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This paper discusses the homogenization method to determine the effective average elastic constants
of linear elasticity of general composite materials by considering their microstructure. After giving a
brief theory of the homogenization method, a finite element approximation is introduced with
convergence study and corresponding error estimate. Applying these, computer programs PREMAT
and POSTMAT are developed for preprocessing and postprocessing of material characterization of
composite materials. Using these programs, the homogenized elastic constants for macroscopic stress
analysis are obtained for typical composite materials to show their capability. Finally, the adaptive
finite element method is introduced to improve the accuracy of the finite element approximation.

1. Introduction

The role of composite materials is becoming increasingly important in industry. Their
microstructure character provides a good weight/strength ratio that makes them suitable for a
large variety of applications ranging from sports goods to space aircraft and their application
in high performance structures makes thermal/stress analysis a major concern. It is extremely
difficult to analyze such structures, including each individual microstructure, due to the high
degree of material heterogeneity. A natural way to overcome this difficulty is to find some
kind of equivalent material model without needing to represent each individual micro-
structure. This model should characterize the average mechanical behavior as well as
represent the effect of the composite material heterogeneities.

Much research has focused on defining equivalent mechanical properties of composite
materials and on determining their dependence on the different components. This research
activity provided several different methods of computing equivalent material properties.
Although some of these methods are engineering based, they quite often show a good
agreement with other empirical methods and/or available experimental data. A survey of such
activity is given in [1] and references therein provide good insight into this approach.

A mathematical counterpart to such engineering methods appears in the 70’s with the name
of homogenization theory. Since then this theory has been the subject of a large amount of
research in area of applied mathematics. The fundamentals of this theory can be found,
among others, in [2-9]. A review of the recent progresses in the mathematical modelling of
composite materials as well as an extensive reference list can be found in [10].
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In homogenization theory it is usually assumed that the composite material is locally formed
by the spatial repetition of very small microstructures, ‘microscopic’ cells, when compared
with the overall ‘macroscopic’ dimensions of the structure of interest. In other words, it is
assumed that the material properties are periodic functions of the microscopic variable, where
the period is very small compared with the macroscopic variable. This assumption enables the
computation of equivalent material properties by a limiting process when the microscopic cell
size is reduced to zero.

The homogenization method is advantageous because it is a rigorous mathematical theory.
It can also provide reasonabie solutions for some problems where the experimental data is not
available, or for which only bounds for the equivalent material constants can be found by
other theories (see for example [11, 12]).

Several cases of homogenization can be found in [7]. This work considers the cases of
composite materials formed by elastic media with periodic holes and rigid inclusions, and fiber
reinforced elastic materials where slipping without decohesion may occur between the fiber
and the matrix with linear, nonlinear and viscous tangential forces at the slipping boundary.
This last class of problems is particularly interesting due to the existence of nonlinearity
effects. All these cases are mathematically formulated and discussed. Numerical procedures
are also introduced and examples for two-dimensional cases are worked out.

Another set of numerical applications can be found in [13]. This work at INRIA considers
the numerical implementation of the computation of equivalent material elastic constants, or
homogenized coefficients, for two- and three-dimensional examples and presents several
examples.

The purpose of the present work is to study the numerical accuracy of the finite element
solutions for the equivalent material properties, their influence in the overall numerical
solution and ways to improve this accuracy, as well as to study the applicability of the
homogenization method for the stress analysis of composite materials. This work is formed by
5 sections.

In Section 2 a brief description of homogenization theory is given for the case of linear
elastic materials. In this section the problem of finding the equivalent material properties of a
composite material involving microscale holes subjected to tractions is presented. The use of
homogenization technique introduces three uncoupled problems: two on the ‘microscopic’
level and one on the ‘macroscopic’ level. The ‘microscopic’ level problems enable the
computation of the homogenized coefficients as well as a kind of ‘residual stresses’ that will be
used to solve the ‘macroscopic’ problem.

In Section 3 the numerical solution of the before-mentioned problems is considered. The
finite element method is introduced to compute the homogenized coefficients, the ‘residual
stresses’ and the global displacements and stress fields. Also, a priori error estimations are
derived for the finite element approximations of the above quantities.

In Section 4 the homogenization method is used to introduce the idea of material
preprocessing (PREMAT), to compute homogenized material properties for composites, and
material postprocessing (POSTMAT), to compute local distribution of stresses and strains
within the microscopic level. These are then used to solve stress analyses problems of
comllzosite materials. It is noted that there are few similar examples to the ones studied in this
work.

In Section 5 an adaptive finite element method is introduced in order to improve the
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accuracy of the numerical solution. This adaptive method is based on the a priori error
estimations. Its implementation is described and examples are performed.
In the last section some general remarks are made.

2. Review of the homogenization theory

Consider a composite material formed by the spatial repetition of a base cell made of
different materials as shown in Fig. 2.1. For the sake of simplicity oniy two-dimensional
figures are presented, although the following is developed for the three-dimensional case.
Assume that a body is made of, for example, two different materials whose mixture is
represented by a base cell that is very small, of order ¢ (where ¢ is a very small positive
number) compared with the dimensions of the structural body. If the body is subjected to
some load and boundary conditions, the resulting deformation and stresses, in general, rapidly
vary from point to point because of repetition of microscopic base cells producing heterogenei-
ty. In other words, with the high level of heterogeneity within the material, these quantities
also vary rapidly within a very small neighborhood ¢ of a given point x. Thus it is reasonable
to claim that all quantities have two explicit dependences. One is on the ‘macroscopic’ level x,
and the other is on the ‘microscopic’ level x/e, i.e., letting g be a general function,
g = g(x, x/g). Due to the periodic nature of the microstructure, the dependence of a function
on the ‘microscopic’ variable y = x/¢ is also periodic.

To solve such a problem using finite element methods would be almost impossible, since
discretization of the body becomes enormous in order to represent detailed structure of the
microscopic material constitution. Thus it would be desirable to develop a method that can
reflect the microscopic structure without looking at details of all of the material points of the
body, whenever the mechanical behavior of the macroscopic body is in question. The
homogenization method has been developed to realize this kind of approach. Furthermore,
with this method, the mechanical behavior of microstructure can be approximately predicted
by a postprocessing of the macroscopic stress analysis. The homogenization method is
introduced in the remainder of this section.

Let £2 be an open subset of R® with a smooth, say Lipschitz, boundary I' (see Fig. 2.2). Let

N|R|R
N|AR|R
N AR

Fig. 2.1. Composite structure. Fig. 2.2. General elasticity problem.
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Fig. 2.3. Base cell of the composite.

Y be an open rectangular parallelepiped in R’ (see Fig. 2.3) defined by

Y =10, y3[ x10, y;[ X 10, y3[ , (2.1)
let 9 be an open subset of Y with boundary

39=S5 (22)
and let _
¥=Y\9, (2.3)

where ¥ is the solid part of the cell, 3 denotes the closure of & and Y represents the base cell
of the composite microstructure. The material properties vary inside Y, and the set ¢
represents a hole inside Y. Define now

o ={o it Jg¥’ (2.4

and extend ® to R’ by e periodicity, i.e., repeat the base cell in all three directions. Then
define

Q' ={xe0|O(x/e) =1}, (2.5)

i.e., 02° is the solid part of the domain. Also define

all cells

St = L_Jl Sﬂ (2.6)
and consider the following hypotheses:
1. 2° is a connected domain , 2.7

2. The hole(s) ¥ has sufficiently smooth boundary(ies) S , (2.8)

3. None of the holes S intersects the boundary I' of 2 . (2.9)
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Now let
— 1 3
V' = {vEHNQ") | v, =0}, (2.10)

where v| r, Yepresents the value of v on the boundary I, (in the trace sense).

Then the problem of the deformation of a body 2° subjected to body forces fand tractions ¢
on the boundary I, together with tractions p inside the holes S, and prescribed displacement
onI; (with '=FLUI, [NI;=0, I;NS*=@, I, N S° =0), can be stated as

Find «* €V°®, such that

25840 [ g [ .o :
IaEi]kl axl axj dﬂ— Q¢ f,'v'-d0+ r‘tiv‘-dr"" se p,vids vaV . (2-11)

Here, it is assumed that the stress—strain and the strain—displacement relations are

05 = Ejuen (2.12)
e 1 (2, 20
€= > 3%, + ox,)’ (2.13)

and that the elastic constants have the following properties:
E:jkl = E;:kl = E:;lk = Ezm s (2.14)
da>0: Ejye e, =aee, Ve,=e,. (2.15)

A unique solution #° exists for the problem (2.11) under the assumption that the functions
J, ¢, and p are sufficiently smooth, and the boundaries I, I; and S° are regular, see [14].

Since the body iorces f, the tractions p and the elastic constants vary within a small cell of
the composite, i.e., they are functions of both x and y = x/e:

D°(x)=D(x,y), y=xle, (2.16)
the solution #, should also depend both on x and x/e, that is,
u(x)=u(x,y), y=xle. (2.17)

Dependence on y=x/e means that a quantity varies within a very small region with
dimensions much smaller than those of the macroscopic level. In a neighborhood of a
macroscopic point x it is assumed that there is a very large number of microscale small cells
which are obtained by translation of a base cell. In other words, dependence on y can be
considered periodic, specifically Y-periodic, for a fixed x in the macroscopic level. Moreover,
it is assumed that the form and composition of the base cell varies in a smooth way with the
macroscopic variable x. This means that for different points x the structure of the composite
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may vary, but if one ‘looks through a microscope’ on a point x, a periodic pattern can be
found.

