
JOURNAL OF COMPUTATIONAL PHYSICS 90, 371-395 (1990) 

lnviscid Flux-Splitting Algorithms for 
Real Gases with Non-equilibrium Chemistry 

JIAN-SHUN SHUEN 

Sverdrup Technology, Inc., 
NASA Lewis Research Center, Cleveland, Ohio 44135 

MENG-SING LIOU 

NASA Lewis Reseach Center, Cleveland, Ohio 44135 

BRAM VAN LEER 

University of Michigan, Ann Arbor, Michigan 48109 and 
Institute for Computational Mechanics in Propulsion (ICOMP), 

NASA Lewis Research Center, Cleveland, Ohio 44135 

Received August 31, 1988; revised June 30, 1989 

Several flux-splitting methods for the inviscid terms of the compressible-flow equations are 
derived for gases that are not in chemical equilibrium. Formulas are presented for the exten- 
sion to chemical nonequilibrium of the Steger-Warming and Van Leer flux-vector splittings, 
and the Roe flux-difference splitting. The splittings are incorporated in a TVD algorithm and 
applied to one-dimensional shock-tube and nozzle flows of dissociating air, includung five 
species and 11 reaction steps for the chemistry. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In the past decade various flux-splitting methods, for example, those of Steger 
and Warming Cl], Van Leer [2], and Roe [3], have been used to solve 
aerodynamic problems based on the Euler equations for an ideal gas. With the 
renewed interest in high-temperature and chemically reacting flows, these methods 
have recently been extended to real gases by several researchers [&lo]. 

Colella and Glaz [4] presented a numerical procedure for obtaining the flux 
from the exact solution of the Riemann problem for a real gas, that is, a gas with 
a non-ideal equation of state (EOS). Grossman and Walters [5] extended the 
formulas of Steger and Warming, Van Leer, and Roe, introducing some simplifying 
assumptions and approximations that later were shown to be unnecessary. Vinokur 
and collaborators [&8] produced a sequence of papers on the extension of these 
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formulas to real gases, in which both the analysis of the numerical problem and the 
formulas produced become more and more sophiscated; numerical examples, 
though, are scant. Glaister [9] presented an elegant extension of Roe’s 
“approximate Riemann solver.” Liou, Van Leer, and Shuen [lo] presented different 
extensions of these splittings, backed by a careful analysis. Their numerical results 
for one-dimensional shock-tube and nozzle flows at present appear to represent the 
state of the art. 

All of the above references deal with real gases that are in chemical and thermal 
equilibrium, so that a unique EOS can be assumed to exist. For flows with finite 
Damkohler number, defined as the ratio of flow-residence time to chemical-reaction 
time, effects of chemical non-equilibrium are important; thus finite-rate chemistry 
must enter the analysis. 

Just as for gases in equilibrium, the literature on numerical flux function for non- 
equilibrium gases is rapidly expanding. Without claiming to be comprehensive, we 
list some very recent reports. Grossman and Cinnella [l l] extended the equi- 
librium methods of [S] to incorporate both chemical and thermal (vibrational) 
non-equilibrium. Abgrall [ 121 formulated Roe’s splitting for chemical non-equi- 
librium gases and performed numerical tests with a second-order, semi-implicit 
TVD scheme. Furthermore, Grossman et al. [ 131 contributed a survey of several 
methods suggested to date, including numerical comparisons of both equilibrium 
and non-equilibrium flux formulas. 

In the present paper we extend the previously derived [lo] real-gas version of 
the flux-splitting of Steger and Warming, Van Leer, and Roe, to gases that are not 
in chemical equilibrium. These splittings are incorporated in a second-order TVD 
scheme [14], by which solutions are obtained for the same shock-tube and nozzle 
flows as computed in [lo] with equilibrium chemistry. 

The layout of this paper is as follows. In Section 2 we discuss the equation of 
state and related thermodynamic quantities for gases in chemical non-equilibrium. 
The essence of the paper is in Section 3, where the detailed derivation of split-flux 
formulas is presented. In Section 4 we describe a chemical system for air dissocia- 
tion and recombination, Finally, in Section 5 we describe further details of the 
numerical methods and show numerical results for one-dimensional shock-tube and 
nozzle flows of air in chemical non-equilibrium. 

