 
r + • . . + 

-1 0 . . .  0 

l 1 . . ,  1 ~ ( n - l ) !  

2 n - I  
1 2 . . . .  

(~-i)! 

(n - 1)"-' 
1 ( n -  1) " "  

(n - 1)! 

mula (Isidori, 1985; Varadarajan, 1984): 

AclF~g(x) := (Fr),g(Fr~(X)) = ~ agOg(x) 
( -  T) i 

i=o i! 
Thus 

Ad6~.g 

= Z  d'rs ( -kr ) '  ,=o i! ( - ( n  - 1) -< k -< n - 1) (4.27) 

and, by substituting g ' =  ~ g~T ~ into (4.27), we 
i=O 

have 
i 

Ad6*r,g'= ~-~ I X  ad:g,,-, (-k)'~T' (4.28) 
i = O  v j = O  j !  J " 

Now if we substitute g' = ~ &T ~, and (4.28) into 
i = 0  

d ' [g', A ~.~g ], we have 

~-~ (_k)~,-, 
i ~ l  ( i  - - j ) !  

x (~=o [g ' '  ad)-/g/-"])} T'" (4.29) 

Finally, we substitute (4.29) into 

O= 

[g', AdFr("-°g '1 \ 
[g', AdT-("-2)g '1 

[g', AdFrtg '] 

[g', Ad&g'] 

~[[g ' ,  Ad~ r-2)g' l 

g', Ad~"(Og '] / 

tgn-i h 

L~. ..Lth 
× L~._~L}h 

Lg,, L 7- 'h 

T.-t + . . . =  

0 

o I 
i 

0 

T.-~ I 

(4.25) 

This is true for all T in an open interval about 
zero. Thus, it follows by comparing both sides of 

n - - 2  
(4.25), that Lg, h = LsoLfh . . . . .  LgoL / h = O, 

t l - - I  and Lg,,Lf h = 1 (see Appendix C). That is, we 
have 

0; O ~ k < - n - 2  (4.26) 
Lg"L)h = 1; k = n - 1. 

Now, we want to show, in view of Theorem 2, 
that [go, ad~go] = 0 for k = 0, 1 . . . . .  2n - 3. We 
recall first the Baker-Campbel l -Hausdorf f  for- 

to obtain the following matrix equation: 

0 = b o +  ~ ( M i ® I , × , ) b i T ' ,  (4.30) 
i = l  

where @ is the Kronecker product of matrices, 
the M:s are (2n - 2) x i matrices and the b:s are 
ni × 1 vectors such that: 

m / :  = 

(n - 1)i/i! 
(n - 2)'/i! 

(-i)'/i~ 

bo:= [go, go] = 0 

(n - 1)'-L/(i - 1)! 

(n -2)'-~/(i - 1)! 

- (n - 1))i/i! 

• " ( n -  1)" 

- ' '  (n - 2 )  

i/(i- I)! ... i 

(-i)~-'/(i - i)! . . . .  I 

(-(n - I))'-~/(i - I)! .... (n - I) 
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[go, ad~go] 

, / - 1  

b, := ~'~ [g,., ad~r-i*lg~_.,_,] ~--jth place. 
m--O 

i - -1  

Z [ g . ,  adrgi-l-,,] 
m --O 

It is a simple matter to show that for 
1 - -< i - -2n-2 ,  the rank of M~ equals i; see 
Appendix D. Hence, rank M~ ® I~×~ -- ni which 
proves that b~ = 0 and therefore, [go, ad}go] = 0 
for 1 -- i -< 2n - 2. This completes the proof. [] 

Theorem 6 shows that the class of systems 
that are sampled-data observer linearizable is no 
larger than {Zd(T) : T > 0 and Z is a continuous- 
time system that is linearizable with output 
injection.}. When the dimension of the state 
space is one, this consists of all system such that 
h(0) = 0 and Oh/Ox(O)~ O. When the dimension 
of the state space is two, we can show that a 
system is sampled-data observer linearizable if, 
and only if, it is locally state equivalent to a 
linear system. The point is that, in proving 
Theorem 6, we only used part of the conditions 
coming from (4.25) and (4.30) and the additional 
conditions pose highly nongeneric constraints on 
the class of sampled-data observer linearizable 
systems. See Theorem 5.3 in Arapostathis et al. 
(1989) for the corresponding result on the 
feedback linearization problem. 

Theorem 7. When the dimension of the state 
space equals two, a system is sampled-data 
observer linearizable if, and only if, it is locally 
state-equivalent to a linear system. 