The dependence of the solution u® in the macroscopic and microscopic levels makes it
reasonable to assume that #° can be expresed as an asymptotic expansion with respect to the
parameter £ (a measure of the microscopic/macroscopic dimension ratio), i.e.,

u’(x) = u’(x, y) + su'(x, y) + 2u’(x, y) + -+, y=xle, (2.18)
where
d i in (x, XY,
u'(x, y.) s defined in (x, y) € 2 2.19)
y—u!(x, y) is Y-periodic.
To establish equations which «°, &, . . . , u’ satisfy, it is useful to note that
] od 109
9 = = 4+ 2 2= 2.20
axi (¢(x? y x/E) axl + € ay‘ ? ( )
and that, for a Y-periodic function ¥(y),
lim J w(f) d0— f f W(y)dY d0 2.21)
0t Jar " \ g |Y| Ja J¥ ’
im o [, (3)as~ 57,
811.1})1*, £ Ls ‘I’( s) dS— 7] Ja Js Y(y)dsdn, (2.22)

where |Y| stands for the volume (or area, for two dimensional domain) of the cell. Implicitly it
is assumed that the function W(y) is extended to all volume under each cell, such that it takes
the value zero on the holes. This will be assumed to be possibie in a smooth way. In the
following description it will be assumed that all functions depend explicitly both on x and y
with a single exception for the applied traction ¢ on boundary I, which only depends on x.

When a particular dependence on x or y is assumed, it will explicitly be stated in the
equations.
Define

Vaxy = {v(x, y) defined for (x, y) € 2 X ¥|v(-, y) Y-periodic; o], =0;

v smooth enough} , (2.23)
Vo = {v(x) defined in £ | v| r, = 0; v smooth enough} , (2.24)
Vy = {v(y) defined in ¥|v(y)Y-periodic; v smooth enough} . (2.25)

Introducing the asymptotic expansion (2.18) and (2.20) into (2.11), the functional becomes
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duy v, ° oul\ov, oul
fn‘ Efjkl{lz U .a_vl + _1_ [(% + .aﬁ)% + % %]
X, oy,/oy, dy, dx;

g dy, dy; ¢
aud  oul\oav, oul  ou’\ ov,
ox, dy,/ ox; ox, dy,/ dy; e(-)fde

=Im fiv, dQ +L tv,dr + Ls piv;dS VveEV,,,. (2.26)

A§suming that the functions are smooth enough so that the limit when e— 0" of all integrals
exists, (2.26) holds if the terms of the same power of ¢ are equal to zero. Therefore

1 . oup v,
2 o e,-ug;l"a—y;dﬂ=0 VoEVy.y, (2.27)

1 [ . [(0u . oub) dv, . dub oy,
1 [( k _k) Uy _t] dg:Ls piv;dS VveEV,,,, (2.28)

e 1= + —
g Jae "M\ ox, * ay,/ 9y, 9y, ax;
oud ouy\ dv, [ou, ou’\ ov,
E; [(—"+—")—'+(—"+—")——'] = . f v,
fm K \'ax, = ay,/ ox; \ox, dy,/ ay d@ =), fivid2+ v dr
YvEV,, v, (2.29)
etc.

Multiplying (2.27) by &* and taking the limit é—0", property (2.21) yields

' dup 9
L | Bt Diaydn=0 YoEV,.,. (2.30)
Y| Ja J¥ ay, 9y,

Since v is arbitrary, choose v = v(y), i.e., v € V. Then, integrating by parts, applying the
divergence theorem to the integral in ¥, and noting that the terms in the opposite faces of the
cube ¥ cancel due to the periodicity condition, one has

m fn {fv [—W (Eil'k’ E}f)]vi dY + L E;y 3y, n;v; dS} d2=0 YveEV,,y.
, (2.31)

Since v(y) is arbitrary, this yields the boundary value problem of the first term u’ of the
expansion of the original solution #° in the basic cell domain ¥:

_ 9 ( auﬁ) _
ay,- E.'jkl ay’ - 0 . € ¥ ’ (2'32)
auz

ay,
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Apply the following proposition, which is identical to Lemma 2.1 in [2, p. 10].

PROPOSITION 1. The problem

has a solution in
Vy = {v smooth enough, v is Y-periodic}
defined up to an additive constant, for a regular F, if and only if

6¢(y)

f F(y)dY = - f Eju —2n,ds. (2.35)

Then it follows from (2.32) and (2.33) that
= u'(x), (2.36)
that is, the first term of the expansion of #° in & depends only on the macroscopic scale x.

Introducing (2.36) into (2.28), multiplying by e, taking the limit e—0" and using
properties (2.21) and (2.22), one can obtain

i1 B2 1 3) B av]an- [ (75 [, pweas)
fn[lYl vE'/"‘ ox, + ay,/ dy, dY|df} = a \|Y| sp,v,dS L
Vv e anv . (2‘37)

Since (2.37) is satisfied for aiy v, choosing v = v(y) yields

duy(x) auz) av,(y)
jE"’"'( ox, * ay,/ 9y

dY= fs pui(»)dS VvEV,. (2.38)

Integrating by parts, using the divergence theorem, and applying the periodicity conditions on
the opposite faces of Y, it follows from (2.38) that

[ 8 duy(x) au,l‘)] (aug(x) du,
fv 5, [E"’"‘(T + -6—y, v,-(y)dY'l-LEiik, '—5}‘— + — )v( ) .dS
=LP,-U,-(_)’) dS Vvey,. (2.39)

Since v is arbitrary,
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_9 ( "’"k) 9 ( \ au‘,’c(x))
3, Ey 3, ay E;u ox, onY, (2.40)
du, _ auk(x)

On the other hand, if in (2.37) v is chosen to be only a function of x, i.e., v = v(x), then

I (IYlfp,dS)v *x)d2=0 VYvey,, (2.42)

which implies that

J; Di(x, y)dS=0. (2.43)

Equation (2.43) restricts the possible applied tractions inside the holes. Moreover, if in (2.42)
the set Vn is relaxed in order to contain all rigid body rotations, it can be seen that the
moment in each cell due to the tractions p has to be zero. That is, the apphed tractions have to
be self-equilibrating. Thus, it follows from Proposition 1 that there is a solution u' €V,
defined up to a constant.

Introducing (2.36) into (2.29) and taking the limit é—0" in (2.29) implies

L[ g (2 ) (o o) an )
In{|Y| v B ox, + oy, ax,+ ox, * ay,/ dy, d¥yda
1 -
= fn (17! L f,v,dY)da+ Lt,v,dl’ YoEV,,,. (2.44)

Choosing v = v(x) yields

1 (au,‘ auk) ]av,(x)
I[|Y|IE“"' ox, + oy, a¥ ax; a0

=, ([, #av)oman+ [ o@ar woev,. (2.45)

Note that this is a statement of overall equilibrium in the macroscopic sense.
Now if v = v(y) is assumed in (2.44), then

L o2+ 28) 29 oy [ (28] pocrar)an

J

This is equivalent to
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du, aui‘ ov, (y) f
N X Vy 47
L{ Eukl( axl + ayl ayl fvu(y) dY Vve ¥ (2 4 )

which represents microscopic equilibrium in the basic cell.

The same procedure could be applied for the higher order terms of the expansion, and then
a set of ‘equilibrium’ equations relating the several terms would be obtained. However, if only
the first order terms are of interest, solving (2.38) and (2.45) yields the ‘full’ sclution for u".
The term «° represents essentially, the macroscopic mechanical behavior while the u'
represents the microscopic behavior.

The goal now is to find homogenized elastic constants such that the macroscopic equilibrium
can be described by the same sort of equation as (2.11). These homogenized constants should
be such that the corresponding equilibrium equation reflects the mechanical behavior of the
microstructure of the composite material without explicitly using the microscale parameter &.
To accomplish this consrder once again (2.38). It can easily be recognized that this equation is
linear w1th respect to #° and p. This suggests considering the two following problems:

Let y“ € Vy be the solution of

axp du,(y) 6v(y)
L Ejpm ayp m dy = f E; —~=dY VYveV, (2.48)
and let Y €V, be the solution of
Y 9v,(y)
Jo B e T2 av= [ punar woev,, (2.49)

where x plays the role of a parameter.

The existence of solutions to these problems, calculated to within additive constants, is
assured by Proposition 1. The additive constants may be functions of x. Therefore, due to the
linearity of the problem (2.38), the solution u' can be written as

k()

= ~x;(x, y) === — Y(x, y) + i} (x), (2.50)

where i, are arbitrary additive constants in y. Introducing (2.50) into (2.45) yields

"" [|—11’i L <E‘!’"’ = Eijpm a;p ) dY] alf;(,x) 9';5)
J’ (|Y| f Eju oY dy) arg(x) dﬂ'*‘f (!;' f de)v ) d0

+ f, Lo (x)dll Yvev,. (2.51)

Denoting
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1 Xy
Dijkl(x) = m _L, (Eijkl - Eijpm yp ) dy, (2.52)
1 Y,
7;(x) = m j¥ E i ayl: dY (2.53)
and
1 R

(2.51) can be written as

f Dukl( ) auk(x) a:; (x)

I

= L 7,() a—'gi—") de + fn b,(x)v,(x) dQ + fn v (x)dl YoEV,. (2.55)

This equation represents the macroscopic equilibrium, while D, defined by (2.52) represents
the homogenized elastic constants, 7, an average ‘residual’ stress within the cell due to the
tractions p inside the holes and b, and average body force.

As shown above, the microscopic and macroscopic problems are not coupled, i.e., the
homogenized elastic constants can be computed within the basic cell by solvmg problems
(2.48) and (2.49), which do not depend on the macroscopic deformation «°. If a composite
material has a uniform cell structure in the whole domain {2, as well as a uniform applied
traction p on the hole boundaries of the cells, then the microscopic problems (2.48) and (2.49)
need to be solved only once. If they are not uniform in the domain (2, these microscopic
problems must be solved for every point x of £ at which cell structure and traction p are
different from others.

The following remarks could be useful to understand the homogenization method.

REMARK 2.1. The above derivations are formal, and all functions are assumed to be smooth
enough in both x and y.

REMARK 2.2. The assumption that the holes of the composite celis do not intersect the
boundary I' of the domain 2, made it easier to deal with the boundary conditions. A more
careful treatment of the boundary requires the use of boundary layer terms, in particular, o
take care of term i, see [2, 4].

REMARK 2 3 From problem (2.48) and property (2.14) of the elastic constants, it is easxly
seen that y* is symmetric with respect to the indices k& and /. This implies that only six
different equations are solved for the three-dimensicnal problem (and only three for the
two-dimensional problem).

