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Massless QED is studied by introducing different regularization schemes for the resulting
mass singularities. It is demonstrated, for the one-loop corrections to electron scattering off an
external potential, that cancellation of regulator-dependent finife parts within a Lee and
Nauenberg (LN) set renders the observable process unique, thus establishing existence of its
smooth massless limit.

1. Introduction

It is well known that gauge theories containing massless particles develop
infinities at the S-matrix level, associated with mass singularities. These disappear
from physical quantities if one includes all processes belonging to the same set of
degenerate (physically indistinguishable) initial and final states [1,2]. It becomes
necessary, nevertheless, to introduce a set of regulators giving mathematical meaning
to the singular individual processes within the set and to take the limit of these
regulators to zero at the end of the calculation. However, the different regulariza-
tion schemes applicable to the mass singularities of gauge theories have somewhat
different physical content. Specifically, if one chooses to regulate the mass singu-
larities of a gauge theory by using massive regulators (i.e. by assigning masses to all
massless particles existing in the theory and taking the limit of these masses to zero
at the end of the calculation), one has to consider the extra degrees of freedom
introduced by the inclusion of these masses (for massless vector bosons for
example) or the non-vanishing helicity-flip amplitudes (for massless fermions) in
certain collinear processes. Similarly, if one chooses dimensional regularization of
the mass singularities [3-6], one has to consider the extra degrees of freedom (for
massless vector bosons) coming from the extra n — 2 transverse directions existing
in an n-dimensional space-time (the continuation is n > 4).

While these contributions will not affect the leading singularities, they appear in
the lower-order singularities and, of course, in the finite parts. Hence the question
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of whether the observable quantities are uniquely determined, independently of
the regularization scheme one uses for treating the mass singularities of a theory
is, to the best of our knowledge an open one, which has drawn little attention [7, 8].
Furthermore, in processes that are highly selective as far as which singularities
remain after taking the regulator limit, such as helicity-flip processes, uniqueness
of a gauge theory is profoundly troublesome since such processes actually appear
to give finite cross sections [1,9], if one uses massive regularization, but trivially
give zero if one uses dimensional regularization. Such processes may be handled by
including degenerate processes corresponding to disconnected Feynman graphs [1],
but whether inclusion of the latter is physically relevant for studying the high-
energy limit of massive gauge theories and/or restores uniqueness is an open
question.

The above considerations lead naturally to the suspicion that, if uniqueness of
massless gauge theories is a fact, then the important idea of cancellation of mass
singularities within a set of degenerate processes, as was stated by Lee and
Nauenberg (LN) and independently by Kinoshita, may be extended to cancellation
of finite regulator-dependent quantities within that set, thus restoring not only the
finiteness, but also the uniqueness of the massless theory.

In this paper we consider a specific but fundamental process in QED, namely
the one-loop corrections to electron scattering off an external potential. In sect. 2
we treat what we call one-mass singularities, i.e. the singularities arising from
considering only one massless particle and specifically the ones appearing from the
masslessness of the photon. We show uniqueness of the process comparing the
massive (subsect. 2.1)* and the dimensional (subsect. 2.2) regularization of
the infrared singularity. In subsect. 2.3 we summarize our results. This part of the
paper serves for establishing notation as well as methodology. In addition, the
formulas for the finite parts obtained, will be used in the remainder of the paper.
In sect. 3 we consider the same process in massless QED (two-mass singularities).
As is evident, there is a choice of regulator combinations to be made, hinting at
the nontriviality of establishing the uniqueness of the process. We choose to
compare what we consider an interesting combination of mixed regulators (subsect.
3.1) with a completely dimensional one (subsect. 3.2). Uniqueness is again recov-
ered. As a by-product we discover, at the analytical level, that the generally
accepted correspondence between the infinite parts Inm < 1/€, In*m o 2/€?
where € =n — 4 and n is the dimensionality of space-time, can be extended to the
finite parts as the same analytic continuation of hypergeometric functions of
different arguments. This is shown in detail in subsect. 3.2.2 and appendix B.
Finally, we demonstrate the LN cancellation of finite regulator-dependent pieces,
and thus are confident that the process works in general, even in the more
problematic cases of helicity-flip processes. The results of the section are summa-

* The results in subsect. 2.1 are well known and can be found in many places in the literature [10].
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Fig. 1. Radiative corrections to electron scattering off an external potential. The crosses and the dots
denote vertex or wave function and mass counterterms.

rized in subsect. 3.3. In the end (sect. 4) we summarize our conclusions and
formulate some speculations of a more general nature.

2. One-mass singularities

We shall consider as a typical QED process the one-loop radiative corrections to
scattering from an external potential. We will be working in the Feynman gauge.
The corresponding diagrams are shown in fig. 1.