2. EQUATION OF STATE 

We begin by assuming that the macroscopic thermodynamic properties of a gas 
consisting of N species can be related through the general equation of state, 

P =p(p, e, Cl, G, . . . . C,- ,I, (2.1) 

where p, p, e, Ci are, respectively, the pressure, density, specific internal energy, and 
mass concentration for species i. Note that Cy= 1 Ci = p; therefore, if the total mass 
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density p is regarded as an independent quantity, only N - 1 concentration are 
independent for a chemical system of N species. For chemical nonequilibrium flows, 
the values of C’s depend not only on the transport of fluid, but also on the progress 
of chemical reactions; therefore, unlike for equilibrium gases [lo], a priori deter- 
mination of an EOS is not possible, and the EOS has to be constructed along with 
the solution process. If the inter-molecular forces and the volume occupeid by 
molecules are negligible, pressure p can be expressed as 

(2.2) 

where R, is the universal gas constant, T the temperature, and Wi the molecular 
weight of species i. 

The speed of sound is given by 

a*= g ( 1 
N-l 

= Pp + PePlP’ + 1 CiPC,lP. 
s i= I 

(2.3) 

Here and throughout this paper, pP, p,, and pc, denote the partial derivatives of p 
with respect to p, e, and Ci with other variables held fixed. This speed is generally 
known as the “frozen speed of sound,” because it does not take into account the 
possible variation of chemical composition in a sound wave (this can be included 
in an equilibrium model, leading to the so-called “equilibrium speed of sound”). To 
facilitate the evaluation of the pressure derivatives in Eq. (2.3), Eq. (2.2) is recast in 
the following form: 

P=R,T $--+;;,’ Ci(&-$-)I. 
N 

The pressure derivatives are then given by 

~4, =- 
WC,’ 

(2.4) 

(2.5a) 

(2.5b) 
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and 

= R,T(-&-$--)-&(ei--ep,), 
where W= ((l/p) Cr=“=, (Ci/Wi))-’ is the molecular weight of the gas mixture, 
C, = Cy=, C,C,,/p - R,/W is the constant-volume specific heat of the gas mixture, 
and ei = l Tref C,, dT + hj. - R, T/ Wi, CP,, and h/, are the specific internal energy, the 
constant-pressure specific heat, and the heat of formation, respectively, of the ith 
species; T,,, is the reference temperature for thermodynamic properties. 

To close the system, we still need to determine the temperature. Here the 
temperature T is calculated after the flow properties p, e, and Ci are obtained, using 
the equation 

pe= f Ci ST C,,dT+hi -p. 
i= 1 Td 

The specific heat of individual species CPi appearing in the above formulation is 
calculated by methods of statistical mechanics and is fitted by a fourth-order 
polynomial of temperature [ 151. The C,; polynomials so generated in this study are 
valid for the temperature range of 200 to 15,000 K. 

It is interesting to note that upon substitution of the pressure derivatives in 
Eq. (2.3) by means of Eqs. (2.4~(2.5c), the expression for the frozen speed of sound 
simplifies to 

&P- 1+-E ( ) p C”’ (2.7) 

where R = R, Cy=“=, C,/p Wi is the gas constant for the mixture. This simple rela- 
tionship, as pointed out by B. Stouflet [ 161, may be obtained directly from the 
ideal gas law, i.e., p = pRT, assuming a thermally perfect gas with a frozen chemical 
composition. 

3. CONSTRUCTION OF SPLIT FLUXES 

The derivations presented in this section closely follow the methodology of our 
previous work for equilibrium gases [lo]. The appearance of mass fluxes for the 
different species, however, introduces additional complexity. 

