
COMBUSTION A N D  F L A M E  81:219-228  (1990) 219 
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The critical energy required to initiate dust detonations in tubes of finite diameter depends on the structure of the 
reaction zone, and especially upon the length of the induction zone, which, in turn, is determined by the ignition 
delay time of the dust particles. To establish the induction zone length in dust detonations, the shock wave ignition 
of dust particles was investigated theoretically. In the theoretical model the particle acceleration, subsequent 
convective heating by the hot gas flow, and chemical exothermic surface reaction in the pores as well as on the 
surface of the particle were considered. An asymptotic analysis for the limit of large activation energy was carried 
out for spherical particles with constant average values of the gas recovery temperature and the convective heat 
transfer coefficient. A formula for calculating the ignition delay times was determined and the asymptotic results 
were compared with a numerical solution of the governing equations and with experimental ignition delay data for 
coal dust. 

INTRODUCTION 

The ignition and explosion of clouds of solid dust 
particles have long been subjects of interest be- 
cause of their role in accidental explosions in 
mines and grain elevators. Particularly severe 
damage occurs when transition to detonation oc- 
curs. The energy required for initiation and the 
propagation characteristics of detonations depend 
on the structure of the reaction zone and espe- 
cially upon the induction length, which is deter- 
mined by the ignition delay time of the fuel- 
oxidizer mixture. 

In the case of dust detonations the length of the 
induction zone, which has a direct link to the 
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detonability of the mixture, depends on the actual 
ignition delay of the individual dust particles be- 
hind the leading shock of the detonation front; 
hence, it is important to measure and develop 
theoretical models for particle ignition delay be- 
hind incident shocks. There have been numerous 
theoretical and experimental dust particle ignition 
studies, particularly in the case of coal; however, 
most of these considered slow ignition with delay 
times on the order of milliseconds or seconds. 
Shock-induced ignition delay times are much 
shorter, typically on the order of about 100 /zs, 
and the physical processes governing ignition can 
be quite different from those that are important in 
slow ignition. Development of a model for the 
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shock-induced ignition of dust particles is the 
subject of the present article. 

There have been a number of theoretical stud- 
ies of the ignition of condensed material based on 
solid phase, heterogeneous, or gas phase ignition. 
The solid phase model was used by Bradley [1], 
who developed the numerical solutions of the 
equations governing the heating of a reactive, 
homogeneous solid by a constant flux of energy. 
Asymptotic analysis for the limit of large activa- 
tion energy was applied to the ignition of a 
condensed material by Li~in and Williams [2, 3] 
and Niioka and Williams [4]. 

Asymptotic analysis in which the diffusion of 
the oxidizing gas into the porous solid material is 
taken into account was also applied by numerous 
researchers [5-7] to the solution of the heteroge- 
neous ignition problem. The particle ignition 
analysis of Sichel et al. [13] and Ural [14] was 
based on a solution of the heat conduction equa- 
tion for the particle interior, which takes the heat 
release due to heterogeneous reactions on the 
surface of internal pores into account. Different 
ignition sources such as radiation, conductive 
heating and hot stagnation point flow were con- 
sidered in these various studies. Gas phase igni- 
tion was considered by Kindelan and Williams [8, 
9], who applied asymptotic analysis to the radiant 
ignition of a solid fuel that gasifies endothermi- 
cally and then reacts exothermically in the gas 
phase through a one-step Arrhenius reaction. 

The Biot number, which is proportional to the 
ratio of the surface temperature gradient in the 
solid to that in the gas, plays an important role in 
the analysis of the shock ignition of particles. In 
the case of high-conductivity metal particles ig- 
nited by a hot gas the Biot number is so small that 
the particle temperature may be assumed uni- 
form. In particles of low-conductivity material, 
however, such as coal and oats exposed to the 
high-velocity gas flow behind an incident shock 
wave, the Biot number is of order unity because 
of the intense convective heating. In this case the 
temperature distribution inside the particle plays a 
crucial role in ignition, and must be considered in 
any analysis. In the case of very intense convec- 
tive heating resulting in very short ignition delay 
times, the ignition reactions may be confined to a 

thin high-temperature region near the particle sur- 
face. 

The evolution of volatiles plays a crucial role 
in slow ignition and in laminar flame propagation 
through dusts where ignition times are on the 
order of milliseconds, and often combustion con- 
sists, mainly, of the gas phase oxidation of 
volatiles. However, Ural [14] has shown that, at 
least on the basis of slow volatilization rate data, 
there is insufficient time for significant de- 
volatilization in the ignition of coal, graphite, and 
char under the conditions generated by an inci- 
dent shock wave. The effect of volatiles is there- 
fore neglected in the analysis below. 