Our quantities will in general have two sources of infinities. Correspondingly, we
should reserve two regulator indices for those quantities which contain at least one
kind of infinity. The first regulator index corresponds to the UV singularities but
since we shall be using dimensional regularization, minimal subtraction and
intermediate renormalization throughout this paper, this index will never appear
explicitly. The corresponding regulator will always be e, =4 —n. As stated in
sect. 1, uniqueness of QED in the perturbative sense would amount to equalities of
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the form

lim ), [S§=mP2— lim ), [S§ET91P=0. (2.1)
#1729 pE,D(E,) #1720 g, D(E,)

In the above u, is the mass regulator scheme, e =€ =n—4, Si is the
regularized S-matrix element for the transition between states a and b (of energies
E,, E, respectively) and the sum extends over degenerate LN sets D(E,), D(E,)
for usual QED (massive electron, massless photon) processes*. Similarly,

lim L IS =mP ~ lim Y IS9P =0 (2.2)
#1720 e, D(E,) #1720 pED(E,)

for the massive photon and massless electron.

It is well known, as noted above, that to regulate UV singularities dimensionally,
one has to consider initially a number of space-time dimensions n =4 — ey <4,
while to regulate the mass singularities in the same scheme, n = 4 + € > 4. This will
be described by the correspondence €, — —¢€, whose meaning is that the theory
is not simultaneously UV-regular and mass-singularity-free in any number of
dimensions. Thus, the generally accepted prescription is to first renormalize the
theory dimensionally and, once the counterterms are included, to continue n =
4 + €. We shall show that eq. (2.1) holds for the particular process shown in fig.1.

2.1. p; =m, REGULARIZATION SCHEME

The radiative corrections will arise from virtual and real processes. The former
will come from the vertex and self-energy graphs, while the latter from
bremsstrahlung graphs.

2.1.1. Virtual corrections. From fig. 1a we obtain for the vertex correction

d4‘EUV

A p,p') = ~ie? [ (B =k Am )y (B—k+m.)y"

1
(k> =m3) (k> = 2(p'k) ) (k* = 2( pk))

X

a 1 1 4
=— d dy| — + 2(lndm —y — 21 —2)—=2In L?
o ffox [y 5 ¢ atmsr =z

- %(4 — 4y —2y? +r2(2 =2y +2y%x(1 —x))] +R(u,), (2.3)

* Throughout the paper we shall follow the notation of refs. [1,5, 6] as closely as possible.
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where vy is Euler’s constant and R(u,) denotes terms regular at the limit u, = 0.
These terms will not be shown explicitly since they cancel (by definition) from
equalities like (2.2). In eq. (2.3) we have defined

m
LZEy2[1+r2x(l—x)]+A2(1—y), /\25_‘2‘, r’= 7

Performing the y-integration we have

A()‘)=i'y fldx i+(ln477'~y—2lnme—2)—210
AR ¥ A €uv

2

_1f— §2(411—412—213+r2(211—2Iz+2x(1‘x)’3)) (24
where
me
=g £=1-p(14r%(1-x)),

E being the initial energy and

1 Ap
Iy=[ dyylnl?*, I, = [ dyy” - ==
o= j B
We can easily calculate the following limits:

(1_ 2)
iIn — -3,
p

lim I, =

1__§2
lim/,=—-InA+5 ln( ),
A—0

A—=0

lim [, =1, lim I, =
A0 A0

After inclusion of the UV counterterms as shown in fig. le, we can write

(43
}{Iﬂ) AP = Eyﬂfoldx[ln&n-—y—ﬂnme— 2—InC?

242 2(3+r?) 2(2 +r?
el InC?+ ot (C2 )lnA (2.5)
with

1- 2
C*= —pf'_ =1+r’x(1-x).
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From fig. 1b we obtain for the self-energy correction

d*= Wk (egy—2)(B—K) + (4 —eyy)m,
@m)* 7w (K2 =m2)((p—k)* —m?2)

—i3m)(p) = __e2f . (2.6)

Performing a Taylor expansion
—iZ(p) =A™ + BU(P-me) + 37 (p)(B-m.),  (27)

we observe that A" just renormalizes the electronic mass. The wave function
renormalization constant B"7, nevertheless, contributes 1B¢"») per diagram as an
observable radiative correction. From egs. (2.6) and (2.7) we deduce

Bimy — —ezfldxf d4_1”_"k (euy —2)(1—x)
0 e 2= (mEe e i -0

d* ewvk ey —2)(1—x) +4—
+e2f1dxf —4x(1 —x)ym? (eyv — 2)( ) 5UV3
0 (2m)" "°w [kz—— (m§x2+m3(1 —x))]

la o

5 ——[y—ln4w+1+21nme+2f1dx(1—x)lnD2]
Teyy 4T 0

ia x(1—x?%)
hop

dx Dz (2.8)

o
where D?=x?+ A*(1 —x). One can easily show that

. 1 . 1 x(l—xz)
)}Lmofodx(l—x)lnDz= -3, }Lmofodx—ﬁz——= ~lnA -1,

Diagram 1d is of the R(u,) type, i.e. non-singular, hence we do not consider it.
Once the UV counterterms are included, the total virtual correction 28 will be
defined as

. . . 1.
}11)110 26()y, = 2}1_)11}) [A(;‘) + 3iy, BM x 2] .
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Hence we find for the virtual contribution

a 2+r?
lim 26() = —

1
dx——————2|lnA
A—0 'n'(/o x1+r2x(1—x) )n

a 1 2
+Ef0 dx[—é—ln(l +r2x(1 —x))

2+7r? In(1 + r2x(1 2(3+r?%)
1+r%x(1-x) n rix(1-x)) 1+rix(1-x)

