
Chemical Physics 146 ( 1990) 343-350 
North-Holland 

Bimolecular reaction A + B+ 0 at steady state on fractals: 
anomalous rate law and reactant self-organization 
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This paper is a theoretical investigation of the diffusion limited reaction A+B-+O at steady state and on fractal structures. We 
propose an extension of a scheme previously applied to Euclidean spaces, using the so-called fractal diffusion operator defined by 
CYShaughnessy and Procaccia. We show that for a particular type of source, we obtain distributions of reactants and macroscopic 
reaction laws that interpolate the results previously found in Euclidean dimensions. More specifically, we show that the relevant 
dimension of the problem is the spectral dimension d, and for d. < 2 we have a mesoscopic segregation in the medium that may 
imply anomalous orders of reaction. Some of the predictions are tested via Monte Carlo simulations. More generally, we find that 
these results can be viewed as examples of a more general property common to other elementary diffusion limited bimolecular 
reactions. 

The bimolecular reaction A + B + 0 is an example 
of a system with surprising properties. When the rate 
of reaction is limited by the diffusion of reactant and 
for a Euclidean dimension d< 4, the system evolves 
towards a segregated distribution [ 1,2] (for an ini- 
tial random and even distribution in As and Bs). The 
segregation is responsible for an anomalous decay ex- 
ponent (Y = - d/4 [ 1,3 1, instead of (Y = - 1 predicted 
by the classical theory, where (Y is given by p- t -a at 
t+co andp is the density. 

Fractal structures exhibit the same segregation 
properties and the exponent is (Y = - dJ4 where d. is 
the spectral dimension [ 4,5 1. Anomalous relaxation 
properties due to self-ordering of reactants in lower 
dimensions are also found for bimolecular reactions 
of the type A+AdO and A+T+T (see for example 
the review [ 6 ] ) (T is a fixed trap). Rang and Redner 
[ 41 connected the A+ B problem to the A+ A prob- 
lem through an analysis based on reactant fluctua- 
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tions in a polymolecular reaction. They obtained pre- 
dictions on the critical dimensions and the decay 
exponents. But so far, for the decay problem, no gen- 
eral framework common to diffusion limited bimo- 
lecular reactions was given in terms of single particle 
diffusion properties. To illustrate this point, the rea- 
son for having different critical dimensions, d, = 2 for 
A + A+ 0 and d, = 4 for A + B + 0, remains unclear. 

When a source of particles is added to the A+ B 
reaction, Lindenberg et al. [ 71 and ben-Avraham et 
al. [8] showed that for particles with no excluded 
volume, segregation is likely to occur for dg2. Fur- 
thermore, it was shown [7-lo] that the specific na- 
ture of the source has to be considered. For particles 
with finite excluded volume, we investigated the ef- 
fect of various sources and, separated them into two 
main categories, namely the strictly conservative and 
the statistically conservative cases [ 9,10 1. For strictly 
conservative sources, we keep the same number of As 
and Bs on the system at any time. For statistically 
conservative sources the symmetry between A and B 
is broken for one realization of the system, but re- 
mains true in an ensemble average sense. Interest- 
ingly, the case of statistical conservation without other 
decay mechanisms, exhibits a particular feature called 
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saturation where one species becomes predominant, 
and the reaction stops after a finite time. In refs. 
[ 9,10 ] a theoretical procedure is developed to solve 
the problem in Euclidean dimensions. We find that 
d= 2 is the critical dimension of the problem for par- 
ticles with a finite size. This paper shows how the 
procedure may be extended to fractal structures, in 
the case of statistical conservation. 