Proof. Sufficiency being obvious (see Theorem 
5), we only prove the necessity. The proof of 
Theorem 6 already used the conditions: 

Lg0h=0 , LgoLIh=l , [go, adygo]=O. (4.31) 

From (4.25), we obtain in addition: 

Lg,h = Ls~h = 0 (4.32) 

Lg, LIh + 1/2LgoL~h = 0 (4.33) 

Lg2L1h + 1/2Lg,L}h + l/6LgoL}h = 0. (4.34) 

From (4.30), we obtain the additional 
conditions, 

[go, ad}go] = 0 (4.35) 

[go, adrgl] + [gl, adlgo] = 0 (4.36) 

[go, adfgz] + [gl, adlgl] + [g2, adlgo] 
+ ~[go,  ad}go] = 0 (4.37) 

where in the last equation, the term 
1/2([go, ad}gtl + [gt, ad}go]) was eliminated 
because it is zero by the Jacobi identity. The 
goal is to use (4.32)-(4.37) to prove that 
[go, ad}go]=O (recall Remark 1). Equation 
(4.32) implies that g~(x)=~7~(x)go(x), and 
g2(x) = Th(x)go(x) for some analytic functions 
rh(x), and r/2(x). Equation (4.36) then yields 
that Lsorh = 0 and Ladtgotll = 0. Therefore, rh is 
constant and equation (4.33) in turn shows that 
LgoL}h = -201 = constant. From [go, adrgo] = O, 
one obtains the useful fact that 

0 = (dL}h, [go, adlgo]) = -L2oL} h. (4.38) 

Similarly, (4.35) establishes 

0 = dL}h, [go, ad}go]) 
2 , _ 2LgoLILgoL~h" (4.39) = LgoLfh 

Using all of these facts, (4.37) then yields 

[go, ad}gol = (2LsoLILsoL}h)go. (4.40) 

Therefore, 

(dh, [go, ad}go]) = 0 (4.41a) 

(dL1h, [go, ad}go]) = 2LgoLrLgoL}h. (4.41b) 

However, a direct calculation yields 

(dL1h, [go, ad}go]) = LgoLrLg, L}h. (4.42) 

Equations (4.41) and (4.42) together imply that 
[go, ad}go] = 0, which completes the proof. [] 

Remark 2. In this section, several results 
(Theorem 5, Lemma 4, Theorem 6, and 
Theorem 7) have been shown for an open set of 
times of the form (0, T*). We will now extend 
the results to more general open sets. 

Let 7" be the largest T such that 

rank t~ ex.p ,~ T = n 

t~ exp .4in - 1 )TI  

for all T ~ (0, 7"); that is, the largest T such that 
the linearization-is observable. Recall that 
dhoFk(x°)= (~exp,zikT. Let 1" be any fixed T 
such that 0 < 7' < 7". Then, there exists a unique 
vector field g'(x, T) and a simply connected 
open set O' of x °=  0 such that 

f o r a l l x e O ' ,  - T <  T < T .  

This in turn implies that there exists a possibly 
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smaller open set O c O' such that, 

[Ad~Tg'mdJrTg'](x) for O<--i,j<--n - 1, (4.41) 

is analytic for x e O, - T' < T < 7 ~. Therefore, if 
there exists an open set of sampling times 
( T * - E / 2 ,  T * + e / 2 )  c ( - 7  ~,7 ~) on which the 
functions (4.41)_all vanish, then they must vanish 
on all of ( - T ,  T) due to analyticity. This reduces 
the problem to the one studied at the beginning 
of the section. Note that our assumption on T' 
means that we are not undersampling the 
system. 

5. CONCLUSIONS 

We have investigated the effects of time- 
sampling on the solvability conditions for the 
observer error linearization problem. Requiring 
that the problem be solvable for an open set of 
sampling times places very stringent require- 
ments on the system. Indeed, when the 
dimension of the state space is two, one is 
reduced to those systems that are state- 
equivalent to a linear system. For higher 
dimensional systems, the complexity of the 
calculations required in order to prove such a 
precise characterization is prohibitive, but the 
general implications are quite clear: either one 
starts with a continuous-time plant model, 
carries out the methodology (if applicable) and 
then implements an approximate digital observer 
by using "rapid" sampling, or an approximate 
solution must be sought to the discrete-time 
version of the problem. The latter problem is of 
interest in and of itself; the results presented 
here highlight its importance for applications. 

Our results were obtained in the context of 
systems having a single output and no input. 
This was done for simplicity of exposition and 
because the results with inputs still have to hold 
when input is set equal to zero. In any case, it 
can be shown that the same arguments 
straightforwardly extend to systems with a single 
input; see Xia and Gao (1989). 