}. (2.9)

2.1.2. Real corrections. As is well known, the physically observable cross sec-
tions must include bremsstrahlung contributions. In this case (one-mass singulari-
ties) only soft bremsstrahlung contributes. Its contribution is

&k 1 3
(2‘"')3 20,5

(eDp) (e"p)

(p'k) —ImZ ~ (pk) — sm>

s =e? [ (2.10)

In the above, the momenta (p, p’, k) label the initial, final electron and final
photon respectively. Calculating the momentum integral we find

a 2
S = _:_[(1 + %rz)foldxlx()t) —I(A)], (2.11)

where

1 1

1/2 2
(62 + )77 [(k2 4 02)1 — Lo — ke

L(A) = fOAE/medksz_lldy

1 1

AE/m, 1
I(A) = dkk? [ dy o -
) Lo |2+ 02)'% = 3922 — ko]

where ¢ has been defined earlier, AE is the energy resolution of the detector and
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£,=(1—p?)'/2. These integrals have been calculated in appendix A. The result is

lim &% Pt G T
Ao BT T fo x1+r2x(1—x) n
a 2472 1 (1-
+——f1dx 5 —In ¢
2 Jy 1+rix(1—-x) &€ \1+¢

1+r2x(1—x) m, £ |1+,

A )2 e

2.2. u; =e REGULARIZATION SCHEME

In this scheme extra care is needed in order not to confuse the renormalization
process with the one describing the structure of the mass singularity, since both of
them are regulated dimensionally.

2.2.1. Virtual corrections. For the vertex condition we have*

2 2
€ 1 1 (eyv —2)
ACuv) = _—44__[ dxf ydyly, —2 22
® (417_)2 eyv/2 o 0 u 2

— -1 2 —
(1 Sey )y~ €2) " e

X [m§(4 —4y + (eyy — 2)y2)

F(%EUV))’_GW(CZ) —EUV/Zme—eUV

+(—q2)(2—zy+(2—ew>y2x(1—x>)]}. (2.13)

At this stage we are able to recognize the UV singularity as the pole part of the
I-function. This will be: (a/4€;y)y,. Including, then, the UV counterterms, we
can use eq. (2.13) by discarding the above piece and by substituting: €,;,, > —€ in
the rest. The result is

2
lim A© = — y fldx__z_tr__
es0 M 2me My T 1+4rx(1—x)
%y, ['dx|(n4 21 1 24
+— —y - —_
4777“/0 x|(Indm —y —2Inm,) 152 (1 —x)
2(3+7r?%)

—2-In(1+rx(1-x)) + ————
n(1+r%x(1 -x)) 1+r2x(1—x)

2+r? |
C1+r%x(1-x)

n(1+r2x(1 —x))]. (2.14)

*The integrand of this expression is different from the one given in ref. [5). However, the two
expressions are identical, once the integrations are performed.
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Similarly for self-energy contribution we get

ia .
B(GUV)= —E(47Tme-2) UV/ZF GUV [/ dX(EUV_Z))C EUV(I_x)

+euvf1dxx‘“+fuv>(1 —x)((epy —2)(1—x) +4— euv)] . (2.15)
0

Proceeding as above, we obtain

ia B«
lim B®= - — + —(Indwr —y—2lnm + %) (2.16)
e—0 me 41 )
Therefore
« 1 2+ r? o 1 2472
lim 26’ = - — dxt——— -2+ — | dx|{ ————— -2
e 2%V Te ,/;) x1+r2x(1—x) ) 27rv/;) x[ 1+r2x(1—x)

X(Indm—y—2Inm,) - 6 —In(1+r2x(1—x))

2(3+7r%) 2412
1+r2x(1=x) 1+r°x(1-x)

In(1+ r2x(1 —x))]. (2.17)

2.2.2. Real corrections. The soft bremsstrahlung contribution will be

AET\? 1
8 = (477) Er(1+%e)p2[(l+%r2)j:dx1x(e)—I(E)], (2.18)
where
(1-y)”
we= [
(1-y2)""
0=[ g

Hence, expanding around ¢ = 0, we have

lim 6 o 1d 2+ r?
e BT e -/o x1+r2x(l—-x)

a ld 2+r2 Nin4 2+r2 11 1-¢
+— —_— - + -

277-[0 * 1+7r%x(1—x) n 1+7r%x(1-x) §n I+¢
2+ 2|(2in AE Indm) — —In| 20
_— + - — .
1+r2x(1-x) (2In v~ ndm) £ 1+,

(2.19)
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2.3. RESULTS
Our process will be

im Y |S{E012= lim [26%0 +8W0].
ny—0 D(E,)D(E,) uy—0

From egs. (2.9), (2.12), (2.17) and (2.19) we see that
(i) Every sum in eq. (2.1) is finite, as expected by the simple Bloch—Nordsieck
mechanism.

(i) lim [26¢ + 8] = 1im [25% + 53]

m,

o 5 2AE 5
p —-6—-Jy+2{(2+r%)In +3+r*|J,

1-4
1+¢,

o }’

(53

2AE 2
+(2+r*)(J;-J,) —4In — —In
m

where

1

1 1
JOE[deln(1+r2x(1—x)), JlEfodxm’

stfoldx )ln(1+r2x(1—x)),

1+rix(1—x

1 1 1 1-¢
J3=—/;)dx1+r2x(1—x) Eln(1+§)’

Hence equality (2.1) is proved and uniqueness is recovered. The above integrals
have been calculated and are given, for completeness, below.