This situation changes when ignition occurs in 
the stagnant hot gases behind a reflected shock 
wave, for then the heating rate is relatively slow. 
In that case it was found from numerical calcula- 
tions [13, 19] that the assumption of a uniform 
temperature distribution inside the coal particle is 
acceptable because the rate of heat transfer to the 
particle interior is then comparable to the surface 
heating rate from the hot gases. There is then also 
enough time for the evolution of a substantial 
fraction of the volatiles. 

Ignition delay times of different solid materials 
behind incident shock waves have been measured 
by a number of researchers, including Boiko 
et al. [10], Anderson and Gillespie [11], Hwang 
and Pillay [12], Sichel et al. [13], Ural [14], and 
Fox et al. [18]. The gas phase ignition of coal 
particles in oxygen behind a reflected shock has 
been observed by Nettleton and Stirling [15]. 

This article presents a theoretical analysis of 
the ignition of spherical particles behind an inci- 
dent shock wave based on the considerations dis- 
cussed above using high activation energy asymp- 
totics. The results are compared to a numerical 
solution of the governing equations reported pre- 
viously [13] and to experimentally measured igni- 
tion delay times of coal dust particles. Asymp- 
totic analysis is particularly attractive because it 
reduces the numerical calculations required, per- 
mits rapid evaluation of the influence of model 
parameters on the results, and should reduce the 
computation time required when ignition phe- 
nomena are incorporated in the simulation of 
more complex dust cloud phenomena. 
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FORMULATION 

Davis et al. [16] observed that the ignition delay 
time for a mixed sample of different-sized coal 
particles corresponded to that of the smallest 
particles, and that under the shock tube test con- 
ditions, little interaction occurred among particles 
of different size. Particle interactions were there- 
fore neglected, and the dust cloud was assumed to 
consist of monodisperse, spherical particles in the 
present analysis. Consistent with shock tube igni- 
tion delay measurements of small groups of parti- 
cles such as those reported by Sichel et al. [13] 
the influence of the particles on the flow behind 
the incident shock wave was taken to be negligi- 
ble. However, gas-particle interactions must be 
taken into account in two phase flows with high 
particle loading fractions [20]. 

For a particle in the convective flow behind an 
incident shock the equation of motion is 
4 3 dVp 
- T r R  Pc 
3 dt 

1 
= -~CdP27rR2(V 2 - Vp) I V z - Vpl , (1) 

where Pc and P2 are the particle and gas densi- 
ties, Vp and V 2 are the particle and gas flow 
velocities, R is the particle radius, and C d is the 
drag coefficient. 

When (V 2 - Vp), the velocity of the gas rela- 
tive to the particle, is supersonic, a bow shock 
forms in front of each particle (Fig. 1). As the 
particle accelerates, the relative velocity de- 
creases below the speed of sound, and the bow 
shock disappears. Ultimately the relative velocity 
vanishes altogether. 

During acceleration the convective heat trans- 
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Fig. 1. Schematic diagram of the interaction of a shock wave 
with a particle. 

fer from the surrounding gas to the particle causes 
an increase in the particle temperature. As men- 
tioned above, the Biot number is of the order 
unity in convected flow behind the shock, so that 
it is necessary to take the temperature distribution 
inside the particle into account. To make the 
analysis tractable the particle temperature distri- 
bution and the convective heat flux at the surface 
are assumed to be spherically symmetric. The 
unsteady heat conduction equation, including a 
source term to account for the heat release due to 
reaction within the particle, is then 

aT  a a (r  2 a T )  u " ( r , t )  
a t - 7  T;r + pcc ' (2) 

where c~ and C are the thermal diffusivity and 
specific heat of the particle, T is the temperature, 
and r and t are the radial coordinate and time. 
The volumetric rate of heat generation, u " ,  
which accounts for the heat released by the sur- 
face reactions within the porous particle, has been 
taken as 

u "  = QpcSiPo2A exp - , (3) 

where S i is the internal surface area per unit 
mass, Q is the heat of combustion, Po2 is the 
partial pressure of oxygen, A and E are the 
preexponential factor and activation energy, re- 
spectively, and R '  is the universal gas constant. 

Heat transfer at the particle surface can occur 
through both convection and radiation; however, 
it can be shown that, for the conditions consid- 
ered here, the radiative heat flux is negligible 
compared to the convective flux prior to particle 
ignition [19]. The boundary condition at the sur- 
face of the particle then becomes 

OT 
k e r r ( R ,  t) = h ( t ) [ T f ( t )  - T ( R ,  t ) ] ,  (4) 

where k c is the thermal conductivity and Tf is 
the gas recovery temperature at the particle sur- 
face. The initial condition and the condition im- 
posed at the particle center because of spherical 
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symmetry are given by 

T ( r , O )  = Ti, r < R ,  

OT 0 = o ,  

where T/ is the initial particle temperature. 