We recall briefly the main theoretical steps and the 
results of refs. [ 9,101. In a first step, we solve the 
equation of motion for the correlation function 
m(r)=(y(x)y(x+r)) where y(x) is the local dif- 
ference density, i.e. y(x) =pA(x) -p,(x) werep, 
and J+,(X) are respectively the local densities in A and 
in B. Then, using a set of Langevin equations that de- 
scribe the motion of the first moments y(x, t) and 
p(r, t) =pA(x, t) +pu(x, t), we find a necessary con- 
dition for the existence of a steady state solution. This 
condition is the macroscopic reaction law 

2 

Q=zD za+.dm(a),Q ’ (1) 

where Q is the reaction rate (or the effective source 
term), C is the reaction surface of a particle, D the 
diffusion constant, p the overall density and a the 
particle size. From the Smoluchowski boundary con- 
dition, generally valid for diffusion limited bimolec- 
ular reactions [ 9,10 1, we derive a scale A which is a 
typical distance between A and B particles. We write 
the reaction law in the form 

Q=ZDp'/A , (2) 

where LI is called the segregation length and we have 

A/a=2+ZDm(a)/Qa. (3) 

The critical dimension of the problem is d, = 2. For 
dd 2, we find a mesoscopic or a macroscopic segre- 
gation. Also, we show the existence of a characteristic 
time 7 which is source dependent and we have for 7 

large and for d-c 2 

A/az71-d12. (4) 

For d= 2, we have logarithmic corrections to (4). For 
a source that is both strictly conservative and with a 
random separation between A-B landing pairs; we 
find 

7XL2) (5a) 

where L is the size of the system. For a conservative 
source with A-B landing pairs separated by a fixed 
distance S, we have 

7zs2. (5b) 

For statistically conservative sources, in order to have 
a reactive steady state we have to include an extra 
decay mechanism such as a vertical annihilation 
source of intensity R and in this case 

rxR-‘. (5c) 

Vertical annihilation designates a source of particles 
that annihilate their counterparts upon landing (on 
top of them). 

Alternatively, an internal first-order decay process 
(A-+0 and B+O) may be considered with the same 
decay rate constant r for A and B, and then we have 

7xP’. (5d) 

Now we seek to extend this procedure to fractals 
embedded in a Euclidean space of dimension d with 
a fractal dimension df and a spectral dimension d,. 
We make a cut-off of the fractal structure at the scale 
a (the particle size). Then, densities can legitimately 
be defined. To find the equation of motion for m(r) 
we use the concept of generalized diffusion operator 
on fractals introduced by O’Shaugnessy and Procac- 
cia [ 111. This operator was first used by 
Vitukhnovski et al. [ 12 ] and applied to the study of 
the A+A+O reaction decay. This scheme was also 
used by Clement et al. [ 131 to study the steady state 
properties of A + A+ 0. Before applying this method 
we need to make a remark. The generalized operator 
of O’Shaugnessy and Procaccia accounts for diffu- 
sion in an isotropic effective medium embedded in a 
Euclidean space and because of its lack of informa- 
tion about the angular dependence, it can only solve 
situations with spherical symmetry. Therefore, this 
method cannot be generalized to systems with di- 
verging correlation lengths because it would necessi- 
tate a more complete operator (with explicit angular 
dependence) in order to account precisely for 
boundary conditions. Thus, we need to restrict our 
investigation to systems with a finite correlation 
length. This is the case of sources with a statistical 
conservation property, when a first-order decay 
mechanism is implemented. For example, we have 
sources with vertical annihilation or systems with 
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symmetric desorption (i.e. internal decay A+0 and 
B-+0 with the same reaction rate r) . 

For Euclidean spaces we established, in ref. [ 10 1, 
that at steady state, the equation of motion for m(r) 
in the statistical conservation case, implies for r> a 

DVZm(r)-Tm(r)=-~6,_., (6) 

where D is the diffusion constant, r a first-order re- 
action rate, Q the reaction rate or effective source term 
and .Z the reaction surface. For r< a, we have 

m(r)=m(a). 

To extend eq. (6) to fractal structures we redefine 
m(r) to be the analytic envelope of m (r), and we re- 
place the diffusion part of the equation by the gener- 
alized diffusion operator. Then we have 

K 
1 a -- 

rdf -* ar ( 
+-I--B??!$ _rm(#.) 

> 

(7) 

where K is the generalized Fick coefficient and 8 the 
anomalous diffusion exponent. We define the micro- 
scopic diffusion constant to be 

D=Kame. 