The literature on approximate solutions to the 
continuous-time and discrete-time feedback 
linearization problems is growing (Krener, 1984; 
Goldthwait and Hunt, 1987; Lee and Marcus, 
1986). The design philosophy that has emerged 
from these references is that feedback lineariz- 
able systems should be viewed as a richer class of 
approximations to a general nonlinear control 
system than is the class of linear constant 
coefficient systems. Still in the context of 
feedback linearization, methods for increasing 
the accuracy of a digital implementation of the 
continuous-time feedback law have been prop- 
osed (Lee et al., 1988; Monaco et al., 1986) and 
a multi-rate method has been studied (Grizzle 

and Kokotovic, 1988). Similar progress on 
observer linearization has been reported (Kre- 
ner, 1986, 1989; Krener et al., 1987; Phelps and 
Krener, 1988; Grizzle and Moraal, 1989). 

REFERENCES 

Arapostathis, A., B. Jakubczyk, H.-G. Lee, S. I. Marcus 
and E. S. Sontag (1989). The effect of sampling on linear 
equivalence and feedback linearization. Syst. Control 
Lett., 13, 373-381. 

Bestle, D. and M. Zeitz (1983). Canonical form observer 
design for nonlinear time variable systems. Int. J. Contr., 
38, 419-431. 

Boothby, W. M. (1975). An Introduction to Differentiable 
Manifolds and Riemannmn Geometry. Academic Press, 
New York. 

Goldthwait, R. G. and L. R. Hunt (1987). Nonlinear system 
approximations. Proc. 26th IEEE Conf. on Decision and 
Control, Los Angeles, CA., 1752-1756. 

Grizzle, J. W. (1986). Feedback Linearization of Discrete- 
time Systems. In Lecture Notes in Control and Information 
Sciences, 83, 273-281. 

Grizzle, J. W. and P. V. Kokotovic (1988). Feedback 
linearization of sampled-data systems. IEEE Trans. Aut. 
Control, AC-33, 857-859. 

Grizzle, J. W. and P. Moraal (1990). On observers for 
smooth nonlinear digital systems. In Lecture Notes in 
Control and Information Sciences, 144, pp. 401-412. 

Hoffman, K. and R. Kunze (1971). Linear Algebra, 
Prentice-Hall, Englewood Cliffs, NJ. 

Isidori, A. (1985). Nonlinear Control Systems: An 
Introduction, (Lecture Notes in Control and Information 
Sciences Vol. 72). Springer-Verlag, Berlin. 

Jakubczyk, B. and E. D. Sontag (1990). Controllability of 
nonlinear discrete time systems: A Lie algebraic approach. 
SIAM J. Control, 28, 1-33. 

Kantor, J. C. (1988). A rapprochement of feedforward and 
feedback linearization with process control practice. Proc. 
ACC, 1552-1557. 

Krener, A. J. (1984). Approximate linearization by state 
feedback and coordinate change. Syst. Control Lett., 5, 
181-185. 

Krener, A. J. (1986). Normal forms for linear and nonlinear 
systems. In M. Luksik, C. Martin and W. Shadwick 
(Eds.), Differential Geometry, the Interface between Pure 
and Applied Mathematics. Contemporary Mathematics, 
Vol. 68, pp. 157-189. American Mathematical Society, 
Providence, RI. 

Krener, A. J. (1989). Nonlinear controller design via 
approximate normal forms. Technical Report, Institute of 
Theoretical Dynamics and Department of Mathematics, 
University of California, Davis. 

Krener, A. J., S. Karahan, M. Hubbard and R. Frezza 
(1987). Higher order linear approximations to nonlinear 
control systems. Proc. 26th IEEE Conf. on Decision and 
Control., Los Angeles, CA., pp. 519-523. 

Krener, A. J. and A. Isidori (1983). Linearization by output 
injection and nonlinear observers. Syst. Control Lett., 3, 
47-52. 

Krener, A. J. and W. Respondek (1985). Nonlinear observer 
with linearizable error dynamics. SIAM J. Control, 23, 
197-216. 

Lee, H.-G.,. A. Arapostathis and S. I. Marcus (1988). On the 
digital control of nonlinear systems. Proc. 27th IEEE 
Conf. on Decision and Control, Austin, TX., pp. 480-481. 

Lee, H.-G. and S. I. Marcus (1986). Approximate and local 
linearizability of nonlinear discrete-time systems. Int. J. 
Control, 44, 1103-1124. 

Monaco, S., D. Normand-Cyrot and S. Stornelli (1986). On 
the linearizing feedback in nonlinear sampled-data control 
schemes, Proc. 25th IEEE Conf. on Decision and Control, 
Athens, Greece, pp. 2056-2060. 

Phelps, A. and A. J. Krener (1988). Computation of 
observer normal form using MACSYMA, In C. Byrnes, C. 



