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A quick return mechanism is analyzed for deflection and stability when the rod is 
considered an Euler-Bernoulli beam. The crank is assumed rigid and to be rotating at a 
constant angular velocity. The equations of motion and natural boundary conditions are 
obtained using Hamilton’s principle. Spatial dependence is suppressed using Galerkin’s 
method with time dependent pinned-pinned overhanging beam modes. Using a small 
crank length approximation, zones of parametric resonance are found using Hsu’s method. 
The accuracy of these is verified using a monodromy matrix technique. The technique is 
also used to explore the possibility of resonances not covered by Hsu’s (first order) method. 
A particular solution instability is found to exist using Hsu’s method and is verified by 
direct numerical integration. For a somewhat flexible configuration, all instabilities were 
found to lie outside the range of normal operating speeds. For stiffer configurations likely 
to be found in practice, this conclusion can be asserted even stronger, at least for small 
cranks. 

1. INTRODUCTION 

As operating speeds increase and weight decreases, flexibility of links in various mechan- 
isms has to be addressed. For relatively simple mechanisms, such as four bars and slider 
cranks, a considerable body of literature exists addressing response and stability; for 
examples, see references [l-7]. 

The mechanism analyzed here is a quick return one which has numerous industrial 
applications. For example, Ham, Crane and Rogers [8] described its use as a crank 
shaper. Sandor and Erdman [9] gave an example of its use in connection with a flow 
metering pump. Dwivedi [lo] employed this mechanism for constructing a high velocity 
impacting press. 

The quick return mechanism considered here has a flexible rod and a rigid crank as 
shown in Figure 1. A novel feature of the current work is that the flexible rod is supported 
in a translating joint that moves relative to the rod. The literature in the area of moving 
joints is sparse. For examples, see the papers by Buffington and Kane [ 1 l] on a magnetic 
tape problem, by Giirgijze [ 123 on a sewing machine mechanism, by Pan [13] on a 
prismatic joint robot arm, by Bahgat and Willmert [ 141 and by Song and Haug [ 151 on 
the quick return mechanism using finite element methods. 

Many commercial codes for analyzing mechanisms, such as DADS [ 161, do not employ 
finite element methods, assumed mode techniques being more popular. The latter is the 
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Translatinghototirq joint 
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Figure 1. Rigid crank, flexible rod, quick return mechanism: (a) undeformed initial state; (b) deformed state. 

approach adopted here. Galerkin’s method is the technique used, with trial functions that 
are time dependent. This can lead to very considerable difficulties when the crank length 
is large (an approximate method for this problem will be presented in a later paper). 
Considerable simplification occurs when the length is small and that is the case pursued 
here. The authors believe the small crank case has merits in its right. In addition, it 
provides a benchmark solution against which other solutions (such as the approximate 
one to be presented in the later paper on the large crank) can be assessed. 

Response and stability are treated. Response is obtained by numerical integration of 
the differential equations. Zones of parametric resonance of homogeneous equation 
instabilities are delineated by Hsu’s perturbation method [ 173, and verified by the mono- 
dromy matrix technique (see reference [ 181). A particular equation instability is also 
discovered to occur. Such instabilities have received little attention in the literature, as 
far as developing analytical techniques required to investigate them. Jandratis and Lowen 
[3], for example, investigated this instability approximately by decoupling the equations 
of motion by setting off-diagonal terms to zero. Herein no such simplifications are made. 

2. EQUATIONS OF MOTION 

The mechanism studied consists of a rotating crank driving a rod by means of a 
translating rotating joint (see Figure 1). Quick return mechanisms frequently have a link 
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and a mass at the tip of the rod, but in some instances they are small and they are ignored 
here. The following modelling assumptions are made: (1) the crank is assumed rigid; (2) 
the rod is taken to be flexible and to be described by Euler-Bernoulli beam theory; (3) 
the translating rotating joint is treated as a “knife-edge”; (4) the motion of the crank is 
taken to be prescribed as a constant angular velocity 6; (5) gravitational forces and joint 
friction are neglected. 