Eq. (7) isnow 

1 a __ 
r&-l & ( ,-‘-0a~~) =-Bm@) 

> t12 

(8) 

ity/time for a particle to be annihilated by a landing 
particle of the opposite species), and R is the external 
source rate. We seek to solve eq. (8) with a boundary 
condition m( r)+O when r+oo. This equation is for- 
mally identical to the differential equation solved in 
ref. [ 131 for the two-particle correlation function. 
Therefore, for r> a, the solution is of the type 

r m(r)=A ; 0 ” K,( (u//X) (r/=)9 
Kv(=/iW ’ 

where K, (z ) is a modified Bessel function, and where 
we have 

/3= I +8/2=d,ld,, 

v= 1 -d,/2. 

A is a constant to be determined by inspection of the 
situation at r=a. At this point the function m(r) is 
continuous but has a kink. Its derivative goes from a 
value 0 for r = a - , to a finite value for r= a + . Exam- 
ining eq. (8) we see that the magnitude of this jump 
has to be equal to the prefactor of the delta function. 
After calculation of the derivative of rrr ( r) in r= a and 
identification with the prefactor of the delta func- 
tion, we determine the coefftcient A. The result is 

Qt K,(=/BO -- A=m(a)- D& K,_v(a/K) ’ (11) 

Therefore the correlation function llz (r) is 

U (a//W (r/aY? 
K,-v(alBtX * 

Putting together eqs. ( 11) and (3) we obtain a seg- 
regation length 

where < is a characteristic length defined by the 
relation 

<=m. (9) 

To this characteristic length r we associate a charac- 
teristic time 7 defined as 

~=c$~/D=r-’ . (9’) 

In the vertical annihilation case we have 

r=Rv, (10) 

where v is a volume of the order of adr related to the 
vertical annihilation cross section (r is the probabil- 

(12) 

This equation associated with eq. (2) defines a rate 
law for spectral dimensions 1 G d, < 2. We notice that 
this result interpolates the Euclidean cases d= 1 and 
d=2.LikeinthecaseA+A+O [13] wehavetwodif- 
ferent regions: 

(i) For {/a>exp[ 1/(2-d,)], following the re- 
sult of an expansion already performed in ref. [ 13 1, 
we have the low density limiting behavior, 
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Here r(z) is the gamma function. For the vertical 
annihilation case we inject into ( 13) the value of C 
given by eqs. (9) and (lo), then using (2), we ob- 
tain a limiting scaling behavior for the’reaction law 
at low densities, 

Q=p4’&. (14) 

Therefore, we find an anomalous order of reaction 
X=4/d, that generalizes the one found for d= 1 
(X= 4 ) [ 9 1. For the symmetric desorption case, in- 
jecting the values of t from eq. (9’ ), we obtained a 
rdependent segregation length, 

n~rd8D-l , 

but the reaction order remains classical (X= 2). 
(ii) For 1 a</aeexp[ 1/(2-d,)] logarithmic 

corrections to the segregation length are found and 
prevent us from obtaining, in the vertical annihila- 
tion case, a simple scaling expression for the rate law 
as in eq. ( 14). It is important to notice that, for sym- 
metric desorption, though a mesoscopic segregation 
is present a classical rate law is still observed as far as 
the exponent X= 2 is concerned. 

In fig. 1, we have plotted the reaction laws for di- 
mensions d= 1, 2, 3 and for a percolation cluster in 
the vertical annihilation case. The value of the gen- 
eralized Fick coefficient K used in the fractal case, is 
determined independently by Monte Carlo simula- 
tions of the mean square displacement of a random 
walker. For a “myopic ant” algorithm we have 
K=0.377+0.004. The reaction surface Z is the av- 
erage number of sites-nearest-neighbors. For the per- 
colation cluster we calculated numerically 
x=2.52 + 0.02. Therefore, the theoretical reaction 
laws presented here have no adjustable parameters. 
From fig. 1 we observe that at a given reaction rate, 
the steady state density increases with the spectral di- 
mension. In fg 2 we show the results of computer 
simulations on the largest percolation cluster of a 
100x 100 square lattice at criticality (pzO.59) and 
on a loop of size L = 500. In both cases, we repre- 
sented the theoretical expectation (curve (a) ) and 
the scaling limiting law from eqs. (2) and ( 13 ) (curve 
(b) ). The agreement between theory and simula- 
tions is good for the percolation cluster for densities 
smaller than p=2 x 10S2. For the line, one may ob- 
serve a slight discrepancy for lower densities. We ar- 