Jo=—-lnn?-2-2(z-1In(z—1) +2zInz,

21_21(22)

2

—1 ) _2“2(2;— 1 ) +g(2)}.

2n? 2 z
5= [lnz(zl—)—%1n2n2+ln(22—1)1n(
z 2z
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In the above we have defined n’=r"2= -m?/q% z=31+1+49H)V?),
Li,(x) = [§ — (dy/y)n(1 —y) is the dilogarithm and {(2) = w2 /6.
Finally,

Jy= L{zm(g)ln[%(ﬂ)(fjg

} +3In%(£_+ €£)

r(1-¢2)"”° £,-¢&)\e-¢
—in2(¢_— &) + 4n’(£,+ &) — Hn’(£, - €) —In(€2 - £2)In ‘f:fg,
+ln(§_—§’)ln(§;;—_§,)—ln(§+—§’)ln(§;++§l +2Li, i;’)
_2L12(% +2Li;,_(i’;i‘,)—2Li2(ii__if }
where
P=1-pi-irt=g- e, £ = iiz Eé,
§2= % = ;qzz =p’r’.

3. Two-mass singularities

This is the case of massless QED. In general we shall have three sources of
infinities, one UV and two mass singularities. Correspondingly our mass regulators
will be denoted by (u,, 1,) and will regulate the (m.,m,.) singularities, respec-
tively. To check uniqueness, we can form three linearly independent equalities of
the form (2.1) and (2.2) (we do not consider momentum cutoffs among the
regulators).

We consider, by far the most interesting of these equalities, the ones corre-
sponding to the smooth electronic mass limit of massless QED. These will exhibit
mixed mass regulators, namely combinations of massive regulator for the electron
and dimensional for the photon, as opposed to totally massive or totally dimen-
sional. Hence, two independent equalities can be formed. Both involve, at some
point, treatment of the regulator-induced degrees of freedom and the resulting
finite contributions. We choose, in the remainder of this paper, to study the
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equality:

lim lim Y S&7912—lim Y |SE©912=0. (3.1)
m.=0e=0 pr XDE,) <0 (bEXDE,)

The other choice, necessarily involving a totally massive combination, can be
treated similarly and in fact part of it has already been calculated in subsect. 2.1.

3.1. (uy, py) = (¢, m.) REGULARIZATION SCHEME (MIXED MASS REGULATORS)

As in the one-mass singularity case, we shall have to consider virtual and real
processes. The bremsstrahlung contributions will come, though, from both soft and
hard collinear radiation.

3.1.1. Virtual corrections. After renormalization, the virtual corrections have
already been calculated in formula (2.17). To be exact, we should also consider
possible contributions from vacuum polarization fig. 1d. This diagram was of the
R(u,) type and hence we did not consider it so far.

For an off-mass-shell photon of momentum ¢, the vacuum polarization graph
gives

. N2 dé-eovk (K +m,) i(k—4q+m.)
l_[l‘«u(q)z _(_le) /(zw)4eUVTr[VM kz_mz yV(k_q)Z_mZ

€

}. (3.2)

The corresponding contribution, after renormalization, will be 28$;"<), where

2|1
lim 8™ = 9pme) = —[—(7 —Ind7 +2lnm,)
e—0 T |6

+ fldxx(l —x)In(1 + r2x(1 —x))] . (33)
0

Therefore, in the limit

2 [ 1 1
lim  lim 5<\51’>’"°)=—[E(Y—ln4w+21nme)—l~g(Zlnme—ln(—qz))]
w

m,—0e—0

= 501 (3.4)

Hence that contribution is of the R(u,u,) type and therefore will not be
considered. We already saw that the 1 /e terms disappear from the sum 258%™ +
845 (eqgs. (2.17) and (2.19)). Hence we can use the above equations, discarding
the infrared poles, for our present purposes.

In evaluating the limit of the massive regulator, we shall need the limits of
certain integrals. Derivation of some of these limits is not entirely trivial. For
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convenience, we present a table of all the limits necessary for the computation of
the radiative corrections that follow, in appendix B. Hence, putting everything
together, we obtain from eq. (2.17)

lim lim 25¢ ™ = zi{ln2 n*+2Inm [ —1+2(y—Ind4m+1n(—-42))]} + -

m.—0e—>0 T 27
x{2(y - Indm) = 4+2{(2) - In(—¢?) [ -3 +2(y — Indm + In(—42))]} -
(3.5)

3.1.2. Real corrections: soft bremsstrahlung. Similarly, from eq. (2.19) we obtain

a
lim lim 8™ = —{ —In*n*—-2Inm,
m,—0e—~0 2

x[%(%) + 2+2(7—In4w+ln(—qz))}}
n Ea;{—zg(z) ~2(y —Indr) —41n(ATE)

+1n(-q2)[41n(%E) +2(y — In47 + In(—¢?))