The position vector from the left pin in the ground to any material point in the flexible 
rod is given by 

r=xe^,+vf?~. (1) 
The frame P,, i$ moves with angular velocity 4, where 

x,4= Ri cos(O--4), (2) 
where x1 denotes the position of the moving joint along t?] and R is the crank length. 

The kinetic energy T can be shown to be 

where J, is the mass moment of inertia of the crank about its center of mass, MC is the 
mass of the crank, and fi is the mass per unit length of the rod, which is of length L. 
The potential energy is given by 

where EI is the flexural rigidity of the rod. Hamilton’s Principle involving a moving 
boundary has been treated by Forsyth [19]. By following that procedure, the non- 
dimensional equations of motion can be shown to be (see reference [20] for details): 

A2 a4w a2w 
‘14+-+ 
0 a77 

ae2 ~1+e2+~~Cose~2~~~(~2-l)sin~-w~2(c~s~+~)"l=0, 

where 

o<v<r, i<n<l, (5) 

e = et, 4x3 t) 
WC% 0) =L’ 

R 
EC- 

a,’ 7=;, i=:, El 
A*=-- 

IiiL4' 
(6) 

in which a, is the base length. The non-dimensional essential boundary conditions are 

w(l; e)=o, g(i+, e)=g(i-, e), ~(0, e) = 0, 

and the non-dimensional natural boundary conditions are 

$i+, S)=$(i-, O), $(o, e)=o, $1, e)=o, $(I, 0)=0. (8) 

3. GALERKIN’S METHOD 

To solve equation (5) approximate methods must be employed. Here, following GiirgSze 
[12], Galerkin’s method is used, in a somewhat non-standard fashion in that moving 
boundaries are involved. The following trial functions are used: 

N 

wT,h, 0) = C .LWenh, 01, 0~ 17 < i; i+<i. 
fl=l 

(9) 
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Here enl, en2 are the time dependent mode shapes of a pinned-pinned beam with an 
overhang for regions 1 and 2, respectively (see Figure 1). Expressions for them are given 
in reference [20]. 

In operator notation, equation (5) can be written as 

D(w)=g. 

Galerkin’s method then leads to, for k = 1,. . . , N, 

(10) 

which leads to the ordinary differential equations 

$A,,- E2(COS e + &)2 
(1+2& cos L9+a2)2Akk > 

+ ; b-,n_ti 
"=, 

--E sin 0(&‘-l) _ 

=(1+2E cos e+@Ik, 
(12) 

where 

cki and ek2 are very complicated and obtaining analytical expressions for the above 
coefficients is well-nigh intractable. Numerical integration is feasible, but turned out to 
be very CPU intensive due to the time dependent mode shapes. An approximate method, 
and an alternative mode method (which does not readily lend itself to stability studies), 
for the large crank will be presented in a later paper. Here, as in reference [ 121, attention 
is restricted to a small crank (E cc 1) for which considerable simplification is achieved by 
use of Taylor series expansions. 

4. SMALL CRANK APPROXIMATION 

From geometry, it follows that, where d = a,/ L, 

T= ii( 1+2& cos & + &2)“2, (17) 

which reduces to, for small E, by using the binomial expansion, 

QE,~)=~(I+ECOS~). (1% 

By using this expression and Taylor series expansions it can be shown, after substantial 
algebra (details can be found in reference [20]) that equations (12) become 

, k 

= )..., 1 N, (19) 

where dj,l,), gj,l,), gkl, and dkko are complicated parameters (again details can be found 
in reference [20]) that depend, in general, on material properties, system geometry, and 
crank speed. wk is the kth pinned-pinned overhanging beam natural frequency when the 
crank has zero length. Equations (19) are a non-homogeneous set of coupled linear 
ordinary differential equations with periodic coefficients. The response can be obtained 
using numerical integration. Instabilities arise through either the homogeneous solution 
or the non-homogeneous solution and these will be addressed separately. 
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5. RESPONSE 
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Equations (19) were solved by using an Adams Moulton integrator on an APOLLO 
DN3000 computer to obtain the forced response. The properties used in reference [12] 
were used namely, 