REMARK 2.4. From (2.52), it can be shown that the symmetry property and coercivity also
hold for the homogenized elastic constants, i.e.,
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Dy, = Dyy = Djyy = Dy (2.56)
Ja>0:D e, =aese; Ve, =e;. (2.57)
Details of the proois can be found in [86].

REMARK 2.5. It can be shown that under smoothness assumption on 7, b and ¢, the
homogenized problem has a unique solution #°, see [14].

REMARK 2.6. 1t is assumed that the solution u® converges (weakly) to u° whenever ¢ —0*.
Proofs and detailed analysis of such convergence can be found in [15, 16].

REMARK 2.7. The displacement field 4® involving details of the microstructure is given by

v = ')~ o1, ) 2D s g, - 0) + 86, y=E  @39)
once the homogenized macroscopic problem is solved.
REMARK 2.8. The stresses in each point of the domain are given by
u,
oy Eum -,
substituting (2.58)
o= 0'3 + ea',l, + %), (2.59)
where o \ :
ou, du )
0 Oy | Uy
oy = Efjkl( 3%, + 3y, (2.60)
1= F (éu_’i‘ + .B_EZ) 2.61
7 ijkl ox, oy, /)’ (2.61)

Then introducing (2.50) into (2.60), ag., the first approximation of the stress, is given by

0 _ axt(x, y)) aul(x) W, (x, y)
aij(x! y) = (Eijkl(x$ y) Eijpm(x’ J’) 3y, ax, - ilkl(x’ y) T ’
=%
y=x. (2.62)

REMARK 2.9. The relation between the homogenized stress o, = Dy, duy/dx, and o, can
readily be seen by applying the ‘average’ operator
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1
TﬁL"'dY

to the previous definition to obtain
n_ 1 0
o= ﬁz_' L, o;dY + ;. (2.63)

REMARK 2.10. If there are no applied tractions ¢ and body forces f, it follows from (2.55)
that

(oh—7),=0 in 2, (o}—7)n;=0 on I,
and then

oh=1,.
REMARK 2.11. For the particular case that either there are no applied tractions p on the
holes S or the holes do not exist, we set ¢y =0and ¥=Y.

Up to this point derivations of equations were introduced characterizing the homogeniza-
tion method. All these derivations were performed assuming enough smoothness for all
functions and functionals involved. The homogenization method was then characterized by the
solution of three distinct problems: two in the microscopic level, cell problems, and the other
in the macroscopic level. The notation involved in characterizing these probiems was based on
the principle of virtual work, that is, the weak form of the equilibrium equations, in order to
present the homogenization results in a more familiar way. However, this notation is not very
convenient for the following developments. Also a more precise mathematical setting is
necessary to formulate the problems. Consequently a new notation is now introduced, as well
as the required mathematical framework.

Let (H™(2))* and (H™(¥))* be Sobolev spaces defined over the R® domains 2 and ¥,
respectively, with the semi-norm and norm

1/2
|u|,,,,=(|; [ o, + v, + P a0) , 0<r<m (2.64)
and 2
Iollna=( 3 [t +lome +lwslan) (265)

respectively, where a is a multi-index (e;, @,, a;) and

lal]
a, L
o8 9%x, 8°2x, 8%,

, lel=ay+a,+a,.

Similar norms and semi-norms are defined for the spaces (H™(¥))’. Now redefine the set V;, as

Vy={vEH'(Y))’|v is Y-periodic}, (2.66)
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introduce the bilinear form defined on Vy X Vy,

ay(w, 0)= g1 f E,u a';" a;' dY, w,veV,, (2.67)
and the linear functional in Vy,

fy(v) = |-;7| fs pv;ds, (2.68)
and define

Pi=ys,e., (2.69)

where e, are the Cartesian base vectors for R® and §,, is the Kronecker symbol. Then one can
restate problem (2.48) as

Find x* €V, , such that

a,(x* - P v)=0 VveEV,. (2.70)
A direct substitution yields that the homogenized coefficients (2.52) can be written as

Dy, (x) = ay(P 4~ x*, P (2.711)
or, choosing v = x" in (2.70) and adding to (2.71) yields

Dy (%) = ay(P“ = x*, P' - x"). (2.72)
Similarly, problem (2.49) is represented by

Find ¢y €V, , such that

ay(P,v)=f,(v), YvEV,. (2.73)
The ‘residual’ stresses 7 can then be expressed by

7, = ay(¥, P") . (2.74)
Finally, for the macroscopic problem, define the set

Vo= {vEEH'@)) |0l =0}, (275)

and introduce the bilinear form in V,, XV,
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u, dv;

ox, ox, . 4Y, wvEV, (2.76)

a(u’ v) f D, ijkl
and the linear functional in V,,,

fv)= f 7 ax’ dn+f by, cm+f tp,dr . (2.77)

Then (2.55) is written as

Find u’€V,, such that

a(u’, v)=f(v) VveEV,. (2.78)
REMARK 2.12. The bilinear forms a,(-,+) and a(-,-) are symmetric.

REMARK 2.13. 1t can be shown that a,(:,-) defines a semi-norm in the space V. In
particular due to the properties of the elastic coefficients E,, it defines a semi-norm equlvalent
to the |- |, ,, i.e.,

Ja>0, >0:alv|, , <ay(v,v)'*<Blv],, YvEV,. (2.79)

REMARK 2.14. If one defines the quotlent space V°*=V,/(R%), i.e., the space of all
equivalent classes [u] such that (z — v) ER’ u, v €V, with the usual norm definition

[=]ll = infa || - c"l,Y ’ (2.80)
cER

the cell problems (2.70) and (2.73) have unique solutions in V* (this is a simple extension of
Lemma 2.1 in [2]).

REMARK 2.15. The norm in V° is equivalent to the semi norm |-|, , (see [17]), and
consequently equivalent to the bilinear form a,(-,-).

REMARK 2.16. It can be shown that a,(-, -) satisfies a Schwarz inequality, i.e.,

lay(u, v)| < ay(u, w)'%a,(v,v)""*, u,veV,. (2.81)

REMARK 2.17. Under the properties (2.56), (2.57) of the homogenized coefficients and the
assumption that the bilinear form (- ,- ) satisfies a Korn inequality (see [14]), a(- , - ) defines an
equivalent norm to || - ||, o in Vj, i.e.,

Ja, B>0:alv|, o <a(,v)'*<B|v|l,, VVEV,. (2.82)
REMARK 2.18. It can be shown that a(:,') satisfies a Schwarz inequality, i.e.,

|a(u, v)| < a(u, u)'%a(v, v)''*, w,vEV,. (2.83)
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REMARK 2.19. The bilinear form a(-,-) and the linear functional f(-) are expressed using
the homogenized coefficients and the ‘residual’ stresses which are obtained in the cell
associated with a point x as a parameter.

REMARK 2.20. P” in (2.69) is not an element of V.

3. Finite element analysis for the homogenization method

In this section a description is presented of the finite element solution procedure to obtain
the homogenized elastic coefficients D, the ‘residual’ stress 7,, and the macroscopic
displacement field u° of the homogenized problem. For each of these quantities a priori error
estimations are obtained. To this end let us assume that

1. Domains {2 and ¥ are polygonal ; 3.1)
2. Discretization using regular families of conforming finite elements ; (3.2)
3. The integration is performed exactly ; 3.3)
4. A generic space V is approximated by a space V" s.t. 3.4
dim V" <, @3.5)
Vovh, (3.6)
YveV au"ev":m lv-v"||=0, (3.7)

where the parameter s represents a geometrical sizing characteristic of the finite elements
discretizing the domain (see [18]). More specifically, following Babuska and Aziz [19, Chapter
4], it is assumed that the space V* forms a (¢, k)-system, S;,"(@), where 0<h<1,t>k=0,
and @ stands for either R or ¥, i.e.,

(HY®)' > S¥{®), (3.8)

YvE(H'(®) [=0,0<s< min(/, k) 3v, € S;,k(®) :
llv- vl"s.@ <Ch* "v"l,® ’
p=min(t-s,l-5), 3.9)

where C, is independent of v and h, v, depends on v and s. It is also assumed that SH®) is
regular, i.e., v, is independent of s, and (@) satisfies an inverse relation:

Jk=e>0:Vk-e<s<k and Vo€ S¥@®) lvlle < C:h™“lv)lsq, (3.10)
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where C, is independent on v and A, but not on k and e. Using these assumptions it is shown
in [19, Theorem 4.1.5] that

VoEH'(®))’ InESH(@):V-t<s<k,s<I lo-v,ll;0=<Ch*|lv|,q .
(3.11)

where C is mdependent of v and h, and v, of 5. It is noted that the norm of the intermediate
spaces (H'(®))’, where s is a real number different from 1 or 2, is defined by

lvll}e = lvlliye + Z: lo*vllte - (3.12)
2 _ () — v(§)) - (v(x) - v(£))
"v"a',®_f® ® (x_g)‘(x_g)nlzﬂr dxd¢,

where [s] is the largest integer less or equal than s and o = s — [s].

Within the previous framework one can proceed with the finite element analysis. In the
following discussion, the parameter A will be assigned to the discretization of the domain Q
and H to the discretization of the cell ¥.