We shall restrict ourselves to the splitting of fluxes for one-dimensional flow and 
therefore consider the 1D Euler equations, 

au wu)=s at+- ax 7 (3.1) 
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where 

0 

0 
0 

s= s, 

II 
) 

s2 

Z-1 

with E = e + iu2, and Si is the source term for species i due to chemical reactions. 
If the EOS is expressed in terms of the flow variables, viz. as p =p(p(U), e(U), 

C,(U), C*W), -..3 C,,,- ,(U)), the pressure derivatives with respect to flow variables 
U can be readily derived. By the chain rule for partial derivatives we have 

ap ap 
G PU,P,E,C.,=I,N-1 =ap 

=p,+: ( -H+$+u2 , 1 (3.2a) 

ap ap ae 

w4 P.PE.C51=I,N-I “Z P.C,,,=l.N-I d(PU) P.PE.C,,,=I.N-I 

-UP, 
=-7 

(3.2b) 

ap ap =- 
d(PE) P.P%G,,=I,N-1 iYe p,c ,,,=I,N-l ali P.PU,C,,,=1.N-I 

pe =- 
P’ 

(3.2~) 

and 

ap ap de 

G P,P~,PE,C,,,=I.N~I,,#~ 

=- 
ae P.~~,I=I,N-I c P.Pu,PE,C,,,=~.N-I.I#, 

ap 

+z P.e,C,,,=I,N-I,,#, 

= PC,, (3.2d) 

where H = h + $u” = e + $u’ + (p/p) = E + (p/p). 
These derivatives are used in evaluating the Jacobian matrix of the flux vector, 
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which is needed for several split-flux algorithms. The Jacobian matrix can be 
written as 

A=$=A,+A,,, 

where 

A,= 

-u* ~-f-$“+L!2& (?.l.&j ( ) P P 
N-1 /7 

- c 5Pc, 
r=, fJ 

0 0 0 

pm 
P 

PC1 PC2 

A 

[ 

-ff+u*Ez+i!.z5?9 
P 

(H-d;) u(l+$) UPC, UPC* 

N-l 

- c 2Pc, 
i=, 

Cl -u- 
P 

c2 
-u- 

P 

C3 -U- 
P 

c4 -u- 
P 

1 
Cl 
P 

C2 

-7 

C3 

7 

C4 - 
P 

contains the derivative pe, and the matrix containing pP is 

A,= 

0 0 

PC, PC4 

UPC, UPC 

(3.3a) 

U 0 0 0 

0 u 0 0 

0 0 u 0 

0 0 0 u 

, 

0 000000 

p,-;+Nppc 000000 is1 P 
ld PP ( -;+ Nf’ spc, 000000 i=l P > 

0 000000 
0 000000 
0 000000 
0 000000 

(3.3b) 

(3.3c) 

For clarity of presentation, in the above derivation and the rest of of the paper we 
have set N = 5, which is the number of species considered in our chemistry model 
(see Section 4). 
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The eigenvalues of these matrices are, respectively: 
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l(A) = u-a, u, u + a, u, u, u, u, (3.4a) 

l(A,) = u-up, u, u + up, u, u, u, u, (3.4b) 

W,) = 0, 0, 0, 0, 0, ‘A’& (3.4c) 

where ~7% = p/p +ppe/p2 = u* - ( pp -p/p + Cy=k,,’ (CJp) pc,). Thus the matrices A 
and A, have a complete set of eigenvectors, and A, does not. It can be shown that 
a, = a and A, = A for a gas in which p has the form p = pf(T), i.e., a thermally 
perfect gas. 

For real gases one finds that the inviscid flux vector F no longer possesses 
the property of homogeneity, but rather is a sum of a homogeneous and an 
inhomogeneous part: 

F=F,+F,; (3.5) 

here Fh = AU and F = A,U, yielding F, = - A,U. 
Since the matrix A has a complete set of eigenvectors, it can be diagonalized by 

a similarity matrix S whose column vectors are the right eigenvectors of A: 

A=SASp’, diag A = J(A). (3.6a) 

The matrix S and its inverse S’ are frequently used in numerical flux functions 
and are given below for completeness: 

0 0 

0 0 

-P’Pc, - P'PC 2 
Pe Pe 

P 0 

0 P 

0 0 

0 0 

0 0 

0 0 

- P'PC, - P"PC‘ 

PC P. 