L=lm, a, = 0.59997 m, E = 0.7 El1 N/m’, 

I = 0.5208 E - 6 m4, fi = 7.15 kg/m. 
(20) 

The tip deflections for a crank speed of 100 rad/s and E = 0.01, when using one, two and 
three modes, is plotted on Figure 2 as a function of the crank angle. It is seen that a one 
mode approximation captures most of the deflection, and the two and three mode solutions 
overlay each other. On the basis of this result, retention of just two modes was felt to be 
sufficiently accurate for the purpose of stability investigations. Note that the high frequency 
oscillations are due to excitation of, primarily, the first mode of vibration. 
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Figure 2. Small crank tip deflection; 1, 2 and 3 mode solutions. 

6. HOMOGENEOUS EQUATION INSTABILITIES 

Consider equations (19) with &, set equal to zero. The first derivative terms lead to 
complications in the stability analysis in that classical approaches involving Hill’s infinite 
determinant (see reference [21]) fail to capture combination resonance zones. Hsu’s 
method [17] does not have this drawback and it is the technique employed here. The 
method gives the following stability results. 

6.1. CASE A: RESONANCE AT CRANK SPEEDS NEAR TWICE THE FIRST 

NATURAL FREQUENCY 

The stability-instability boundaries in the i, E plane emanate from 6 near 20,. The 
stability-instability boundaries are defined by 

(21) 
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The zone of instability is defined by: 

2 
Wr e(d::‘8-gl:‘w,)< 1 <,fll1+E(d(l:Wg;:)o,) -_;- 
e 2w, 6 2Wl 

? (22) 

and neutrally stable otherwise. 

6.2. CASE B: COMBINATION RESONANCE OF THE SUM TYPE 

The stability boundaries in the I$ E plane emanate from b near w, + w2. The stability- 
instability boundaries are defined by 

>( = 1. (23) 

The region between the boundaries is unstable if 

6.3. CASE C: COMBINATION RESONANCE OF THE DIFFERENCE TYPE 

The stability-instability boundaries in the 6, E plane emanate from 4 near o2 - 0,. The 
stability-instability boundaries are defined by 

w2 01 Eb 
,--_-f- 
8 e 2Jw,wz J( 

- d\;‘-g::‘y 
)( 

The region between the zones is unstable if 

(25) 

The case A and case B stability-instability zones obtained by Hsu’s method are shown 
in Figures 3 and 4 (as well as additional results), for the physical properties given in 
section 5. The first zone (Case A) intersects the i axis at 4 = 2w, = 1716.6 rad/s. The 
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B 
Figure 3. Homogeneous equation instability zones near b = 2w, and 6 = (w, + w2)/2. 
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Figure 4. As Figure 3 but near 6 = W, + o2 

second zone (Case B) intersects the 4 axis at i = o, + w1 = 3488.3 cad/s. No instability 
zone associated with a crank speed of w2- w, (Case C) was found. Notice that crank 
speeds at which the plotted instabilities occur are very high, so high that they are not 
likely to be encountered in practice. 

As shown in reference [ 181, stability boundaries can be obtained numerically by using 
the monodromy matrix. An outline of the method follows. It requires the numerical 
integration over the period of the crank rotation of four (in a two mode approximation) 
ordinary differential equations for four different sets of initial conditions. This generates 
a matrix (monodromy matrix) whose eigenvalues must then be determined. The process 
must be repeated for each (4 E) point and so can be quite computationally intensive. It 
has the merits of not being restricted to small values of E, but it is not the most economic 
approach when analytical results (such as Hsu’s) are available. The technique is used 
here to validate the above results and (as an interesting aside) to obtain some information 
on the range of validity of Hsu’s method. The results are overlayed the perturbation 
results, and are shown in Figures 3 and 4. Results indicate that Hsu’s method is accurate 
up to about E = 0.01. 