+f(72)}, (3.6)

where, in appendix B, we defined

oc 1 X
f(r3) =In(2) ¥ (3 B k) (7?)
k=1 :

<] 1 P
-y (%)kﬁ[llf(k+l) —W(k+3)—2W(k) +2¥(2k)]|B(k,k)(7%)".
k=1 N

(3.7)

All of the symbols appearing in egs. (3.5)-(3.7) are defined in appendix B.

3.1.3. Real corrections: hard collinear bremsstrahlung. Finally, as is well known,
we shall have to consider the extra degeneracy of initial and final states due to
collinear hard radiation as shown in fig. 2.

This contribution will be the regulator-dependent part of the incoherent sum of
the above pairs of diagrams (final and initial state degeneracy respectively). The
contributions of the two pairs are equal, so we shall just double the final-state
degeneracy contribution. This will contain terms depending on 1/(p,k)*,1/(p k)



584 H.F. Contopanagos / Smooth massless limit of QED
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Fig. 2. Hard collinear bremsstrahlung. (a, b): Final state degeneracy (c, d): Initial state degeneracy.

and independent of 1/(p,k) where p, =p’ — k. After summing over the photon
polarizations, and discarding terms independent of 1/(p,k) since these are of the
R(w,, u,) type, the hard collinear bremsstrahlung contribution will be
lim lim__ 2685 = lim,, _,,28Fy", where

me.—0 €0

lim s 70 : -
1M Ogf =
me=0 A2 16m(2m)° E(1 = (m,/E)?

1/2
)

x [FdE E(E-E)

mg

1- ('z—)z)]/z[ doo(sey 2. (3.8)

1

In the above expression do,/d{2 is the non-radiative process, 8 the collinear
direction angle, |SUiy’|* the regulator-dependent part of the Bethe—Heitler pro-
cess, and 8 the photon jet opening angle. One can find

1
|SG19|2 = 647 plk)Z(— (plk)‘ = )]d.(l (3.9)

Notice that it is wrong to set the mass m2 = 0 in the numerator of the 1/(p,k)?
term from the beginning, since this term becomes a finite observable contribution
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once integrated over the collinear direction [1,9]:

1
]
lim m2[ doe
m,—0 -/;] (plk)2
m2

e

lim —m——
me =0 (E1(E_E1))

y 5d6? 1
" 2 1 (1= (meB)) 4 (1= (moB)Y) 82|
2
R — 3.10
(E"El)z ( )

This term is the notorious helicity-flip finite contribution which exists in polar-
ized and non-polarized processes, but is singled out in the former, since the rest of
the radiative corrections, having been multiplied by positive powers of the regula-
tor mass, go to zero. In the present case, nevertheless, this term is essential for the
restoration of uniqueness since it combines with the soft-bremsstrahlung m?2-
dependent term that gave the finite (1/£,)In[(1 — £,)/(1 + £y)]-term in eq. (2.19).
This is fortunate since both of these terms will be identically zero in the purely
dimensional regularization scheme. We find

lim 25%";{6)=ilnm 8ln A—E +6
27 € E

m.—0

a
+_
27

AE
—ln6(81n(—) +6
E

AE
~8In EIn(AE/E) —8(2) +9—6In E + 41n(7)]. (3.11)

3.2. (py, ,) = (e,€) REGULARIZATION SCHEME

We must be especially careful here since, in the virtual corrections, we en-
counter the phenomenon of an UV pole turning into an infrared one [6] while, in
the real corrections, the extra polarizations of the photons must be consistently
considered.

3.2.1. Virtual corrections. Using previous expressions found in the one-mass
singularity case, we have

. a 8 4 , a
lim 2669 =——|—- =+ —(In4r+3—y-In(-¢*)) | + =
e—0 27T € € 277_

X

47 4
—8+y2+¢(2) +3(y — Indm + In(—g?)) +2yln( 2) —ln2(7)].
s _

(3.12)
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In the above we observe that the wave function renormalization constant
contribution will be as follows:
ia { 47
4 —p2

Bleuview) — —

eyv/2
) (fuv'z)B(z—%euv’l_%fuv)r(%fuv)’

(3.13)

from where the UV singularity will be: ia/2mey,,. Once the UV counterterm is
found, we continue to n > 4, i.e. €, — —e. But then
2, €/2

i ia
o2 ) (~e-2)
2meyy 4ar

D
41

Bleuv-€uv) —

o

2me  2me’
since the first term becomes identically zero, p? being on mass shell.

We remark that this process of an UV pole “turning into” an infrared one is
idiosyncratic to the completely massless theory. Stated differently, there is no
space-time region where the theory is free of both kinds of divergences. Masses
separate the two space-time regions in which the theory is free of, alternatively,
UV and mass singularities. Once this “barrier” is set to zero, the two regions
merge, resulting in the above effect.