0 0 

0 0 

P 0 

0 P 

(3.6b) 
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-; (H- 2) 1 
c, 
P2 

G 

P2 

C, 
-7 

P 

C4 

P2 

UP, 
2 pa 

PC PC, 
-7 pa -- 

PC, PC, PC, 
-- -- -- a2 a2 a2 a2 

1 -- 

@Pa ( 1 

a+% -- 1 Pr PC, PC, F_“, PC, 

P &pa P @pa Jipa J2pa JTpa 

0 
0 

1 
P 0 0 0 

0 
0 0 

1 
P 0 0 

0 
0 0 0 

1 
P 0 

0 
0 0 0 0 

1 

P 

(3.6~) 

3.1. Steger- Warming Splitting 

By splitting the eigenvalues of A according to their signs, i.e., 

/!=Ll++/i-, (3.7) 

the chemical nonequilibrium version of Steger-Warming flux-vector splitting is 
obtained by writing FA= Fl + F; =A+U+A-U, with A’ =S/I’S-‘. Specifi- 
cally, define 

1; =(u* lul)/Z 

2: = (u+af lu+al)/2, 

A: =(u-a* lu-al)/2, 

(3.8) 

then components of F,’ = (F,$, Fh+Z, . . . . F&)’ are 
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(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.9e) 

(3.9f) 

(3.9a) 

These split fluxes are suited for upwind differencing. It should be pointed out that 
the true frozen speed of sound a is used in the splitting. Since A, does not have a 
complete set of eigenvectors, a system of equations that consists of Fi, alone does 
not have a hyperbolic character. In consequence, central differencing for the 
inhomogeneous flux Fi” may be appropriate. Hence, just as in [lo] for the equi- 
librium case, the split flux F can be expressed as 

F’ =Fh’ + iFi,. (3.10) 

The numerical tests of Section 5 confirm that this leads to a stable method. 

3.2. Van Leer Splitting 

In our previous study [lo], we have extended the Van Leer splitting to a general 
equilibrium gas. The derivation in [lo], which includes a family of flux choices, is 
independent of the EOS used and does not require homogeneity of the flux vector. 
The further generalization of Van Leer splitting to a gas not in chemical equi- 
librium is straightforward; the formulas are given below. 

The splitting has the standard form 

F=F+ +F-, (3.11) 

and is carried out only when the eigenvalues have mixed signs, i.e., as M2 < 1 for 
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the system (3.1) with eigenvalues (3.4a); A4 is the local Mach number. The split 
fluxes of mass, momentum, and energy fluxes are 

F; = k~pa(Mf l)‘, (3.12a) 

F;=F: U--92~) , 
I 

Ff =Ff[H-m(~fa)~]. 

Exactly as in the equilibrium case [lo], the parameter m generates a family of 
splittings; Van Leer splitting is a member of this family, found by requiring that the 
terms in the square bracket of the F$ fluxes form a perfect square. This leads to 

h/a2 
m = 1 + 2hla2 

and 

F;=fF; (ua+2h)2. 
(a* + 2h) 

The concentration fluxes simply follow from a linear 

F++, 
P 

q&F:, 
P 

F+CqF:. 
P 

(3.12~) 

convection principle, i.e., 

(3.12d) 

(3.12e) 

(3.12f) 

(3.133) 

3.3. Roe Splitting 

To construct Roe’s flux-difference splitting, one defines an average state 0 such 
that 

AF = jiAU, 

K = A(O), 

0 = O(U,, U,), 

(3.13a) 

(3.13b) 

(3.13c) 

where 
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and 

A(U)$ 

P 
c2 - 

P 

C3 
T- 

0 0 

C4 
-F 

0 0 

is the matrix defined in (3.3a). 
In the case of an ideal, non-reacting gas, the average state 0 is easily found, since 

(3.13a) represents three simple equations with three unknowns. Such a state was 
derived by Roe [3]. For a real gas, this simplicity is lost. For 1D flow of a chemical 
system of N species, (3.13a) consists of N + 2 equations. By a careful examination 
of (3.14) we find that, for N = 5, there are fourteen (rather than seven) independent 
quantities (state variables and their derivatives) needed in computing A(U). In 
order to find a practical formula for ;i we must relax the constraint (3.13b) and 
allow independent averages of these 14 state quantities to enter the elements of A; 
we shall choose the set (ti, 0, P, fi, c?~,~= ,+ BP, B,, ~c,,,=,,4). We emphasize that, 
although P, =PJP, e, Ci,i= l,,t- I), B, is not obtained by substituting (6, i, 
ci, ;= ,,N- i) into (2.5a), but must be defined separately; this is also the case for be 
and iC,. 