It is known (see reference [21]) that for the Mathieu-Hill equation instability zones 
can also emanate from I = 2w,/n, n = 2,3,4, . . . . Such zones, if they exist for the present 
case, could be of concern in that the instabilities could drop into the range of practical 
concern. They could be investigated by retaining terms to order &n in Hsu’s method, but 
the algebra could be prohibitive. Instead, the authors chose to use the monodromy matrix 
technique. 

The following zones were investigated using 6 intervals of 1 rad/s and E intervals of 
0.001. 

4 = 20,/n. For n 2 2 no unstable points were found. This does not mean that such 
regions do not exist, but that they are so thin as to be all but absent. 

I = (0, + w2)/n, n = 2,3,4,. . . . For n = 2 (see Figure 3) a zone of instability was found. 
However, the zone is very thin. The search for n = 3, 4 revealed no further zones of 
instability. 

4 = (w2 - w,)/n. Searches at n = 1 found no regions of instability (as expected from 
Hsu’s method) and also no unstable region for n = 2,3,4. 

6 = 2W2/n. For n = 1,2,3 instability zones were found (corresponding to crank speeds 
of 5260, 2630 and 1753 rad/s). No instability regions were observed for n ~4. 

The above results show that all zones of instability become so thin as to be invisible 
for n 24. It can then be concluded that succeeding regions beyond the instability region 
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of the first approximation have progressively less importance for the small crank problem. 
Since zones where parametric resonance actually occur are beyond normal operating 
speeds in practical applications, it can be concluded that parametric resonance is not of 
practical importance when the crank is small. Damping, not included in the analysis but 
present in every physical system, would further strengthen this conclusion. 

One other side result came out of this portion of the study. Many classical techniques 
(such as the Fourier series method for obtaining Hill’s infinite determinant [21]) for 
determining stability boundaries hinge on utilizing the periodicity of solutions on the 
boundary. Results from the monodromy matrix search procedure showed that on the 
boundary for the combination resonance W, + w2, the period varies, so many classical 
techniques will fail. 

7. NON-HOMOGENEOUS EQUATION STABILITY 

Stability of coupled non-homogeneous equations with periodic coefficients has not 
been, to the authors’ knowledge, fully treated in the existing literature on flexible mechan- 
isms. GiirgGze [ 121, for example, ignored it in the sewing machine mechanism. Jandratis 
and Lowen [3] attacked nonhomogeneous equation stability in a four bar biological 
shaker, but uncoupled the ordinary differential equations by ignoring the coupling terms. 
They could then apply a Fourier series expansion technique, developed by Kotowski 
[23], for a forced Mathieu-Hill equation. This study revealed amplification of the solution 
at speeds w,/n, where n is a positive integer. This conclusion was also experimentally 
verified. 

Here the coupling terms are not ignored. Hsu’s method is used in the Appendix to 
cover the non-homogeneous case. At fj = w, , the solution is described by equations (A3), 
(A7), (A16) and (A17). It is shown therein, within the framework ofthe first approximation, 
instabilities (of a different type than in the previous section, in that linear growth is 
predicted) occur at 4 equal to o1 and w2. To see whether in fact the forced response is 
unstable at w, , the inhomogeneous equations (19) were numerically integrated at o, , for 
initial conditions f,(O) = 0, dj(O)/de = 0, i = 1,2, E = O-01. 

The results forfi shown in Figure 5 verifies that the inhomogeneous equation instability 
does indeed exist, and that the growth is linear as predicted. Several other cases were 
also investigated numerically: namely, 4 = 42, w,/3, w,/5. As shown in Figures 6, 7 
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Figure 5. Non-homogeneous equation response at b = o, , E = 0.01. 
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Figure 6. As Figure 5 but at b = w,/2. 
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Figure 7. As Figure 5 but at i = w,/3. 
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Figure 8. As Figure 5 but at 8 = 45 
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and 8, respectively, the response also varies linearly with 0. These instabilities were not 
predicted by Hsu’s first order method applied to the nonhomogeneous case, and it is 
conjectured that they would arise in a higher order expansion. These results also show 
that the severity of the instability decays as n increases. At n = 5, the instability is all but 
absent. The crank speed at n = 5 is still beyond practical operating speeds. 