In the previous section it is shown that the homogenized coefficients (2.72) are given by

(3.13)

Dy(x) = a,(P" - x*, P - x"), | (3.14)
where x*' is the solution of the following problem:
Find y* €V,, such that a,(x*~P", v)=0 VveV,, (3.15)
where the bilinear form ay( -, ), the set V,, and the tensor P*/, are as defined in (2.67), (2.66)
and (2.69), respectively. Introducing an abstract finite element discretization satisfying
properties (3.1-3.7) for the domain ¥, a discretized version of problem (3.15) is defined by
Find x® €V¥, such that a,(x" - P* v¥)=0 Vo' eV, (3.16)
The homogenized coefficients (3.14) is then computed by
D (x)=a,(P¥ - x", PT - x""). (3.17)

Note that P*" = PY. Since V, DV, v can be chosen as v = v" in (3.15). Subtracting from
(3.16) the orthogonality condltlon in V% is obtained:

a,(x* - x" ,v')=0 wievi. (3.18)

Using (3.14), (3.17), (3.15) and 3.16) with v = y*’ and v" = x* H , respectively, the difference
between the finite element approximation and the exact value of the homogenized coefficients

becomes
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HY ij pki
Dy — Diyy = ay(x™ = x", PY). (3.19)

Taking v = x” in (3.15) and v" = x™" in (3.16), and applying the symmetry condition of the
bilinear form, one can obtain

ay (X", x™ = Py — ay(x", x* - P*)=0. (3.20)
Similarly, choosing v" = ™' and v" = x™ in (3.18) implies

ay(x™, x¥ = x™) - ay(x" - x™, x™) =0. (3.21)
Adding (3.20) and (3.21) to (3.19) yields

ki

- x". (3.22)

This is the error of the finite element approximation of the homogenized elastic coefficients. It
is noted that D,,k, D,,, =0 whenever (i, j) = (k I) due to property (2.79) of the bilinear
form ay(-,). Using Schwarz’ inequality (2.81) in (3.16), one can obtain

¢ Hi ij
ngl"Dijkl=“le -x" x

ij i HY i Kl Kl
|Dukl ijkll < {aY(XH -x" x" - x’)}“z{ay(x" - Xkl, XH - Xkl)}llz -(3 2)

Thus the error of tl}je homogenized coefficients is explicitly connected with that of the finite
element solution y*" of problem (3.16). Note that, due to the orthogonality condition (3.18),

ay (X" = x" X" = x") = ay(x"" - x" 0" - x") Wo'evy. (3.24)
Applying Schwarz’ inequality (2.81), it follows from (3.24) that
{ay(x™ = X" X" = X)) s {ay (0" - ¥ 0" = XN woevy.  (3.25)

Note that due to (2.79) and (2. 80) (see Remarks 2.12-2.20) the bilinear form ay(-,-) is
equivalent to the semi-norm | |,.¥ in Vy and to the norm ||[-]|| in the quotlent space V°.

Thus, for the constant ¢, € R® such that || x" + ||, v is minimum and for 'y =y + ¢,, the
following relations hold:

1/2

ay(0” = x", 0" = X" = a, (0" - X v = )2 = Bl - K|,y

<Blv" - X",y Voo eEVY, (3.26)

where B is thel same constant in (2.79). Therefore, letting x7 be the finite element
interpolation of 'y satisfying (3.11), the following error estimate can be derived for the finite
element approximation by taking v” = x¥ in the previous equation,

ay(x? = 'x" x§ = X" < CH* | 'x"|l.v (3.27)
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with p = mm(t —1,1-1). Consequently an error estimate for the homogenized elastic
constants is obtained as

|D.,kl ijkll = Cqu"1Xij||t,¥"1Xk'“1,¥ (3.28)

with g =min(t—1, /- 1). If " E (H %(¥))’, tien it follows from (3.27) that the energy norm

of the approxnmatlon error for x " has linear convergence rate. It is, however, noted that x"
do not belong to (H*(¥))’ in most of the problems, since material constants in the basic cell
need not be smooth, for example, E;,, € L™(¥) in most of the problems. Thus the conver-
gence rate is, in general, smaller than one.

Similarly the ‘residual’ stresses are defined in the previous section by (2.74) and (2.75):

7, = ay(P, P), (3.29)
where ¢ is the solution of the problem

Find ¢ €V, such that a, (Y, v)=f,(v) VveEV,. (3.30)
Thus, introducing the finite element approximation in the cell domain ¥, and assuming all the

properties for the approximate spaces appearing for the homogenized coefficients still hold,
finite element approximations of the residual stresses 7, are given by

Tl{ji = aY("’H’ Pij) ’ (331)
where " is the solution of the finite element approximation of (3.30):
Find ¢” €V, such that a,(¢”, v*)=f,@") Vev'eVvZ. (3.32)

Once more, the fact that V, DV} holds yields the orthogonality of the finite element
approximation error in V¥ such that

a, (W -y v)=0 v'evy, (3.33)

Following similar steps for the homogenized elastic constants, the approximation error of the
finite element method for the residual stresses is obtained as

5~ =ay (" - ¢, P), (3.34)
and then the Schwarz inequality (2.81) implies
|75 = 7yl = ay (™ = b, 4" ~ ) %ay (P, PT)"2, (3.35)

where no summation is taken in indices i and j. Now the remaining step is to derive an
estimate of the quantity a, (" — o, " — )"’ Adding and subtracting v” in the second
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term of a,(Y” — @, ¢ — ), applying the orthogonality condition (3.33) and Schwarz
inequality (2.81), one can obtain

ay (" - ¥, ¥" - )< a, (" - ¢, 0" ~ ¢)
<ay(P" — ¢, ¥" - ) %a, (0" - @, 0" - )'"? W eVE. (3:36)

Thus, it follows from (3.36) that
ay(P" — W, ¢ — )" <a, (0 - g, 0"~ @) WP evy. (3.37)
Choosing ¢, € R? that minimizes || + ¢||, , and defining 'y = ¢ + ¢, yields

ay(.pu — o, - W) = a,.(c[lH — 1y, gt - )2 < ay(vu — 1, o - 1¢)1/2
SBlv"- '¢|1,y<B|lv"‘ l"’"1,1{ VDHEVI;, (3.38)

where inequalities in (2.79) are applied to obtain the last two inequalities. It follows from the
properties in (3.11) of the interpolation space V' that there is at least one v” = v € V¥ for
which the following estimate holds:

H}i - "'u‘ s CH“'P"’”!,VB“Y(PU, PU) = C,H" "l‘,’"l.v > (3.39)

where p =min(t - 1,/ - 1) and C, = CBa,(P", P"). Note that the rate of convergence of the
discretized problems when H—0 depends on the regularity of the respective continuum
solutions.

Up to this point error estimations have been introduced for the homogenized coefficients
and the ‘residval stresses’. Based on these results we can then proceed to obtain the error
estimation for the macroscopic problem: '

Find u’€V,, such that a(u’,v)=f(v) VveV,, (3.40)

where a(-,-) and f(-) are as defined in (2.76) and (2.77). It is noted that the homogenized
coefficients D,;,, appear in the definition of the bilinear form a(+,*) and that the ‘residual’
stresses 7 are related to the definition of the linear functional f(- ). Since the microscopic cell
problems have to be solved prior to the macroscopic homogenized one, finite element

approximations of (3.40) are defined using the finite element approximations of the homogen-
ized coefficients and ‘residual’ stresses:

Find u”' € Vi, such that a"(u“h, ) =f"0") w'evh, (3.41)
where
Hu,v)=| p# % Y
a (u,v) fn D o, o, dQ (3.42)
and
H _ H av,.
ff(v)= fn fv;dQ + L tv,drr + L Ty -a-x—, dn. (3.43)
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Smce the properties in (2.56) hold for the homogenized coefficients D, x> the bllmear form
a"(-,-) also has the properties described in (2.82) and (2.83) (see Remarks (2. 12—-2 . Thus
one may use it as a measure for the error of the solution #** with respect to «°, or, more
specifically, the guantity a (u —u’, u® — u®) is regarded as the norm for error estimates of
the macroscopic problem.
Before proceeding further, it is worthwhile to note that the following quasi-orthogonality
property holds in V%:

a(@®, v"*) - a"@”, v") = (f - fH") Wo'ev:, (3.44)
where

ity = [ (= oty U
(F=1")0)= |, =) 5 a0 (3.45)
Now, turning to the error evaluation, we have

a(u® - uoh, u’ - uoh) = a"(u’ - uoh, u’—v*)+a" W’ v" - uoh)

—a"@”, v" - u"") Vo'ev:. (3.46)
Applying (3.44) implies

h h
a(u® - «*', u® — u”) = a"(u’ — u”, u® - ") + (a" - @) (u’, V" — u")

+(f-f"-u") vo'evh, (3.47)
where w9
u, ov
(@ - a)w,v) = [, (Dl = D) 2 532 0. (3.48)
For the microscopic cell problems, it was obtained that
'Dukm ukml = CH-“ "l U"l Y"l km "l | 4 (349)
l'r?}' - "'ijl < C,H* ll'!l’lll,v ) (3.50)

where these inequalities hold at a specific point x of the domam . Assuming that the
homogemzed coefficients and the ‘residual’ stresses are in (L.(£2))’, a bound for the above
quantities in the whole domain £ may be found as

|Dfjen = Dym| = CH* "X l'x " |1y in 2, (3.51)
IT!‘! -7l < CH* I'®ll,y in Q. (3.52)

Applying inequality (3.51) in (3.48), one obtains
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aul (" —uy )
(@ - ), o - )= [ Dl = D) 3~
oh
m ou? a(v ul’)
< [, 9 max(lx X" ll) | 3o =gy | 402
]
Ly h
<27CH* Tf}}(" IX']"L;r” lem"l,y)luoll.nIv - u’ |1,n
.y h
<27CH™ t};.l,ggt("'x"||:,v|I'x"'"ll:,v)llu"lll,nllv" —u 1.0
h
= C(H)""olll,n"vh -u’ "1,0 ’ (3.53)
where
CuH) =27 A" maxiii'x il X"l (3.54)
Similarly, applying (3.50) in (3.45), one obtains
6(v -u )
(f= 130" = u") = [, o, =iy T a0
a’" — u”") l
mt A S | i
<[, e, 3 |2 ao
] 4 h
< C()H“”lq'"l.v"vh - u” 1.0 = Co(H)|lv" - u’ 1.0 (3.55)
where
Co(H)= H"||'®|, . (3.56)

The substitution of (3.53) and (3.55) in (3.47) and the use of the Schwarz inequality (2.83)
yields

h h h h
aH(uO - uO , u() - uO )s aH(uO _ uO , uO _ u() )l/2aH(u0 _ vh, uO — vh)1/2

+ CH)||a||, o ll0" = 4l 0 + Co(HD) 0" = a0 V0" EVS. (3.57)

Noting that the bilinear form is equivalent to norm || - ||, , in V,, one can obtain

h U]
azlluo u’ "10\/3 ||u -u’ "19"" h"l.ﬂ
+ (C(H)”“()"Ln + C(H))||v" - u” ll1.0 v'evy, - (3.58)
where a and B are the same constants as in (2.82). Now, the following inequality is obtained

adding and subtracting #° in the second term of the right-hand side of (3.58), applying the
triangle inequality, and then using Young’s inequality to all products of terms:
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1 1
“2""0 "10\(Bzez+ 4d2)||u°—u°h||f,ﬂ (fez + 4b2)”"0—vh”f,ﬂ
+(b* + d*)(CH)|| ||, o + C(H))* Vv* V" Ve, b,d>0. (3.59)

Choosing e and d so that

A=a’-pi* - 20 (3.60)
and defining
_(E _1_) 1
41 (4e2 Tl A (3.61)
and
1
A= +dh) 5, (3.62)

one obtains

la° - w2 0 < A, |l = 0|} o + A(CED||W"l], 0 + Co(H)) VV*EVE. 5.6)

Finally, and due to the properties of the interpolation space V5, there exists a ) in V{, for
which the following estimate holds:

u® = u®||2 5 < A,DE* ||| o + A(CH)|[W]], 0 + Co(H))?, (3.64)

where o =min(t—1,n—1), n>1, and h is a geometric parameter associated to the size of
the finite elements in the discretization of the macroscopic domain (2.