Let the Roe-average operator p be defined as usual: 

(3.15) 

as in the equilibrium case [lo] we hnd 

581/90/2-8 

(3.16a) 

(3.16b) 



382 SHUEN, LIOU, AND VAN LEER 

(3.16~) 

(3.16d) 

while the species mass fractins C,/p are averaged similarly: 

(z)=p(:), i=l,..., Nr. (3.16e) 

Left to be satisfied is the condition 

N-l 

Ap=fi, Ap+ji,Ae+ 1 p,ACi, 
i=l 

(3.17) 

which means we have to define the averages of the pressure derivatives, BP, fi,, and 
1 pc,, i = 1, . . . . N- 1. For a gas in chemical nonequilibrium, (3.17) provides only one 
relation for the variables BP, Be, and @,-,, i= 1, . . . . N - 1; thus the definitions for the 
averages of these pressure derivatives are not unique. The formulas we propose 
below reduce to those derived in [lo] for a gas in chemical equilibrium. 

As in [lo], we shall derived values of tip, Be, and PC,, i= 1, . . . . N- 1, that are as 
close as possible to the consistent derivative values, i.e., the values computed at the 
average state (fi, @, Cr, C2, . . . . CN- r). We therefore introduce 

&=P,(A f, c, ..., L-l), 

PC = P,(P, 4 G 7 ...T c- I), (3.18) 

jjC,=p&, 6 cl, a-*, CN-,), i= 1, . . . . N- 1, 

Next, we need a density unit R, energy unit E, and concentration units M,‘s so that 
the derivatives are scaled properly. Equation (3.17) may be written as 

(3.19a) 

or, simply 

N-l 

UX+fiy+ 1 yiziz19 
i= 1 

(3.19b) 

with 

(3.19c) 

de 
a--R, 

AP 
yi’dC,Mi, 

AP 
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The set of values (x0, Y,, zlo, z2,,, . . . . zcN- I),,) = Me/R, P,lE, p,,lM,, ijCzlM2, .+ 
~c,-,/MN--I) in general do not satisfy Eq. (3.19a), i.e., the point Q = 
(x0, Y 07 ZlO’ zz,, a**, Z(N- l)o ) in the (x,y,zl,zz ,..., zN- r) plane does not lie on the 
surface D represented by Eq. (3.19b); see the sketch. 

The point on D closest to Q is the projection S of Q onto D; this is the optimal 
choice regarding consistency of (fie,~p,@s,i=l,NP1) with (pe,~p,Pc,,i=,,N--l) and 
other independently defined average state variables, for the given distance scaling 
(R, E, Mi, i= r.+ r ). The coordinates of S are formed by combining Eq. (3.19b) with 
the equations’ for SQ: 

N-l 

ax, + BY.7 + C Yizis = l, 
i=l 

yielding 

B(x, - x0) - a.( y, - yo) = 0, 

yi(x,-XO)-a(Zi~-zi~)=O, 

xs=xo+aO, 

Ys=Yo+PG 

Zis = Zi, + YisZy i= 1, . . . 

i = 1, . . . . N- 1, 

,N-4 

where 

o= l-axO-~yO-~~z~o- “’ -h-lZ(N-l)o 

a2+f12+yf+ ... +ffpl ’ 

An obvious scaling is 

(3.20) 

(3.21) 

R=dp 
de’ 

E=dp 
4’ 

~.A- 
’ ACi’ 

i = 1 , . . . . N - 1, (3.22a) 
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yielding a-p = yi = 1; this leads to 

d,=P,+ & We7 

1 - 1 
PP=PP+N+l - APIA P, 

PC, =Pc,+ & 6PlACi 9 i=l , . . . . N- 1, 

(3.22b) 

where 

N-l 

6P=AP- p,Ap+P,de+ 1 pc,ACi 
i= 1 

is the residual of Eq. (3.17) when we substitute (jj,,pP,pc,) for (fi,,@,,p,). 
Equations (3.22) are simple and easy to implement; however, a potential flaw 

exists: when de, Ap, or AC, vanishes, fi,, BP, or fi,-, becomes indeterminate. In 
practice, if de, Ap, or AC, vanishes, j?, simply reduces to p,, @, to jiP, or $c, to PC,. 