Fig. 1. Theonztical rate laws (log-log scale) with vertical annihilation source. Q is the reaction rate (or the effective sours rate) and p is 
the total density of reactants. Curve (a) is ford= 1, curve (b) is for a percolation cluster, curve (c) is for d=2 and curve (d) is ford= 3. 
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Density p 
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Fig. 2. Computer simulations compared to theoretical expectations on a percolation cluster and on a loop. Curve (a) is the theoretical 
expectation and curve (b ) is the low density asymptotic behavior of (a), showing an efkctive order of reaction A’= S/4. Top: results for 
a two-dimensional percolation cluster on a 100X 100 lattice at criticality (p-0.59). Bottom: results for a loop of size 500 sites. 

gue that this discrepancy is mainly due to finite size 
effects on the line which are important in d= 1 (we 
have L=SOO). In ref. [9] finite size corrections to 
the rate law in d= 1 are calculated theoretically. We 
define the coefficient a to be 

Q4im 
a= Qthbim) ’ 

where aim is the reaction rate obtained from simu- 
lations and &(p,& is the theoretical prediction 
given the density P,,.,,, found from simulations. The, 
coefficient a is a much finer test for the goodness of 
the theory than the log-log plot of ftg. 2. In fg. 3 we 
plot the coefficient a as a function of the external rate 
for a percolation cluster and a loop (accounting for 
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Fig. 3. Coeffkient a as a function of the external rate R for a 2-d percolation cluster and a loop (L=SOO). For the loop, we accounted 
for finite size corrections. The line (Y= 1 corresponds to a perfect agreement between theory and simulations. 

finite size corrections ) . We obtain a good agreement 
for 3 x 1 Oe5 d R < 1 OV2. For the percolation cluster we 
obtain (Y= 1.05 f0.05 and for the line (Y= 1.2f0.05. 
In fig. 4 we show “snap-shots” of two distributions of 
particles at steady state, on a percolation cluster and 
on a loop. The circle and the arrow, at the right side 
of the pictures, have the size n calculated from rela- 
tion (12). 

At first sight the A + B-+ 0 problem offers a surpris- 
ing diversity of results as far as the rate law, the seg- 
regation and the overall phenomenology are con- 
cerned. The most unexpected result is the extreme 
sensitivity of the problem with respect to the exact 
definition of the source. Also, it seems that we have 
very little in common with other bimolecular reac- 
tions. Nevertheless, from the details of this analysis, 
and other investigations on the A+A+O [ 131 prob- 
lem and the trapping problem A+T+T [ 141, com- 
mon features appear. From a general point of view, 
for bimolecular reactions (when a reactive steady 
state is obtained ) , we claim in any case, the existence 
of a characteristic length C or a characteristic time 
r=t2, such that the steady state rate law can be cast 

(4 

04 
A 

Fig. 4. Snapshots of the distribution of reactants at steady state, 
on a percolation cluster (a) and on a loop (b), for a vertical an- 
nihilation source. The diameter of the circle in (a) and the length 
of the segment in (b) have the size of the theoretical segregation 
length A. 
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in the general form /i,Ldf(%&--l) 

Qx D.Zp’/A (15) 

with A having the universal scaling behavior when 
7+m, 

,,!x7’-ds/2 
, 1<4<2, 

nxlnr, d,=2, 

A-a, d., > 2 . (16) 

As noted in ref. [ 13 1, relations ( 16) can be cast un- 
der a much more compact form, 

A/a = K/S, , 

where V, is the total (cumulative) volume swept out 
by a random walker during 7 and S, is the e&et&e 
volume explored (number of distinct sites visited) 
during 7. This point is related to the notion of com- 
pact/noncompact random walk introduced by de 
Gennes [ 15 ] in an early analysis of the bimolecular 
reaction problem in low dimensions. It is the inser- 
tion of the specific value of r(e.g. eqs. (5a), (5b), 
(5c)or(5d)intheA+Bcase)ineq.(l6),andthen 
in eq. ( 15 ) , that may give anomalous rate laws. Also, 
the interpretation of the self-organization scale II dif- 
fers for each situation. For the A+B case, we call it 
the segregation length, while for the A+ A and trap 
ping problem, we call it a depletion length. For the 
A+B+O problem, we have shown that this former 
point of view is correct for a nonconservative source 
term provided that a first-order decay is introduced 
(coming from a vertical annihilation or a first-order 
decay mechanism). In conservative source cases, the 
result ( 16) has been obtained in Euclidean dimen- 
sions (see eq. (4 ) ) but was not yet been generalized 
to fractal sets. Nevertheless, a reasonable guess is that 
the scaling property ( 16 ) is applicable with 7 taking 
the values of eqs. (5a) and (5b). The extension would 
give 