Actually the parameters set forth in section 5 represent a somewhat flexible configur- 
ation. In practice the natural frequencies would be higher than those in the current 
example, which reinforces the overall conclusion that, at least for small cranks, all 
instabilities lie outside practical operating speeds. 
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APPENDIX: HSU’S METHOD FOR NON-HOMOGENEOUS EQUATIONS 

Hsu’s method, as presented in reference [17], was applied only to homogeneous 
differential equations with periodic coefficients. However, the method can be used to 
investigate the stability of nonhomogeneous equations with periodic coefficients. 
Equations (19), with N = 2, are rewritten in first order form: 

dhlde = Fkr (Al) 

%+$fk=-~ 2 COST 1 2 d’,‘,‘f,,+sint? 1 2 gk.F,,-psin@ , k= 1,2. (A2) 
?I=, tZ=l kk0 

The proposed solution is 

fk=Ak(e)cos~e+Bk(e)sin~e+Ef:l’(e), k = 1,2. (A3) 

where Ak, Bk and j”:” are to be determined. There is freedom to impose the following 
conditions: 

Using this equation, together with equations (Al) and (A3), one obtains 

(A4) 

(A5) 

Substituting this into equation (A2) and applying some trigonometric identities yields 

-&&&4.{c0s(~e+e)-c0s(~e-e)} 

+Bn{sin(Te+e)-sin(TB-B)}]. (‘46) 

Equations (A4) and (A6) completely define a small parameter first order approximation 
of equations (19), but transformed to variables Ak, Bk andf:“. In accordance with Hsu’s 
method, solutions are obtained by solving the system equations that are coefficients of 
E’ and E’. In general, these solutions are correct, except when 4 is near crank speeds 
related to the first and second natural frequency. See section 6 for the homogeneous 
equation stability results. 

Inhomogeneous equation instability can be studied from the “perturbational 
equations”, which are obtained from the coefficients of E’ of equation (A6). The 
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homogeneous solutions of these equations are 

J~‘)=C,cos~B+C,sin 7 e, j-p = c3 cos ~e+C~sin~f$ (A7) 

where C, , C1, C3 and C, are constants. The particular integrals of the perturbational 
equations are 

f,“L__$ ; 
II=1 [ 

‘* . {T~nCOs(~e+e)+V,.sin(~e+e)} 
w:--(o”+e)* 

+ ” . {ulncO~(~e-e)+w,.sin(~e-e)}] 
UT - co, - e)* 

‘2 - 8 
+ --sin 8, 
0: - e* Allo 

f$” = -4 f 
?I=1 [ 

” . {T2~c0S(~e+e)+Vi.sin(~8+e)} 
+(w,+e)* 

+ ” . ( u2nc0~(~e-e)+w2.sin(~e-e)}] 
0; - b, - a* 

‘2 - e 
+ v g,, sin e, 

0: - 82 A,,, 

where 

W) 

(A9) 

(AlO) 

(All) 

Consider the situation when W: - 0* is nearly equal to zero. A solution is sought for 
wr near 4, as described by w, + .& = I$ where y is a finite real number. In Hsu’s prodecure, 
the “offending” term in equation (A8) is removed from the perturbational equations, and 
associated with the “variational equations” (the equations obtained from the coefficients 
of .e” in equation (A6)). The resulting equations are 

dA, xcos? B+$$sin$ e=O, 

(A12, A13) 

01 d4 ~1 dB, -~--sin~e-k7--cos~B=i2 
8 de 8 de 

g,, sin e, 
A 110 

~2 dA2 ~2 dBz -T~sin~e+~~cos~e=O. 

(AI4) 

(Al51 

Solving these equations gives, for y = 0 (i.e., w, = 6), 

A,=,+$-(e-yf)+c,, B,=r$$-$os2e+c6, 

(A16, A17) 

where CS and C, are constant. Note that equation (A16) predicts an unstable response 
in that A, grows linearly with time (0). Inspection of equation (A9) shows that a similar 
instability occurs at 4 = w2. 
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If y # 0, one obtains the bounded solutions: 
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(A18) 

(AI9) 