A better scaling is 

R=F,, E=Pp, Mi=PC,; (3.23a) 

we then have (x0, y,,, z iO, . ...) = (1, 1, 1, . . . . ), yielding 

xs= 1 +ayI, 

Ys= 1 +m 

Zi, = 1 + yj Yy i= 1, . . . . N- 1, 

where 

(3.23b) 

Y= AP 6~ 
(p,Ae)* + (p, LIP)* + CE-1’ (PciACi)*’ (3.23~) 

Substituting Eq. (3.19~) to Eq. (3.23), we obtain 

“=” 
Ah 

’ + (p,Ae)* + (p, LIP)* + Cr=-l’ (pc,dCi)* a’ ’ 1 

&=& l+ 
( 

Pp4 
(p,Ae)* + (p,Ap)* + Cy=-l’ (pciACi)* ” > ’ 

(3.24) 

Bc,=& 1+ - 
P&Ci 

(p,Ae)2 + (p,Ap)* + CE-l’ (pC,ACi)2 a’ > ’ 
i= 1, . . . . N- 1. 
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We may rewrite Eq. (3.24) as 

p,Ae =PeAe + 0,6p, 

PpAp =Pp& + q,bp, 

Bc,ACi=P,,ACi + U,,hP, i= 1, . . . . N- 1, 

with 

0 - (Dc,ACi12 
“-(p,Ae)2+(~,Ap)2+C~=-~1 (pc,ACi)2’ 

i=l , . . . . N- 1. 

(3.25a) 

The meaning of Eq. (3.25a) is that the residual Sp is distributed over the terms 
beAe, bpAp, and bc,ACi in Eq. (3.17) with weights o,, wP, and w,-,. In the case 
that de, Ap, or ACi vanishes, the corresponding weight vanishes. It is evident from 
Eq. (3.23) that choosing a different scaling (R, E, Mi) just amounts to choosing 
different weights for distributing the residual over its constituent terms. The choice 
of Eq. (3.22), for example, amounts to simply taking o, = w, = oc, = l/(N+ 1). 
Another viable choice is 

(3.26) 

with w, and oC, defined similarly. 
All formulas presented above return the standard values (be,fip,@,,) = 

(Pe,Pp, PC,) for a calorically perfect gas, since in this case Q lies on the surface D 
and the pressure residual dp vanishes. 

4. CHEMISTRY MODEL 

The present finite-rate chemistry model includes live species (O,, N,, 0, N, NO) 
and eleven elementary reaction steps for the dissociation and recombination of air. 
The kinetics data for this model are taken from Dunn and Kang [17], except that 
the ions and free electron, and the associated reaction steps are not included. The 
reactions and the rate coefficients are given in Table I. The neglect of the effect of 
ionization is solely for the sake of simplicity (the complete model with ionization 
reactions involves 11 species and 26 elementary reaction steps); there is no 
fundamental difficulty in generalizing the present formulation to an ionizing gas. 
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For a set of N, elementary reactions involving N species, the rate equations can 
be written in the general form 

i= 1, 2, . . . . NR, (4.1) 

where vb and vz are the stoichiometric coefficients for species j appearing as a 
reactant in the ith forward and backward reactions, respectively, and nj is the 
molar concentration for species j (n, = Cj/ W,). Also, k, and kb, respectively are the 
forward and backward reaction rate constants for the ith reaction step. The 
reaction rate constant k, (k, or kb,) is given empirically by the Arrhenius 
expression, 

ki = A, Tie - EdRu ‘, (4.2) 

where Ej represents the activation energy and Ai and mi are constants. 
From (4.1), the rate of change of molar concentration of species j by reaction 

step i is 

(f~~)~=(vG-v,)(k, fi n;;‘-k,, fi n;‘:‘)- 
/= 1 I= 1 

(4.3) 

The total rate of change of molar concentration of species j is 

(4.4) 
i= 1 

from which follows the rate of change of mass concentration for species j, 

which appears in (3.1). 

s,= wjlij, (4.5) 

We observe that the chemical source term Sj depends exponentially on tem- 
perature. We also observe that, although pressure does not appear explicitly in the 
source expression, Sj is a strong function of pressure due to the influence of pressure 
on density and species concentrations. 

It should also be noted that, because of the vastly different chemical time scales, 
that may be involved in the elementary reactions, and the exponential dependence 
of the source terms on temperature, the set of species equations in (3.1) may 
become very stiff over certain temperature ranges. 