It is noted that the above estimates are obtained under the assumptions that both domains
{2 and ¥ are polygonal and that the integration is performed exactly. If the domain is not
polygonal and the finite element discretization cannot cover exactly the orlgmal domains, then
the space of functions generated by the finite element discretization V" is no longer a subspace
of the initial space V. Similarly, if the integration scheme is not exact, integration errors must
be additionally considered. Details of nonpolygonal domains and numerical integration errors
can be found in, for example, [17, 19].

The previous a priori error estimations (3.28), (3.39) and (3.64) provide the convergence
rate of the finite element approximations to the continuous solutions when the mesh size of
the discretizations converges towards zero, i.e., when A—0. As can easily be seen, this
convergence rate, the power of the parameter #, depends on the regularity of these solutions.
Thus, if somehow one can predict their regularity, the convergence rate indicates how much
refinement would be necessary to significantly improve the finite element approximations. This
is illustrated in the following example.
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EXAMPLE 3.1 (Convergence test for regular meshes). Let us examine the above error
estimates for a particular example problem in which both the macroscopic domain {2 and the
microscopic cell ¥ are rectangles in R? for simplicity. Both domains are discretized using
QUADA4 elements, i.e., the isoparametric four node element, and the macroscopic displace-
ment «° and the characteristics of deformation x”, for each ij, are interpolated by bilinear
nolynomials in the parametric space. The rates of convergence are then examined for the
macroscopic displacement #° and the homogenized coefficients Dy,-

The microscopic square cell structure is defined by two isotropic materials as shown in Fig.
3.1. Since the convergence of the finite element approximation is the only concern, the
materials of the composite are artificially chosen and the microstructure is set uniform
throughout the macroscopic domain (2. Then, the homogenized elastic constants are computed
by using 4 X4, 6 X6, 8 X8, 10 X 10 and 12 X 12 meshes. Similarly, the macroscopic rectangu-
lar structure {2 is discretized by 4 X 4, 6 X 6, 8 X 8, 10 X 10 and 12 X 12, as shown in Fig. 3.2.

For the microscopic base cell introduced, the solutions y” of problem (3.15) are at most in
H'°~%¥) since E,, are in H°~%(¥), where § is an arbitrary positive number. This claim may
be justified by the following considerations:

(a) The step function H(x) (H(x) =1 for x >0 and H(x) =0 for x <0) is in H**"%(R) (see
[17]). Applying the concept of the tensor product, the function H(x, y) = H(x)H(y) in R* may
be regarded as a function in H*°~°(R?). Since E,;,, can be constructed by linear combinations
of appropriate constants and the function H(x, y), E,,, are in H>*7(¥).

(b) The strong form of the microscopic base cell problem (3.15) involves the set of
differential equations

-2 (g, Xe)-_ 2
ayj Hpm aym ayj
This yields at most that

9 kil
E, %: € H*S-%(¥) .

pm g

E,, in¥.

Since £,,, € H**"%(¥), x4 can be at most in H'*~%(¥).

Material I

[0 Maeriann

Elastic Constants MAT I MATII

Ell11 300 30
E1122 100 10
El1212 100 10

Fig. 3.1. The base cell structure for the convergence test.
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Fig. 3.2. Global structure and its finite eiement discretization.
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Thus, if the error estimate (3.28) is applied to the present problem using the four node
bilinear isoparametric finite element QUADA4 for plane problems, u is expected to be 0.5 — 5,
since w =min(2 — 1, 1.5 — § — 1) because of ¢ =2 for this choice of finite elements. Therefore,
the rate of convergence of the homogenized constants D,f}',‘, by the finite element approxima-
tion is 1 — 25, where & is an arbitrary positive constant. In practice, 8 can be regarded to be
zero.

In order to present the numerical results it is convenient to note that

1 1 D;,—D gm 1-28
_ - ~CH' ™, (3.65)
D f}'m D ijkl Dijle gkl

where C is an appropriate positive constant. )f the relations (H'™%, 1/D},,) for different
values of H are plotted, they should be lincar. Indeed, as shown in Fig. 3.3, all the
independent combination of indices—(i, j, k, 1) =(1,1,1,1), (i, j, k, H=(1,1,2,2) and (i, j,
k, I)=(1, 2, 1, 2)—form linear lines. Furthermore, these lines predict the ‘exact’ homogen-
ized elastic constants D,,,,, D,y and D,;,:

Dy, =7.71724,  D,;,=3.15080 and D,,,=327182.

If these values are used as the ‘exact’ homogenized elastic constants, D,,,, is calculated with
15.6% error using the 4 X 4 mesh (H =0.125), while it is calculated with 4.6% error using the
12 x 12 mesh (H =0.0417). Applying 9 times more finite elements, only 3.4 times better
estimation can be obtained if uniform refinement is considered. As shown in Fig. 3.3, the rate
of convergence is slow, and furthermore, there is a relatively large amount of finite element
approximation error even in very refined cases.

On the other hand, if the macroscopic problem (3.40) is considered, its solution u’ is
expected to be at least in H ?(2), since only a constant traction ¢ is applied along the free end
of the beam-like rectangular structure 2, and each component of the homogenized elasticity
tensor is a constant function of x in (2. Thus, the error estimate (3.64) yields the unit rate of
convergence, i.e., the error in the H Lnorm, which is equivalent to the energy norm, is
proportional to h® where h is the representative element size in the macroscopic structure.
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Rate of convergence of ng

H
o ® D[
a

] I/Dglz

o ”D};II

0.10 +—r——r—r Yy ] v
0.00 0.05 0.10 0.15

mesh size H
H
1Df] ;= 012958 - 0.14055 H

11Dfl55=0.31738 - 0.23905 H

11Df};,=0.30564- 035850 H

Fig. 5.3. Convergence of the homogenized elastic constants.
In order to present the results, note that because the bilinear form a”(:,-) is symmetric,
the following identity holds:
a"(u’, u®) - 2", ") = (- u™, 4 - u”) + 20" - u”, u”") .
It then follows from the orthogonality of the finite element approximation error that
a? (W, u°) - a"(u”, u”) = a"(u® - u”, u® - u*). (3.66)
Taking the reciprocal relation implies

1 1 _a’, u’) ~ a"(”, u”)
AW u”) W6’ W u™)a W o)

Note that the energy norm defined by the bilinear form a”(-, -) is equivalent to the H'(02)
norm. Then applying the error estimate (3.64) yields

1 1
a"w”, u”) a"(u’, u°)

~Ch*+ C,H"™*, (3.67)
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where C, and C, are appropriate positive constants. This means that if the relations (k2
1/a (u u’ )) are plotted for dnfferent h they should be linear. Indeed, Fig. 3.4 shows this
fact. Furthermore the value of a”(’, ®) can be estimated using the linear relation within a
constant C,H'~

Since the L (ﬂ) norm of the displacement u° behaves similarly to the strain energy, the
finite element approximation of the beam free end displacement converges to the exact one
with the same rate of convergence, k% to the strain energy. Thus, the relations (k% 1/d),
where d = u"hlat free ends TOT different A is linear for each choice of H, see Fig. 3.4. In Fig. 3.4,
the quantities with superimposed ‘*’ are the macroscopic response obtained by using the
homogenized elastic constants computed by a coarse finite element mesh, say a 4 X 4 mesh, for
the microscopic probiem. It is clear that poor finite element apprommatlon of the homogen-
ized elastic constants implies stiff macroscopic response.’

This example illustrates that as a consequence of the convergence properties of the finite
element approximations of the microscopic and macroscopic problems, uniform mesh refine-
ments yield a fairly accurate estimation of the ‘exact’ solutions by extrapolating from their
approximations.

Rate of Convergence {Macroscapic)

0.06

1 *
005 / = Lenergy

1 g a llenergy
" / o ud"

o.os-/r — o lid

- /,o
/Po -

o-ol L) L] L) L] T v v
000 001 002 003 004 005 006 007

hz

1lenergy, 1/1d

llenergy” = 2.9951¢72 +0.39116 K
lenergy = 2.6815¢~2 +0.3517 h?
1d" = 14982¢72 + 01953 W

1d = 13413¢2 +0.1757 12
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4. Implementation of the homogenization method: PREMAT and POSTMAT

In this section the finite element implementation of the homogenization method is
presented. This implementation is formed by two separated blocks. The first, PREMAT,
generates the material properties for a general structure. The second, POSTMAT, computes
localized information (displacements, stresses and strains) after a finite element procedure has
been used to solve the general structure.