(5a) 

(5b) 

NUMERICAL CALCULATIONS 

The above system of equations has been solved 
numerically as described in detail in Refs. 13 and 
19. The unsteady heat conduction equation (Eq. 
2) is solved by finite differences simultaneously 
with the trajectory equation (Eq. 1). The heat 
conduction and trajectory equations are coupled 
through the film conductance and the recovery 
temperature Tf, which, along with the drag co- 
efficient, depends on the current value of the 
relative velocity V 2 - Vp at each step of the 
calculation. The surface reactions are initially 
very slow, while the particle temperature is still 
low. The maximum temperature occurs at the 
particle surface and at a fairly well defined time 
this temperature begins to increase drastically, 
i.e., temperature runaway occurs. The interval 
between shock passage over the particle and tem- 
perature runaway is taken as the ignition delay 
time. 

Sphere drag and convective heat transfer co- 
efficients are thus required over velocities ranging 
from supersonic to very low subsonic values in 
the Stokes flow regime. The empirical correla- 
tions given by Henderson [17] were used for the 
drag coefficient, C a . The convective heat transfer 
coefficient, h( t ) ,  used in Eq. 4 depends not only 
on the Reynolds number but also on the Mach 
number. An empirical correlation of experimental 
data developed by Fox et al. [18] was used to 
determine the convective heat transfer coefficient. 
In the range 0 < Re < 10,000 and 0 < M < 6 
this relation is given by 

2 e x p ( - M )  
Nu = + 0.459 Pr °33 Re °'55 

1 + 17M/Re 

1 + 0.5 exp ( - 17/Re) 
X 

1.5 

where Nu and Pr are the Nusselt and Prandtl 
numbers, respectively, and M and Re are the 
Mach and Reynolds numbers, respectively, based 
on the relative velocity and on conditions behind 
the particle bow shock along the stagnation 
streamline. The particle diameter was taken as 
the characteristic length. The initial temperature 
of the particle was taken as T = T /=  295 K in 
the calculations presented here. 

ASYMPTOTIC ANALYSIS 

Lift,in and Williams [2] investigated the ignition 
of a semiinfinite reactive solid by a constant 
energy flux at the surface using high activation 
energy asymptotics. Here this asymptotic method 
will be applied to the determination of the igni- 
tion delay time of a solid spherical particle ex- 
posed to a hot convective flow as described by the 
formulation presented above. A key assumption, 
which is discussed in more detail later, is that the 
recovery temperature and heat transfer coefficient 
are constant at suitably determined average values 
over the ignition delay period. 

It is now appropriate to introduce dimension- 
less variables. Thus, using 

r T  a t  r 

0 = R T  i ,  r =  R Z ,  ~ R '  (6) 

the heat conduction equation (Eq. 2) becomes 

~7" 0~ 2 + A '~ exp , (7) 

where 

e (8) E '  - , A '  = Q P c S i P ° 2 A R 2  

R ,r, kcr, 

In terms of the new variables the initial condi- 
tion (Eq. 5a) becomes 

r 
0(~ ,0 )  = ~ = ~ .  (9) 

The numerical solution of Eqs. 1-5 discussed 
above and the ignition delay studies of Lee et al. 
[20] in which the temporal variation of the con- 
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vective heat transfer coefficient, h, and gas re- 
covery temperature, T.r, were taken into account, 
showed that the temperature at the center of the 
particle remained, essentially, at the initial value 
T/during the ignition delay period. This effect is 
graphically illustrated by the temperature distri- 
bution histories shown in Ref. 20. Consequently, 
it is reasonable to simplify the asymptotic prob- 
lem by replacing the symmetry condition (Eq. 5b) 
with T(0, t) = T/. The symmetry condition at the 
center and the particle surface boundary condition 
then become 

0(o, =o, (lO) 

o 8° - g T ( 1 ,  ~') - 0 ( 1 ,  r )  = B i 

( l l )  

where B i = h R / k  c. 

In dealing with the Arrhenius term in the en- 
ergy equation it is convenient to introduce the 
parameter 0 ~ = E '  / In A '  so that the dimension- 
less heat conduction equation (Eq. 7) becomes 

Or - O~ -----T + exp 0 . (12) 

The condition 0~ > 1 must be satisfied if igni- 
tion is to occur at a well-defined ignition tempera- 
ture 0 c. This requirement follows from the fact 
that in the asymptotic limit E ' / O  l = 0% the reac- 
tion term will be exponentially small for 0 < 0t 
and exponentially large for 0 > 0 n at the surface 
of the particle, i.e., at ~ = 1. When 0(1, r) - 01 
becomes of the order of O l / E ' ,  the reaction term 
in Eq. 12 becomes important and it is anticipated 
that transition to ignition will occur. 