To mitigate the stiffness problem, chemical source terms appearing in (3.1) are 
treated in an implicit fashion; in this way the convergence rate (for steady nozzle 
problem) or the numerical stability is not appreciably degraded. For maximum 
stability in steady-state calculations the source terms are nominally evaluated at the 
end of the time step (backward-Euler scheme); actually, the nonlinear implicit 
equations are linearized about the initial state. This procedure is only first-order 
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accurate in time; for unsteady calculations second-order accuracy is preferable. This 
can be achieved by integrating the source term in time with the trapezoidal rule 
(Crank-Nicholson), using the linearized equations to iteratively solve the nonlinear 
equations. The source-term Jacobian, H = %/XI, resulted from the linearization 
procedure, has the following general form: 

0 0 0 0 0 0 0 
00 00000 
00 00000 

H= 
as, as, as, as, as, as, as, ------- 
ap atpu) a(pg ac, ac2 sc3 ac4 
as, as2 as2 as2 as2 as2 as2 ------- 
ap a(p2.4) a(pi2) ac, ac2 ac, ac, 
as, as3 as, as3 as3 as, as, 
Tij- acpu) a(pE) ac, ac, Z ac, 
as, as4 as, as4 as4 as4 as4 ------- 
ap alpu) a(pE) ac, ac, ac3 ac4 

(4.6) 

Noting that for a given chemical kinetics model the source term is a function of 
only temperature and species concentration, i.e., Sj = S,( T, Ci, i = 1, . . . . N), as is the 
specific internal energy e = e( T, CJp, i = 1, . . . . N), the elements in the Jacobian 
matrix, (4.6), can be evaluated via the chain-rule, e.g., 

here 

Similarly, 

(4.7) 

(4.8) 
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asj 
%PE) P.Pu.cI,I=I.N-l =% ,,=,, N-j alp,,: ,,,=,, N-l &lp,p..c ,,r=,, .&-, 

i as. =-.--A 
PC,, aT C,.r=,,Nm,' 

(4.10) 

We note that, despite the implicit treatment of chemical source terms, the set of 
species equations still becomes very difficult to solve numerically at regions where 
temperature is very high and chemical reactions are intensive. In this case, the 
chemical time scales tend to be many orders of magnitude smaller than the flow 
time scales or the time steps required for a cost-effective solution. To completely 
overcome this difficulty, exceedingly small time steps have to be adopted in the 
numerical calculations. Since it is not our interest in this study to investigate the 
high temperature chemical kinetics, we have not chosen to use CFL numbers which 
are small enough to resolve the chemical time scales. The consequence of using 
large numerical time steps (as compared to chemical times) is that numerical 
fluxtuations appear in the species concentration predictions in some regions of the 
flows, as will be seen in the Numerical Test Section. 

5. NUMERICAL TEST 

Numerical tests have been conducted to validate the accuracy of the present 
formulation. Some extreme cases of one-dimensional unsteady shock-tube and 
steady nozzle problems are presented in this paper. The performance of these split 
fluxes for finite-rate chemistry analysis is compared against the equilibrium results 
of [lo]. 

The Euler equations are integrated using the explicit Lax-Wendroff scheme. To 
obtain a crisp and monotone shock representation, a TVD scheme based on the 
above split formulas, as described in [lo], is employed, along with the super-Bee 
limiter [18] for steepening of the contact discontinuity. The present scheme is 
second-order accurate both in space and time. 

For all the test cases to be discussed in the following, initial conditions or inflow 
conditions are assumed to be air at equilibrium state. 
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5.1. Shock- Tube Problem 

The initial conditions are those used in [S, lo]: 

for OGxdO.5 cm, 

for OSdx<lcm, 

p4 = 100 atm, 

T4 = 9000 K, 

u,=o; 

p,=latm, 

T, = 300 K, 

u1 =o. 