For simplicity, let us apply QUAD4 and HEXAS elements to discretize the cell domain ¥
for two-dimensional and three-dimensional finite clement analyses of the mlcroscoplc cell
problem To this end, after constructing the finite element approximation V* of the space V
using these bilinear and trilinear elements, discrete problems (3.15) and (3.30) will be solved
to obtain the finite element approximations of the homogenized elastic constants and the
‘residual’ stresses for the homogenized macroscopic problem (3.40). Applying the usual
implementation procedure of the finite element method, an arbitrary function v” in the space
V% is interpolated by using the shape functions N, (£):

V(3= 3 oIN,(£), N.=4or8, (41)

while the geometry of an element ¥, in ¥ is also interpolated using the same shape functions
N,:

a

Nt
y= 21 YN, (§), N,=4o0r8, (4.2)
where the shape functions N,(£) are defined by

— *(1 + glaf )(1 + §20£ ) ]
No(6)= { L1+ En &)1+ En b1+ £,.85) (4.3)

and {(£,,, &)} and {(&,,, &, €.)} @=1,..., N,, are the coordinates of the correspond-
ing nodes a =1, ..., N, in the master element {2,, of the QUAD4 and HEXAS elements,
respectively. Introducing these into (3.16) the discretized problem is obtained as

E
Find x"“€Vv¥, such that E_:l ay,(XH* = P¥ v¥)=0 wo, (4.4)
where
1 du, v,
ay.(u, v) = V] J;e Eu ayk , dY, u,veVy. (4.5)

Since the shape functions are the same for all the cases of x" k,!=1, 2 and 3, the stiffness
matrix to different indices of k and  is also the same for all of k and [. Thus, once the stiffness
matrix K is formed and decomposed in LU form, where L and U are the lower and upper
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triangular matrices of K for k =1=1 from the bilinear form a,(-,-), they are applicable for
other k and /. ThlS means that solving discrete problems to determine the characteristic
deformatlons x? for six independent ones, is not so expensive in the sense that the

t-hand sides for the six independent cases can be formed and reduced with less intensive
computation. Similarly, finite element approximations of the ‘residual’ stresses ‘Tg are
obtained by solving (3.32):

E E
Find ¢” €V, such that 2, a, (", v")= 2 f,.0") W evi, (4.6)
e=1 e=1
where

)= 131 J,, pvidS @7

and 9Y, is the surface of an element ¥, that intersects to the boundary S of the holes of the
basic cell Y. Here, ¢" are mterpolated by the shape functions N,:

W= 3 WIN(E) in .. )

Once x"* and @* are obtained, using (3.17) and (3.31) one can compute the finite element
approximations of the homogenized elastic constants and the ‘residual’ stresses for the
macroscopic homogenized problem.

The program PREMAT has been developed to compute material constants of generalized
materials for finite element analysis based on the homogenization method described in above.
The basic structure of PREMAT is described as follows:

read structuretype
if structuretype.eq.solid
then
read materialtype
if materialtype.eq.anisotropic
then
read E1,»12,»13,v123,v131,»112, and other engineering constants
call dmatrix
else
if materialtype.eq.orthotropic
then
read E1,v12,»13, and other engineering constants
read Euler’s angles of the material axes
call dmatrix
call rotation
else
if materialtype.eq.isotropic
then
read E and v
call dmatrix
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else
if materialtype.eq.homogenization
then
read constituants of the basic cell
read material constants of each constituent
call homogenizing
call rotation
end if
end if
end if
end if
else
if structuretype.eq.laminate
then
read numberofplies
loop ply =1 to numberofplies
read materialtype
if materialtype.eq.orthotropic
then
read E1,v12,»13, and other engineering constants
read Euler’s angles of the material axes
call dmatrix
call rotation
else
if materialtype.eq.isotropic
then
read E and »
call dmatrix
else
if materialtype.eq.homogenization
then
read constituants of the basic cell
read material constants of each constituent
call homogenizing
call rotation
end if
end if
end if
rext ply
else
if structuretype.eq.beam
then
read materialtype
if maxerialtype.eq.anisotropic
then
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read E1,v12,»112, and other engineering constants
call dmatrix
else
if materialtype.eq.orthotropic
then
read E1,»12, and other engineering constants
read Euler’s angle of the material axes
call dmatrix
call rotation
else
if materialtype.transverseisotropic
then
read E1,E2,v12, and theta
call dmatrix
call rotation
else
if materialtype.eq.isotropic
then
read E and v
call dmatrix
else
if materialtype.eq.homogenization
then
read constituants of the basic cell
read material constants of each constituent
call homogenizing
call rotation
end if
end if
end if
end if
end if
end if
end if.

Here subroutine dmatrix forms the so-called D matrix, the matrix of the material constants, in
the finite element analysis, while subroutine rotation rotates D to the coordinate system in
which the element stiffness matrices are computed. If the material type is standard, so that
engineering constants such as Young’s moduli, Poisson’s ratios and shear moduli are already
known by, for example, tests in a laboratory, it is not necessary to apply the homogenization
method to determine the elastic constants forming the D matrix.

In the homogenization method, the reduced integration method with hourglass control is
applied to form the element stiffness matrices from the bilinear form ay (", +) in order to
reduce computing time in three-dimensional problems. Details of such a method can be found
in, for example, [20]. Here only a brief description of the method is given. Thus, for the
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HEXAS element, there exists the following isoparametric geometry relation between an
arbitrary finite element (x-coordinates) and the master element ( £-coordinates):

Xy Lx, L-x L-x||é§
X =% Lx L-x|&
X3 lLi-x; Lrx, Lox3]| &

c x,thy %, 5E by xEE +hy-x, 66+ h - x, 6 §,8
+le-x,th X686+ hy X, 836+ hy - x,6,6,+ by x,€, 6,85 | (4.9)
Xyt by %366+ by X366+ by %66, + by x36,6, 8

where
n=3{-1,1,1,-1,-1,1,1,-1}, oL=4%}{-1,-1,1,1,-1,-1,1,1},
IL=3{-1,-1,-1,-1,1,1,1,1}, ¢'=3{1,1,1,1,1,1,1,1},

1=3,1,-1,-1,-1,-1,1,1},  ABy=}{1,-1,1,-1,-1,1,1,-1)},

ky=3{1,-1,1,-1,1,-1,1,-1},  hki=4{-1,1,-1,1,1,-1,1,-1}, (4.10)
X1 = (X115 X125 X135 X1gs X155 X1 X175 K15} 5
X2 = {X315 X325 X335 X24s X255 X265 %37 X8} »
X3 = {X315 X330 X35 X34, X3, X3 X375 X5} .

The inverse relation can be obtained as

§ biexy bLexy lx, NE7
E =% Lx, lix, X2
é Lirxy bLixy Uy-x, X3

Lx, Lxy Lix -
- % Lx, Lx,
lirxy Lox; bLox,

X thy x &6+ by x 66 +hyx £ &+ Ry, x,6,6€;
X{e X+ h %66+ hy x, 66 +hy- 6,6+ b, x,6,6,6 . (4.11)
C Xyt hy X366+ hy x 66 + By xy €8, + b, x,§, &€,

Since a similar expression to (4.9) can be obtained for a ‘displacement’ vector v:

v v, Lv Lv][g
Vl=|lv, Ly, Ly, |]§
Us vy Loy Uooy][ g

€U +h 0 EE TR v EE R v EE T h, v & ¢
+|c v+ h 08¢+ h, v, &¢ + hy v, &+ h,-v,§ &8 .
C Uyt h 066+ h, v,EE +hy- V36,6 + by 0,66
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Applying the inverse relation (4.11) to this yields

Uy L-v, Lro, Lol][l-x L-x I-x B
vz = ll'vz lz'vz 13")2 ll°x2 lz°x2 l3'x2

U, Lvy, Lo, ool -x, L x; l-x,

X|x,= (¢ x,+ by x,6,& + h,- x, 66 + ky-x,€.6 + k- x,6,6,6)
| X3 —(c X3+ by X, 6,6+ h, - x.66 + by X366+ by x36,6,E5)

(c v, +hy v, &EE+h, v 6+ hy-v & & +h, v1§1§2f3]

[x, — (¢ X, th x 68+ by x EE +Hhyx, £+ by x1f1§z§3)]

+|e vyt h 0,66+ by 0,68 +h;- ”2{152 +h, 0,668
(€ U3+ hy 06,6+ by 06,6 + By 08 6+ hy -0 E 6
Denoting

[bl'vl b,-v, bs'vl] [ll'vl Lo ls'vl][ll'xl L-x ls'xll_l

b.‘v, b,rv, b,:v lL-v, L-v, lLico||l,'x;, L-x, I,'x
1 3 2 3 3 3 1 3 2 3 3 3 1 3 2 3 3 3 (412)

one can obtain
v, b,rv, by v, by-v |[X
Vy[=|b"0, by'0, by, |l X,
U3 bl * 03 b2 * 03 b3 * v3 x3

a-v, +8 0 EETE v EE 8066 T8 068
+|a-v,t+g- vzfzfa + 8, 0,6E + 850,66+ 8, 0,6, 6,6, (4.13)
a v+ 8, V6,6 + 8, U6 € + 8 03,6, 1 8,0 016,66,

where
a=c—(c x,)b, —(c*x;)b, ~ (¢ x3)b;,
(4.14)
g=h—(h x)b, —(h, x,)b,—(h,-x,)b;, i=1,2,3 and 4.
Approxima.ing the differential relation between x and § by
KA R
38, | | 9& & 9% | ax,
o | _|ox om x| @
36, | | 9§, 0§ 0&, || 0x,
9| |ox dxp dx | 9
_6§3 4 L afs afs afa_ 5 ax3.
R
ox
Lix, bLxg bLix] al
= ’1 * xz ’2 * xz ls * x2 _a—- ’ (4.15)
X2
Li-xy, Lrxy lyrx, 3
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differentiation with respect to the coordinate system x is approximated by

KRN [ 9]
Z | 72
a:l Li-xy Lx Li-x t al
a.x‘, =4 l] * x2 12 * xz l3 * x2 a_gz . (4. 16)
a&‘ ll * x3 lz . x3 13 ¢ x3 a .
Thus, the differentiation of the bilinear and trilinear terms in & w.r.t. x is approximated as
R EA
ax, _| 9
al Lixy Lxy bi-x t. 0
ax, (&) =[h% Lex, Lex| | op (£8)
32 Lioxy L-xy l-x, 5
| 9%, | ;-a-f_s d
lLx, Lx, L-x1'[0
=(lL-x L% bLix &1, (4.17)
Lixy Lxy Lirxs| |&
etc.