3.2.2. Real corrections: soft bremsstrahlung. This time the second term in eq.
(2.18) is absent. We have

a [{AE? 1 %
5%5’5)=;( 4 ) ;F(1+%e) Ej;]dXIx(G) (315)
The integral I (e) was encountered in eq. (2.18) but, in the completely massless
case, it develops a pole. It is both useful and instructive to compute it using the
following technique which suggests a relation between the finite parts obtainable
by the different regularization methods. Writing

1 o y/2(2-y)?
Ix(€)=g5f0dy_1——_2—’
——1+y
E

XB(2+ 3e,1+ 2e)I'(—3¢) + (3.14)

€/2 1

and making use of the formula [11]*

fudxx"_l(u -+ gy
0

N F v v+m—1 pu+vw wtrv+m-—1 u'")
— gmiyutr—ig —A,— ... ; ; ’
B u (M5V)m+1 m( " m m m g™

(3.16)

* Note that the formula in the above reference is wrong, as a simple scale transformation can show.
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we have

1 2
I(e) = a?)22”63(1 + 36,1+ 3€)F[2,1+ 1e;2(1 + Je); g——%
In the above, F =, F, is the (simple) hypergeometric function.

The idea is to transform the argument of the above expression, using the
analytic continuation formulas relevant to hypergeometric functions, to an x-inte-
grable argument involving 72 alone, since that was the dependence of the finite
part obtained in subsect. 3.1.2.

If £+(1—-c¢), £(a —b), £(a +b — ) are such that two of them are equal, or one
of them is equal to %, then there exists a quadratic transformation [12]

—a z 2
F(a,b;2b;z)=(1-3z) F %a,%+%a;%+b;(2—) ) (3.17)
—z
Here the former alternative between the last two combinations holds. Hence
L(e)=2""B(1+3e,1+ 3€)F(1,3;3 + 1e;¢?).
Applying now the linear transformation [12]

F(a,bic;z) = e —a =) o patb—c+1:1-2)
> I'(c—a)l(c—b)

+(1—z)c"”_bF(C)r(a+b—C)F(c—a c—bic—a—-b+1;1-2)
I'(a)I'(b) ’ ’ ’ ’

(3.18)

that is only possible if the arguments of the right-hand side functions give
meaningful analytic continuations (which is the case here due to the fact that we
are in 4 + € dimensions), we obtain

1+e
[ldx1 () =2"7B(1 + de, 1+ Le) — [laxF(1,3:2 - de;7%x(1 - )
0 e—2/J

rG+3e)r(1-1 ~
+ (5 + )1 i) fldx(fzx(l —x))e/2 1F(% + 1€, 3e; 1, m2x(1 —x))].
T(3) 0

(3.19)

Hence the soft bremsstrahlung contribution will be

5(6,6) — i

LAV L 2b(e s o) |, 0)
%) Frrmre s catetomyio) @

e\ 4 1+%e
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where

@©

1+e€
fi(e) = 21+‘B(l + 36,1+ %e){
€ —
9 —

(%)k——le——B(k +1,k+1)(r2) !
( 2)k

Ir(3+3e)r(1-ze) /2 — 1 k
72 1 %e Bk %e,k %e 72 R
T 07 B G aegBllerie ke )}
(3.21)
T?AE? </
fr(e) = ( ) F(1+3e)F(3+3e)F(1-2e) ' (2+¢€). (3.22)

Making the appropriate Taylor expansions we obtain (see appendix C)
fi(0) =0, (3.23)
i 1
fiO =[=3+¥@) + ¥(3) ~ ¥ () - ¥(3) +1n(+D)] T (kB k)"
k=1 :
> 1
= T (g [P+ D) =¥ (3 +£) = 20(k) + 20 2R)] Bk, K)(D) = (),
k=1 '

(3.24)
with f(r?) defined in eq. (3.7), and

0 2f5(0 T’AE?

%.%= , 1{((1)) =1n( = )+'y, (3.25), (3.26)
4f3(0) [ (TAE?
TE |\

Hence substituting we get

+y} +£(2). (3.27)

Lo & 8 4 5 AE «
611_%535’ =5 l=te y—Indr +In(—¢q )+21n(—E— + —

o (5 £ ) 2o (5225

- (Y2 +2(2) +1() |-

(3.28)
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3.2.3. Real corrections: hard collinear bremsstrahlung. The cross section is ob-
tained by the formula

3+e 3+
dofy = ul - k3+ ‘ T E-w-E)ISEI1P. (3.29)
E’ 20w(2m) " 2E,(27 ) ¢

We can write the regulator-dependent quantity |S$|? as
ISE1° = IS5:212 + 1S5:°1°, (3.30)

where the first term on the right-hand side corresponds to the two transverse
degrees of polarization of the photon and the second to the remaining e transverse
degrees of polarization, introduced by the dimensional regulator. We find

IS(e;2)|2=647T3a .2—E —-1- E— 2m ﬂ (3 31)
o (pik) \ E-E, ENNE ] do” '
€ o (27\“dao,
(e;€)(2 _ 4 3 —— ] —. 332
1Sei”! 6”(pk)2E( )dﬂ (332
1

Notice the important factor (27 /E )¢, necessary in order to express the left-hand
side in factorizable form in terms of the non-radiative cross section in n dimen-

sions*. We obtain
o AE
+ —|-Ind|8Inf—|+6
2 E

a 1 AE
lim 2842 = — 2——[81n(—) +6 +4In’E
AE
—4ln2AE—8§(2)+13—6lnE—(y—ln4w)(41n(?)+3

e—0 T € E

(3.33)

3.3. RESULTS

Our process will be

lim lim Z lSl(;"ZI'M)Iz lim lim [25(#1 42) 4 5(#1 u2) 4 25(#1,1-02)]
#220 =0 (pE XDE,) #2=0 g =

*The quantity in eq. (3.32) contributes to the cross section an amount 284 =a /2. This is
exactly opposite to the contribution coming from the vertex correction, due to the n-dimensional
v-algebra. In other words the extra e photon degrees of freedom give finite contributions that
cancel the ones coming from the n#-dimensionality of the fermionic space-time index. This consti-
tutes another example of finite LN cancellations.
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Summing up the results of subsects. 3.1 and independently 3.2 we obtain:
(i) The well-known cancellation of the singular pieces {1, 6]. Hence finiteness is
recovered.