S a m p l e d - d a t a  o b s e r v e r  e r r o r  l i n e a r i z a t i o n  1007 

Martin and R. Sacks, (Eds),  Nonlinear Dynamics and 
Control. North Holland, Amsterdam.  

Sontag, E. D. (1984). A concept of local observability. Syst. 
Control Lett., 5, 41-47. 

Varadarajan, V. S. (1984). Lie Groups, Lie Algebras and 
Their Representations. Springer-Verlag, New York. 

Xia, X. and W. Gao (1988)• Nonlinear observer design by 
observer canonical forms• Int. J. Control, 47, 1081-1100. 

Xia, X. and W. Gao (1989). Nonlinear observer design by 
observer error linearization. S l A M  J. Control, 27, 
199-216, 

A P P E N D I X  A 

Proof o f  identity (3.9). The following identity holds for 
O < - i , ] < - n - 1  

(dh o F', A d } g ' ) f x " ) =  (dh,  Ad'F+/g')(x°). (A.1) 

Proof. Recall that F(x °) = x  ° and observe that for i = 1, 
l < _ j < _ n - 1  

(dhoF, Ad}g ' ) ( x  °) 8 h o F  ,o = ~ A d } g  '(x°) 

= a--x ~ Ad~g'(x°) 

3h 8F F-,(.,*~ 
= a-'x ~o~x Ad/Fg'(F- '(x°))  

Oh ,o F.,4d/rg,( F_,(xo) ) 
8x 

= &~h ~,, md,+ ,g,(x,,) 

= (dh, Ad~+~g')(x°). 

Now, suppose that the identity (A. 1) has been established for 
i =  k -  1, 1 - / ' < - n  - 1. Then,  

(dh* F*, md /g  ' ) (x °) = ~ a d/~g'(x °) 
xO 

Oh * F k - 1 8 1  ;. 

- ax ~x AdFg'(x°)  
F ( x  o) x 0 

= ( dho F k- '  ,Ad/r  + Ig,) (x o) 

= (dh, Ad~+'g')(x°). C3 

A P P E N D I X  B 

Steps for proving the analyticity o f  g'(x, T)  near T = 0 
The lowest order term of T in det  R is given by 

0 0 . . .  0 
T T 2 • • . T ~-1 detri 

:detli 
1 
1 

= det • 

1 

( n - 1 ) T  ( n - 1 ) 2 T  2 . - .  ( n - 1 ) " - l T  " - t  

0 . - -  0 1 0 0 . - -  
1 . . .  1 ! T 0 . - .  

0 " •  

( n -  1) . . -  ( n -  1)"- '  T " - t  

0 . . -  0 I 

1. • • • I I T O, - ,  ),,/2 

( n - - l )  - . -  ( n - - l )  n-I  

and this final determinant is nonzero by a Vandermonde  
argument (Hoffman and Kunze, 1971)• 

The lowest possible order  term of  T in det  R(n [ i) is given 
by 

det 7" - • • T ~-2 

( n - 1 ) r  - - .  ( n - l y - 2 r  ~-2 

0 
T i 

(n -- 1)iT i 

= (constant) T ~(~- , ) /2 - , -  z). 

0 
T n -  1 

(n - 1 )" - tT  n-I 

APPENDIX C 

Proof o f  (4.26) 
We show that LgoL~-~h -- 1. Let N~ be the matrix 

22(2! .. 2 (k! 

k212! . .  kk'/k!_J 

The Cramer 's  rule and a little algebra yields that 

, _  th _ det Nn_ 2 Lg, L/  - ~ .  

After noting that Nk can be written as the product of a 
Vandermonde matrix and a diagonal matrix, a simple 
computation gives the result. 

A P P E N D I X  D 

Evaluating the rank of  Mi 
To see that Matrix Mi has rank i, for 0 -- i -< 2n - 2, take a 

submatrix/~i  defined by 

(n - 1)'/i! . . .  (n - 1)z/2! (n - 1) 

2i/i! " • • 22/2 2 

f4 i = li/i! • • ' 12/2! 1 

( - 1 y / i !  - . .  ( -1)2 /2 t  - 1  . 

(-2)~/i!  • "" ( -2)2/2!  - 2  

( - i + n - 1 ) i / i !  . . .  ( - i + n - 1 ) 2 / 2 !  - i + n -  

Then, 

M,= I 
(n - 1) 

1 

- 1  

( - i + n  - 11 

I 
1/i~ 

× I/(i - I)! 

I 

( n  - l )  i - 1  

1 × 
( - 1 y  -z 

( - i +  n - l ) / - I  

1. 

• ° • 

1- 

1 

1 

1 

The second matrix has rank i because it is an i x i  
Vandermonde matrix, Thus the submatrix 2f/, has rank i, and 
the proof  is complete. [] 