Figures l-3 show the numerical results of the Roe, Van Leer, and Steger- 
Warming splittings for, respectively, p/p,, ufa4, p/p4, and efe4, for both the 
chemical equilibrium and nonequilibrium cases. This is a diffkult case to calculate, 
as the initial jumps in temperature and pressure across the contact are large, about 

* . . . . . FIN/ TE-RA TE 
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FIG. 1. Shock-tube problem, Roe flux-diKerence splitting. 
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FIG. 3. Shock-tube problem, Steger-Warming flux-vector splitting. 
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one to two orders of magnitude, and consequently the compositions are completely 
different. It has been our experience [S, 91 that the TVD flux-splitting scheme can 
handle large differences in pressure very well, but not as well if there are also large 
differences in temperature. Nevertheless, our numerical results generally show very 
crisp profiles of shock and contact discontinuities. Among all the three splittings, 
the Roe scheme gives the best results, especially near the contact discontinuity. 
Because of the finite relaxation time, the nonequilibrium case shows a weaker jump 
in density across the contact and a smoother variation in velocity around the tail 
of the expansion fan. 

The temperature and species molar fractions obtained using the Roe splitting are 
shown in Fig. 4. The sharp peak in the equilibrium NO molar fraction is a numeri- 
cal result produced by the smearing of internal energy at the contact discontinuity 
[lo]. This is because the NO molar fraction is a very strong, non-monotone 
function of temperature (internal energy) and is most stable at some intermediate 
temperature .across the “numerical” contact discontinuity. On the other hand, the 
oscillations in 0 and NO molar fractions across the contact discontinuity in the 
finite-rate case are the results of numerical inaccuracy caused by the exceedingly 
large chemical source terms and small chemical time scales in the species equations. 
It is noted that the spurious fluctuations of the molar fractions in the finite-rate 

cu . . . . . FIN/ TE-RA TE 
O o o EOUJL JBRJUN 

D F JNJ TE-RA TE 
EQUJL JBRJUN 

FIG. 4. Shock-tube problem, temperature and species molar fractions. 
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predictions can be removed by using smaller time steps in the calculations; a CFL 
number smaller than lo-’ is required to remove most of the fluctuations for the 
shock-tube case considered here. The results shown in Figs. 14 are obtained using 
CFL of 0.5. 

5.2. Steady Nozzle-Flow Problem 

Calculated results using Roe splitting for the steady flow with a shock in a 1D 
divergent nozzle are given in Figs. 5-6. Figure 5 shows the results for p/pm, u/a,, 

P/Pm I and e/e,. The nozzle area ratio is 10 and the inflow conditions are for equi- 
librium air at T, = 6000 K and poo = 10 atm. Excellent results are obtained by the 
Roe scheme with a monotone and sharp shock structure. Figure 6 illustrates the 
temperature (T/T,) and species molar fraction predictions. Because of the rapid 
decrease in flow temperature and pressure through the nozzle throat, the chemical 
reactions are slowed down to the point that finite-rate effects become significant. 
Consequently, noticeable differences are observed in the predictions of temperature 
and concentrations of the air dissociation products 0, NO, and N, between 
the equilibrium and nonequilibrium approaches. Calculations using the Steger- 
Warming and Van Leer schemes were also conducted for the same flow conditions. 
The results obtained with these two schemes are almost exactly the same as those 
of the Roe scheme, and therefore they are not shown here. 9 . . . . . . FIN1 TE-RATE 
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FIG. 5. Divergent-nozzle problem, Roe flux-difference splitting, nozzle area ratio = 10. 
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To further illustrate the nonequilibrium effect, results for air flow, with the same 
inlet conditions as the previous case, expanding through a divergent nozzle of area 
ratio 200 are presented in Fig. 7. Because of the high temperature and pressure 
involved, initially the finite-rate results coincide with equilibrium calculations 
almost exactly. But, because of the very large area ratio of the nozzle, the tem- 
perature and pressure rapidly decrease to the values at which the flow is essentially 
chemically frozen, as clearly depicted in the molar fraction plots. This equilibrium- 
sudden freezing behavior of the hypersonic nozzle flow was also discussed by 
Bray [19]. 

CONCLUDING REMARKS 

Formulations of inviscid flux splitting algorithms for chemical nonequilibrium 
gases are described. Special care has been exercised to avoid unnecessary assump- 
tions, approximations, or auxiliary quantities. The calculated results demonstrate 
the validity as well as the advantage of the present approach. The numerical results 
also indicate that improvement is needed for better handling the large disparity in 
chemical and flow scales at high temperatures. 
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