(ii) lim lim [28§ ™ + 8™ + 28]

m.—0e—0

= lim [26¢9 + 8459 + 265
€

2

_q_) +4In
E

[43

2m 2

—q? AE
BT ‘“(7)

—1n5(81n(%E—) + 6) +f(72)],

{5 —8£(2) +3In

with f(r2) given in eq. (3.7). Therefore, equality (3.1) is proved and uniqueness is
recovered.

4. Conclusions

We demonstrated that, in this particular QED process, LN probabilities are not
only finite, but also unique, even in the completely massless limit of the theory. We
believe that the details involved are generic, indicating that the proposition should
work in general in QED. We also demonstrated that special attention should be
paid to the idiosyncracies of each regularization scheme, especially when more
than one particle is massless.

In particular, the extra physical (but regulator-induced) degrees of freedom for
the photon, and the helicity-flip terms proportional to m? should be kept, if
multiplied by 1/e poles and collinear singularities respectively, because they give
finite contributions. These spurious finite contributions cancel when we add up all
processes belonging to the same degenerate LN set. The uniqueness of the finite
parts becomes obvious when, as it was shown at the analytical level, one expresses
the seemingly incomparable integrals in terms of hypergeometric functions. These
lead to the same finite parts if continued analytically (in the dimensional case) or
expanded in a Taylor series (in the massive case) at exactly the point where
analytic continuation, possible in the dimensional case because of the extra
space-time dimensions, breaks down.

We believe that uniqueness of LN probabilities is no mere accident but rather
follows from the structure of the singularities and their subsequent cancellation
within a LN set. The different members of such a set are actually pieces of
different Green functions that become physically degenerate once put on mass-
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shell. Therefore, we believe in the possibility of unifying these different pieces,
possibly at the Green functions level, by an inclusive formalism which would show
that, if one obtains finiteness, one will obtain uniqueness as a matter of course.
This formalism would necessarily address the question of collinear helicity-flip
processes and the corresponding finite contributions that, at this stage, seem quite
non-unique. These are of no mere academic interest, since their contribution may
be a radiative background making dubious the interpretation of many experiments
[9, 13, 14]. We shall return to these more general questions in a future publication.

We would like to thank M.B. Einhorn for suggesting this problem and his many
valuable insights and discussions, for proofreading the manuscript and for his
collaboration on the problem of the massless limit.

Appendix A

Consider the integral

1 1

1,2 -
(2420 7 [(k2 4 02)"7 — 1ph2 — key

L(}) =f()AE/m°dkk2flldy

Since we are interested in the limit A — 0, the singular and regular structure of the
integral remains the same if we drop the pA® term. Hence we shall calculate

lim 1,(0) = lim [* dyJ(s.£,),
A—0 §o©s
where

2
S=AE/m.A t 1
"d

J.(s,€,y) =f0 (1+:2)" [(1+t2)1/2—t§y]2

Making the transformation: ¢ = tan 8, we have
1 1 1 1
. 2 s 172 -
cos@(1—¢&ysin8)” €Y 1 —sé£y/(1+52) &y

arctan s
I(s,&,y) = [T de
0
The first integral can be calculated easily if we expand 1/(1 — £y sin 6) in a Taylor
series (notice that 0 < ¢, y,sin 8 < 1). We obtain

o 1a2k
arctan s sin“" § >
I(s,69) = L (en)™ [T a0 +2 ¥ (k+ 1) ()™
k=0 0 cos § k=0

arctans  SinZ¥*1g 1 1 1

T eos B £v izt
0 cosb &y 1-s£y/(1+5%) £y

X



592 H.F. Contopanagos / Smooth massless limit of QED

Using also

sin2k6 sin?-1g
= Intan(57 + %0) -y —,
—1 2l1-1

fde

I(A) = foldy[fx(s,g,y) +1(s,6 -9)],

lim Intan(imr + farctans) =In2s,

5§

and the identity

1-¢
1+¢

»

we obtain

1-¢

1+¢

o ol[[AE) 1 11
AI—I»I}) x()\)— { Il( me)—n)\ ET{’-'—Z+1—§2§EIH }

In order to perform the x-integration on the second term of this integral, we
introduce two constants « and $ such that

1—-p2=p2ria(l —a) =pB>.

Then we perform the change of variables:

2a —1)p*rinw? - 2Bw

pzrzwz 1

X=a

Thus we complete the square of £:

(2a — 1)p*r’w — 28

pzrzwz ]

§&=8

Hence the logarithmic integral splits into standard dilogarithms. The integration

appearing in subsect. 2.3 was performed at the conveniently symmetric point
1

a= 3.