Applying these relations, the first derivatives of v w.r.t. x can be approximately obtained in
terms of £ Furthermore, noting that polynomials in & in the master element {2, can be
explicitly integrated, the eleinent stiffness matrix due to the bilinear form a,,(+,*) can be
approximately obtained without applying a quadrature rule. Because of this direct evaluation
of integration less computing time is required to form the element stiffness matrix than in the
case where a quadrature rule is used.

Now some examples of the homogenization method are introduced for 2D and 3D cases as
well as the computation of the localized stress distribution. The above procedure was used for
the 3D examples in order to reduce the computational time.

EXAMPLE 4.1 (Discontinuous fiber in plane elasticity). Consider a plane-stress linearly-
elastic problem to obtain the homogenized elastic constants for the microscopic cell structure
shown in Fig. 4.1. In this case many short boron fibers are periodically arranged in an
aluminum matrix. Although the real cross-section of fibers is circular, in this example 2
rectangular cross section is assumed to construct an approximated plane stress problem. The
dimensions ¢ = 100 mm and b =2 mm are assumed in order to have 50% fiber volume in this
composite material. This implies that ¢ = 10 mm, where ¢ is the parameter in the perturbation
of u®, while the size of the cell is defined by the proportionality relation 1:0.02. Figure 4.2
shows the homogenized elastic constants for various lengths of short fibers. In this case, the
gap of short fibers is held as a constant while the length of short fibers are varying. It is clear
that the fiber length affects only D,,,, which represents the elastic rigidity of the composite in
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Fig. 4.1. A plane stress model of a short fiber reinforced composite.
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Fig. 4.2. Homogenized elastic constants of a composite plate reinforced by boron short fibers (constant gap).
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the fiber direction. It is also clear that if the fiber length reaches to 2 comparable value of the
gap 0.2 mm, the rigidity in the fiber direction is significantly reduced. However, if the gap is
reduced proportionally to the fiber length, the homogenized elastic constants are almost
constant, as shown in Fig. 4.3. Here, the gap is 10% of the fiber length. This means that if the
gap can be reduced proportionally to the fiber length, the fiber length does not greatly affect
the homogenized elastic constants. This may indicate that the fiber length should be decided
by failure criteria of fibers, matrix and their bonding interface.

EXAMPLE 4.2 (Continuous fiber in three-dimensional elasticity). Consider a boron fiber
reinforced composite material. Fibers are assumed to be unidirectional, and their volume
fraction is 40%, 50% and 60%, respectively, in an aluminum matrix as shown in Fig. 4.4. The
homogenized elastic constants are obtained as in Fig. 4.5. The values of Young’s moduli E,,
E, and E, are compared with those obtained experimentally in [21]. It is clear that Young’s
moduli in the fiber direction is very close to that obtained by the homogenization method.

EXAMPLE 4.3 (Honeycomb structures). Consider a honeycomb structure with and without
shear panels on the top and bottom surfaces, its microstructure is given ir Fig. 4.6. This
example tries to show the effect of shear panels in a honeycomb structure. The model used is
based on a unit cell with dimension ratios

length/width/height/thickness = 0.7696/0.866/1.5/0.1 .

Proportional Gap
300
s | T =
) L
Ay
8
H
g 200 e D:lm
S | - . " Dy
3 H
é ] ° DHZZ
‘a 100' ~ ~ ~ R ° D”
g 1 0——0 0 1212
§ ]
T
c L] \J T ¥
0 10 20 30 40 50 60
Ratio Fiber Length/Fiber Width

Fig. 4.3. Homogenized elastic constants of a composite plate reinforced by boron short fibers (proportional gap).
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the Basic Cell Structure
X

z @ Boron Fibe(60%)

O Aluminum Marrix

Fig. 4.4. Boron fiber reinforced composite material.

For an aluminum honeycomb, the homogenized elastic constants are computed for several
different thicknesses of the additional shear panels. The results are shown in Fig. 4.7 and the
characteristic deformations for a particular case are as in Fig. 4.8. The results for D,,,, and
D,,,, are omitted because they behave similarly to D,,,, and D,,,,, respectively. As expected,
these panels reinforce the in plane rigidity (D,,,,, D,,,,) but have few influence on the out of
plane rigidity (D333, Dy;33)-

Boron/6061A1 Composite
- 300
S
S
/ 0 ELE2

200 - O E;
S
% / * G23.G31
g 7// & 612
Ry ] ® E}Ex(exp)
% 10 ® E3(exp)
h q v L) L}

30 40 50 60 70

Boron - Volume %

Fig. 4.5. Homogenized elastic constants of boron fiber reinforced aluminium.
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2
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Fig. 4.6. Microstructure of a honeycomb.

EXAMPLE 4.4 (Woven fiber reinforced composites). The fourth example is for a woven fibexr
reinforced composite material whose finite element model is shown in Fig. 4.9. In this case,
fibers are not straight, but woven three-dimensionally in both directions of a plane so that the
elastic modulus in the thickness direction, which is transverse to the plane, is different from
the moduli in the plane directions. We assume boron fibers and Al matrix are used in Example
4.1, although it may not be realistic. The homogenized elastic constants are obtained as

Honey-Comb with Layers

30

Dyn
D3333
Djj33
Dj212

10 T/u

Homogencized Elastic Constants (GPa)
om en

0.00 005 010 T 0ls
Ratio of Layer Thickness/Length of Honey-Comb

Fig. 4.7. Homogenized elastic constants of honeycombed structures.
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Fig. 4.9. Woven fiber reinforced composite (matrix and fiber finite element method).

D,,,, =119.94GPa, D,,,,=57.84GPa, D,,,;=57.03GPa,
D,,,, =116.66 GPa, D,,;, =57.84GPa,
D,;3, =119.94 GPa ,
D,y,; =30.29GPa, D,;;=29.77GPa, D,,,,=30.29GPa,
by solving the homogenization problem using 3240 HEXAS8 elements. The characteristic
deformations are given in Fig. 4.10.

Now, once the homogenized elastic constants and the ‘residual’ stresses are computed, the

macroscopic problem is solved to determine the homogenized response u® by solving the
discrete problem (3.41):

Find ” €V’ , such that a”(u", v") = f*(v") Vo*eV". (4.17)

After solving the macroscopic problem, it is necessary to compute the displacement and stress
fields in the microscopic structure using the expansions (2.58) and (2.59):

”0
w6 = (e) = o "G, ) ZEE + s, ) - ') 4.18)
and
0 ax " (x, y)\ aut ayy (x,
oy (%, y)= (Eijkl(x’ Y) = Ejpu(x, y) paym ) ;xfx) — Eju(x, y) # '

(4.19)
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In POSTMAT, by specifying the point x in a specified finite element (2, in the macroscopic
domain, u"o(x) is computed by interpolating its nodal values as well as its first derivatives in
the macroscopic coordinates x. Then, if the material constants are obtained by the homogeni-
zation method, the appx;oximations of the stresses a'fj’ (x, y) are computed using the charac-
teristic deformations )(g (x, y) and the residual stresses ¢ (x, y) in the finite element model
of the cell domain Y.

EXAMPLE 4.5 (Continuation of Example 4.2). Consider a lamina of boron fiber reinforced
aluminium with a microscopic structure as shown in Fig. 4.4, and let a laminate consist of two
laminae whose fiber orientation is inclined +45 and —45 degrees w.r.t. the longitudinal
direction as shown in Fig. 4.11. Also, let the length, width and thickness of the laminate be 4,
1 and 0.2, respectively. Then, applying the homogenized elastic constants for 60% of boron
volume fraction, one solves a macroscopic stress analysis problem of the laminate. Assuming a
force disiribution on the half portion of the free end as shown in Fig. 4.11, this stress analysis,
problem (4.17), is solved by the finite element method using 8 X 4 X 4 uniform HEXAS
elements. In order to avoid shear locking one applies the directional reduced integration
method with hourglass control, as previously described. The approximated stress fields are
computed in each lamina, and also at the microscopic level for points A, B and C. For these
points, the microscale Von Mises equivalent stress contour lines are shown in Figs. 4.12, 4.13
and 4.14.

EXAMPLE 4.6 (Continuation of Example 4.3). Consider a macroscopic structure as shown in
Fig. 4.15 with an aluminium honeycomb microscale structure as shown in Fig. 4.6 and the
same dimensions and load conditions as in Example 4.5. Similarly, after solving the macro-
scopic stress analysis problem using HEXAS elements with the directional reduced integration
method with hourglass control, the microscopic stress fields are computed at points A, B and
C and the corresponding Von Mises equivalent stress contour lines shown in Figs. 4.16, 4.17
and 4.18, respectively.

Fig. 4.11. A macroscopic stress analysis problem of a boron/AL laminate.
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Fig. 4.12. Local distribution of equivalent Von Mises stress at point A.
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Fig. 4.13. Local distribution of equivalent Von Mises stress at point B.
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Fig. 4.14. Local distribution of equivalent Von Mises stress at point C.

S. Application of the adaptive finite element method

A general concern arising from the use of the finite element method is the accuracy of the
solutions obtained. The main problem concerns the accuracy of the finite element solutions
and how to improve them. A faiily standard technique to overcome this problem is the use of
adaptive finite element methods. The initial ideas of these adaptive methods appeared in the
late 60’s (see, for example, [22]) and, in the 70’s, Babuska, Rheinboldt and their colleagues
[23-26] introduced their fundamental concepts and techniques together with a posteriori error
estimates.
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Fig. 4.15. A macroscopic stress analysis problem of a honeycomb plate.
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Fig. 4.16. Local distribution of equivalent Von Mises stress at point A.
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Fig. 4.18. Local distribution of equivalent Von Mises stress at point C.

The main idea of adaptive methods is to predict the amount of approximation error using
only the finite element approximation, to modify the finite element mesh such that the
approximation error is reduced with a minimum effort. These methods are traditionally
classified with resp:ct to the type of mesh modification: r-methods for node relocation,
h-methods for finite element refinement, and p-methods for higher order polynomial interpo-
lation. For any of these methods there are several different approaches usually related with
the choice of error approximation and/or the method of implementation (see, for example,
[27-29]). Details on these methods can be found in the literature mentioned before and
references cited therein.

In the previous sections the homogenized elastic constants are computed using the finite
element method with, consequently, the same accuracy concerns as above.