This prediction is based on the ad hoc assumption 
that the scale of segregation reaches the extent of the 
system. Therefore, simulations on fractal structures 
or deeper theoretical investigations would be needed 
to confront both approaches. 

In conclusion, this paper shows how the bimolec- 
ular reaction A+B+O at steady state can be under- 
stood in terms of general properties, common to other 
bimolecular reactions like A+ A-+0 and A+T+T 
(trapping). We found that for a spectral dimension 
smaller than 2, a self-organization called segregation 
occurs in the medium. The extension of the segrega- 
tion is connected to single random walker properties 
specifically to the number of distinct sites visited. The 
macroscopic rate laws are explicitly derived for the 
cases of vertical annihilation and symmetric desorp- 
tion. The case of vertical annihilation exhibits an 
anomalous exponent for the order of reaction, due to 
a source dependent scale of segregation. 

Acknowledgement 

This work was supported by NSF Grants 88-42001, 
DMR 88-01120 and DMR 88-l 5908. We thank Dr. 
Panos Argyrakis for fruitful discussions. 

References 

[ 11 A.A. Ovchinnikov and Y.B. Zeldovich, Chem. Phys. 28 
(1978) 215. 

121 D. Toussaint and F. Wilnek, J. Chem. Phys. 78 ( 1983) 
2642. 

[ 3 1 K. Kang and S. Redner, Phys. Rev. Letters 52 ( 1984) 955. 
14) K. Kang and S. Redner, Phys. Rev. A 32 ( 1985) 435. 
[ 5 I P. Meakin and H.E. Stanley, J. Phys. A 17 ( 1984) L173. 
[61 A. Blumen, J. Klafter and G. Zumofen, in: Optical 

Spectroscopy of Glasses, ed. I. Zschokke (Reidel, Dordrecht, 
1986). 

A% L2-d”. (17) 

It is worth noticing that a large scale segregation was 
observed qualitatively at steady state by simulations 
on a Sierpinski gasket and a carpet for a conservative 
algorithm [ 161. Also, we need to compare the pre- 
diction of equation ( 17) with the result of Sokolov 
[ 17 1, namely: 

17 1 K. Lindenberg, B. West and R. Kopelman, Phys. Rev, Letters 
60 (1988) 1777. 

[8 1 D. ban-Awaham and C. Doering, Phys. Rev. A 37 ( 1988) 
5007. 

[9] E. Clement, L.M. Sander and R. Kopelman, Phys. Rev. A 
39 (1989) 6455. 

[ 10) E. Cltment, L.M. Sander and R. Kopelman, Phys. Rev. A 
39 (1989) 6466. 



350 E. Cl&zent et al. /A+ B+O reaction at steady state 

[ 1 I ] B. G’Shaughnessy and I. Procaccia, Phys. Rev. A 32 ( 1985 ) 
3073. 

[ 12lA.G. Vitukhnovsky, B.L. Pyttel and LM. Sokolov, Phys. 
Letters A 126 (1987) 89. 

[ 131 E. CXment, L.M. Sander and R. Kopelman, Phys. Rev. A 
39 (1989) 6472. 

[ 141 E. Clbment, L.M. Sander and R. Kopelman, Europhys. 
Letters I1 ( 1990) 707. 

[IS] P.G. de Gennes, J. Chem. Phys. 76 (1982) 3316. 
[ 16) L.W. Anacker and R. Kopelman, Phys. Rev. Letters 58 

( 1987) 289. 
[ 171 I.M. Sokolov, Phys. Letters A. 139 ( 1989) 403. 