Appendix B

For convenience, we supply a list of limits we used in the text. The correspond-
ing parameters appearing are: r:= —q?/m2, n’>=1/r%, 1= —q*/E? &=
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1—7n*+x(1 —x)], £ =1— 7292 The following table of limits was used:
lim fldx In(1+72x(1—x))=~-2—1Inn?,
m.—070

1

1
hi dx——— =0,
melr—r»lo-/;) 1 +rix(1-x)
1
o2l 2
dx——F———=—2I ,
ml:rllor fo xl+r2x(1—x) n

1 In{1+r2%x(1—x))
li d =
m:glo-/(‘) * 1+r%(1—x)

bl

In(1 +r2x(1—x))

im r2['d — In2n% - 2£(2
ml:glor-[o ¥ 1+r%(1—-x) n £,

1

1
- L
ml:To In me/o dxl +r2x(1—x)
lim r?Inm fldx;= —In?n?—1In( —g?)Inn?
m,—0 o T 1+r%x(1-x) ’
. 1 1 (1-¢
li dx——————In| —— | =0,
meodo T rix(1-x) € \1+¢

.l 1 1 (1-¢
Jm Ty Eln( 1 +g)
= —l’n’=2[¥(}) - ¥(1) + In7?]Inn? - 2¢(2) + In 72 i (%)k;:—'B(k,k)(Tz)k
k=1 :
= 1
= X gy [V 1) =9k +3) =20 (k) +2¥ O] Bk, K)(+)',

1 _
Iim —In
m.—~0 &g 1+¢,

)=lnn2+ln72—ln4.

In the above, {(x) is the Riemann zeta function ({(2)=w2/6), ¥(x)=
dinI'(x)/dx, I', B the gamma and beta functions, respectively, and the
Pochhammer symbol is defined as

r k
(= o2
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A derivation of the next to last limit goes as follows: Denoting the integral by I(n?)
and noticing that in general 7%[n?+x(1 —x)] < 1, and that, 0 < ¢ < 1, we can write
[11]

1 1-¢
gln( . +§) = —2F(3,1;3;€%),

where
= (@) (b), 2"
o (o) k!

is the (simple) hypergeometric function. Also noticing that for |1 —z| <1 we can
write the expansion [12]

I'(a+b) i (a),(b),

r(a)r(b) ;= (k1

F(a,b;a+b;z)=

X[2¥(k+1) = W(a+k)—W¥(b+k)—In(1-2)](1-2)*,

to obtain
lim I(n?) = —[¥(1) - ¥(3) —In7?| lim f‘dx—l——
7%-0 : n?=070 7]2+X(1 —x)
1 In(n?+x(1-x))
li d
+n21T0'/0 * 'r_72+x(l—x)

o 1 k k—1
- T O 0 = v (e D) tim [0 501 -0))
k=1 : n°—=070

—(rz)k lim f] dxIn[72(n? +x(1-x))][n?+x(1 —x)]k_l} .
72-070
We can set n?=0 in the limits existing in the sum, since the corresponding

integrals are convergent and the series is convergent. Also, substituting the rest of
the limits from the table and using the formula

foldx In(x(1 =x))[x(1=x)]*"' = 2B(k, k) [¥ (k) — ¥(2k)],

we obtain

lim I(n?) = ~In®>n?—2[¥(5) — ¥(1) + In72|Inn? - 2£(2) +f(7?),

20
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with

B(k, k)(Tz)

f(=) =In(s )kgl(a)kk,

®©

1 k
-y (%)kF[W(k+1) - W(k+73)—2¥(k)+2¥(2k)|B(k,k)(7?)".
= !

Appendix C

We shall prove eqgs. (3.23) and (3.24). Looking at the definition of f(e), we
obtain

k+1

0 =2 =3 £ B blhs 1+ 06+ 8 (3 b’

But (3), = 2(3), 1, O, = (k + 1!. Hence f,(0) = 0. Similarly,

d2¢

dB(1+ 3e,1+ 3¢
f{(0)=ld (rieit i)

de

]fl(o)

e=0
5 d (1+e

+ JE—
de(e—Z)

XB(k+1,k+1)(r?)

] d 1
SHE )kk,B<k DD =3 T R)egz (=3 T,
k=0

e=0 k=1

k+1

F(lg) SrGtora -,

< £ (gt B |t bmanen
k=1

— k!
dB(k+%e,k+%e) P
1 2
+(2)k de o (T ) .
Using the relations
)™
=alnC
de =0
dI'(ae +b)
—(‘16— =aF(b)‘If(b),
e=0
d +1 +1
Tlae+s) ]! = £al(5) ] = [#(b+K) - ¥(b)],
e=0
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as well as the special values, whenever appropriate,
v()=-y, ¥@)=-v+1, ¥(3)=-y-In4,
¥(3)=2-y-md4, ¥(1)={Q2),
v(2)=¢(2) -1, ¥(3)=3¢(2) -4,

we obtain eq. (3.24).
Expanding similarly f,(e) and using the above formulas, as well as

d2 C ae
—(—2)— =a?In?C,
de 0
d*I'(ae + b)
—aa =a’I'(b)[¥(b) + ¥'(b)],
e=0

we can derive the rest of the expansions.
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