The first question to consider is whether the application of adaptive methods is necessary in
determining the homogenized constants. If the values of the homogenized elastic constants are
insensitive to finite element discretization, the use of adaptive methods is not important. To
adaress this question, we reexamine the result of the convergence study of the finite element
approximation given in Example 3.1. The base cell involves two different isotropic materials
whose elastic moduli are significantly different. In this case, although the convergence rate is
the same as the one predicted from the theory developed in Section 3, rather coarse meshes
cannot provide accurate results. In other words, to achieve sufficiently accurate results, very
refined finite elenient meshes musi be used if uniform refinement is assumed. This indicates
that application of adaptive methods would significantly improve the accuracy of finite element
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approximations without increasing too greatly the number of degrees of freedom of the finite
element mesh.

The second question to consider, after realizing the need for adaptive methods, is what kind
of a posteriori error measure should be used. For this one recalls the a priori error estimate of
the finite element approximation of the homogenized elastic constants from (3.22):
kl

ngl — Dy = ay(XHu -x" x" - x", (5.1)

where the finite element approximation of the characteristic deformations in the base cell
satisfies the a priori error estimate
ij o ij ia " .o
{ay(x™ = x" x™ = X"} < {a, (0" - x", 0" = x")}'* Wo'evy, (5.2)

that is, taking v” = x7 yields
" i ij i i i i i i
{ay(x™ = x5 x™ = x"W < {ay(x! = X" xT="X"N'"* < CH"||'x"|l,.v -

Following Diaz et al. [27, 28], these two a priori error estimates yield an error measure for the
characteristic deformations, in each finite element ¥,, defined by

B = ay(xd = ! = )" (5.4
and, consequently, the error measure for the homogenized elastic constants in each finite
element ¥, is defined by

E™ = EYEY ‘ (5.5)

If (5.5) is applied, different adapted finite element meshes are obtained for independent
combinations of i, j. k, ! for the homogenized elastic constants D,,,. Thus, it is recommended
to use another error measure,

£ = Max E™ (5.6)

e gjkil=1,23 ¢ °

which yields a unique adapted finite element mesh for all of the characteristic deformations
and independent combinations of indices i, j, k, [ of the homogenized elastic constants.

In any case, error measures E, are written in the form of interpolation errors of the
characteristic deformations. If HEXAS elements, 8 node solid elements, are applied to solve
three-dimensional problems in their finite element approximations, the interpolation error of a
function g which is twice differentiable in the master element is given by

1 o’g a’g 2 azg] :
gl— =§[(1-—r2)-5-r—2+(1—sz)'5;7+(1-t)"a't_z at (r,s,t)EJIM, (5.7)

and then
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Note that
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3 3
a(gl—g)_l{_ P8 L 12y 28 L q1_p ag}
ar 2 2r ar2+(1 s)aszar ( )atzar ’
2 3
a(g.-g)_l{ o g, g . 6g}
as 2 1 r)arzas 28 cf-)sz-*-(1 t)atzas
3 2
a(g,-g)_l{ o, 0% _ 2, 08 6_5}
o 2 U r)ar26t+(1 s)aszat 2521
- - - -1 -
(81~ 8) (@5 dy 9z [ %8 —8)
dx or or oar ar
3(8—8 |_|9x oy 8z (8 —8)
oy "l as as os os
(8 —8) ox 9y oz (8 — 8)
02 _ Lat at ot L ot 4

oxdg dyadg 9z 6g)
+
azg a( ar dx * ardy oror

ar’ ar
___(3_x)zﬁ+(§z)zﬁ+(é£)za_2&
or/ 9x? or ay2 ar/ az°
2( ox 3y d°g N ax 3z 9°g N ayazal>
droroxdy orordxdz  drdrdyaz/’
etc.

(5.8)
(5.9)

(5.10)

(5.11)

(5.12)

Then, the first derivatives of the interpolation error of g can be expressed in terms of the
Jacobian matrix of the transformation between the physical coordinate system and the
normalized coordinate system in the master element, and of the higher order derivatives of g
in the physical coordinate system. Sirce the Jacobian matrix can be computed using the
geometry of each finite element ¥,, the remaining issue to be discussed is a method to
estimate the second and third derivatives of an unknown function g using its finite element
approximation g,, spanned by tie shape functions of the HEXAS element for three-
dimensional problems. Since dg,/ix, 3°g,/dx dy and others are computed, for example, at the
2X2x2 Gauss integration points, their corresponding values at a nodal point can be
approximately computed by applying an averaging meihod using their values at the Gauss
integration points which surround the node. These avaraged values are then considered to be
an estimate of the true derivatives of g at the nodal points. Consequently, assuming that these
estimates at the nodal points are interpolated by the same shape functions as those of the
HEXAS element, their derivatives a/ax (98,/9x), 8/8x (8°g,/ax dy), etc., are available and
can be computed at the 2X2x2 Gauss integration points. This means that the error
E; =ay(x]="x", x! —'x")""* can be computed.
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Another way to define error measures is based on the sensitivity of the functional
i ij i if ij i
Fi(x™, ya) = 4a,(x™, x™") - ay(x™, P"), (5.13)

whose first variation in x*' leads to the discrete problem (3.15), that defines the finite element
approximation of the equation to determine the characteristic deformations in the base cell,
where y, are the coordinates of all the nodes of the finite element model of the base cell ¥. If
the optimum location of the nodes y, is defined so that the functional F? reaches the
minimum, the sensitivity of F” with respect to the location y, must be zero at the optimum:

DF’ _ oF" N aF" ax™ _oF"
Dya ay o« axﬂdl aya aya

=0. (5.14)

Since DF/Dy, is computed at every node, its L norm can be computed at every finite
element after interpolating these nodal values by using the shape functions of HEXAS, that is,
an error measure E” is computed based on the sensitivity of the functional F”. In this case, it
is not necessary to estimate the higher order derivatives of g using its finite element
approximation g,. Only the derivatives of the element stiffness matrix with respect to the
nodal coordinates y, is required to define the error measure based on the sensitivity.

EXAMPLE 5.1 (Continuation of Example 3.1). Consider the problem for convergence study
in Example 3.1. In this case, non-uniform refinement is considered instead of the uniform
refinement based on the adaptive method above described. Several mesh adaptations are
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[ ]
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® 1Dj} , (adapt)

0.11 Y Y Y Yy
000 002 004 006 008 010 012 014

H=1/Sqr{{Number of Elements)

1/D%,, =0.102958 - 0.14055 H

Fig. 5.1. Convergence of the adaptive method (D?,,).
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Fig. 5.2. Convergence of the adaptive method (D%, ,).

performed and the corresponding results of the homogenized constants are shown in Fig. 5.4.
Some of the mesh adaptations can be found. As one can realize, the adaptive method does not
provide better results than the uniform refinement in the range of coarse meshes. However,
after a certain number of non-uniform refinements, the adaptive method provides a better
finite element result than that obtained with uniform refinements.
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Fig. 5.3. Convergence of the adaptive method (D% ,,).
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Fig. 5.4. Adapted finite element models (two-dimensional problem).
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Fig. 5.5. Convergence of the homogenized constants (D7 ,,, D%,,, D).

As one can see from Fig. 5.3, for the last adapted finite element mesh, the value of the
homogenized coefficients D,,,, is bigger than the one ‘predicted’ by the uniform mesh
refinements through extrapolation. Flrst this value is only predicted, second, as was noted in
(3.22), the finite element solution for D,,,‘, is always stiffer than the real one whenever ij = kl.
However, when this is not the case, like for D,,,,, nothing can be said a priori.

EXAMPLE 5.2 (Continuation of Example 4.2). Consider the three-dimensional adaptive
method applied to the base cell problem defined in Example 4.2 to determine the homogen-
ized elastic constants. As shown in Figs. 5.4, 5.5 and 5.6, the adaptive method is effective in
the range of coarse meshes. Once the number of finite elements reaches to a certain limit,
improvement of the accuracy of the finite element approximation becomes very small.
Uniform refinements were not performed for this example because the size of the finite
element mesh becomes very large after two refinements.
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Fig. 5.6. Convergence of the homogenized constants (D% , D% .., DZ..).
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6. Final remarks

In this paper the homogenization method was introduced to model the mechanical behavior
of linear elastic composite materials. This method assumes that the composite material has a
periodic microstructure, and it enables the computations of equivalent (homogenized) materi-
al mechanical properties characterizing the overall behavior of the composite, as well as the
local one, i.e., it enables the computation of local stress and strain distribution within the
nlicrostructure of the composite.

The numerical implementation of this method is introduced via a finite element technique,
and a priori error estimations were derived for the solutions of the problems involving
the composite microstructure and the global structure. A convergence study was done for
a two-dimensional case providing a result compatible with the previous a priori error
estimations.

Then, the homogenization method is used to introduce the idea of a material preprocessor
(PREMAT) for the computation of the homogenized properties of composites materials, and
a material postprocessor (POSTMAT) for the computation of the stress and strain distribution
within the composite microstructure. The implementation procedure is explained and several
application examples are presented. These examples show the usefulness of PREMAT and
POSTMAT capabilities. They enable the designer to model the mechanical response of
composite materiais, when there is no experimental data available, and they provide a first
approximation of the stress distribution on the composite microstructure. Also, for the
composite designer, it provides a tool to study the influence of the geometric parameters of
the microstructure in composite global response, as well as to locate the possible critical points
of the microstructure where high stress concentration may occur. Also, it may be useful to try
to understand what can eventually trigger the failure of the composite.

Finally, an adaptive finite element method is introduced in order to improve the accuracy of
the numerical results. An error measure is suggested for the homogenized material constants,
based on the a priori error estimations and the numerical implementation presented. The
adaptive method is then applied to 2D and 3D examples. The 2D case was compared with
uniform mesh refinements of the previously made convergence study. After some mesh
adaptations the method presented better results than the corresponding uniform refinements.
However, one might note that, if the regularity of the solution of the involved problems is
known or can be, somehow, ‘guessed’, the a priori error estimations provide a converjience
rate, and one may be able, after performing some uniform mesh refinements, to extrapolate
the ‘exact’ values of the homogenized constants.
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