To lowest order in the small parameter 0 z / E ' ,  

for values of ~" so small that 0 < 01 holds every- 
where in the solid, the exponential term in Eq. 12 
will be negligibly small, so that this equation 
reduces to the nonreactive form: 

O 0  0 2  0 

- ( 1 3 )  
87" 8 ~  2 

with the same initial and boundary conditions, 
(Eqs. 9-11). The solution corresponds to the 

initial stage of inert heating when no chemical 
reaction is involved and is found to be 0 -- 0 I, 
with 

m OI - 1 + Z + /3"s in(X"~)exp(-hz"r)  
r t = l  

(14/ 

where 

B = B i T f  h R  
T i ' Bi k~ ' Z = B i 1. 

The eigenvalue X~ is determined by the relation 

Xn 
tan Xn - 

Z 

and the Fourier coefficient /3n is given by 

4 1 1 + Z X n cos X n 

/3 n = 
2X n - sin(2kn) 

From the discussion above it follows that to 
lowest order in O n/E'  ignition will occur when at 
some time r c the inert temperature 01 at the 
surface ~' = 1 reaches the value 0~ because ther- 
mal runaway then occurs at the surface. To this 
order the ignition temperature 0 c and the ignition 
time re are determined by the relation 

B 
0 c = 01 = 01(1 , Tc) - -  

I + Z  

+ ~ /3~ sin(Xn) 
n = l  

exp(-X2 (15) 
This lowest order result ignores the fact that 

the transition from nonreactive to reactive heating 
does not occur discontinuously at the surface. To 
analyze the transition from inert heating to incipi- 
ent reaction, the deviation of the nondimensional 
temperature from its inert value, Oz, is introduced 
and is expressed as 

= 0 - 0 , .  ( 1 6 )  

The governing equation for ¢b can then be found 
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by substituting Eq. 16 into Eq. 12: 

00 0 2 0  
- + ~ A '  

Or a~ z 

(17) 

and the initial and boundary conditions now take 
the forms 

a~  
a--~ (1, r )  = (1 - B i )~ (1 ,  r ) ,  

• (o, ~) =o, 
0 ( ~ , 0 )  = 0. (18) 

The maximum temperature always occurs at 
the surface of the solid as shown by Baek [19]. 
Thus, expanding the inert solution (Eq. 14) about 
r = r~, ~ = 1, using Eq. 15, gives 

0, = 0o + ~ [ - c . ( 1  - ~) + D.(~ - ~)], 
n=l 

(19) 

where 

c .  = ~ . x .  cos(X.)exp(-  x2°~c), 

D,, = -3,,h2, sin(Xn)exp(-XZ,,r~). (20) 

Substituting Eq. 19 into Eq. 17 and retaining only 
the first nonvanishing terms in 1 - ~ the equation 
for • becomes 

30 3 2 0 
~ + A '  

Or a~ 2 

To obtain an asymptotic expansion of the solu- 
tion to the equation for • as E '  ~ 0o two sepa- 
rate regions are considered. If the variables (1 - 
~i) and (r  - r e) are stretched so that the terms 

containing them in the second exponential in Eq. 
21 are of the same order it is found that the 
unsteady term a~b/ar is of higher order than the 
diffusion term 02 O/a~ 2. Accordingly, there is an 
inner reactive-diffusive region near the particle 
surface where an appropriate expansion for • has 
the form 

¢ = 8 2 *0(x,  Or) + 8 3 * , ( x ,  ~) 
+ 84 ~I¢2(X, Or ) " ' ' ,  (22) 

with the expansion parameter 

a = OcE' - 1/2 

The stretched variables are then given by 

Or= 8 -2 K 2 ( r  _ re) + b o, 

X = 6  2K, (  1 -  ~),  

with 

K , =  k C n K 2 =  k D , .  
n=l n=l 

b 0 is defined by the expansion 

= b o + b 1 6 + b 2 62 -t- ' ' "  . ( 2 3 )  

The second region is an outer nonreactive tran- 
sient-diffusive region in the interior of the particle 
where the reactive term is negligible. Here the 
appropriate expansion for • takes the form: 

• = 62 ~o(~, °)  + 63 ~, (~ ,  Or) 

4- 64(~, or) + . . . ,  (24) 

where 

rl = 6 K~/2K71x  = 6 - '  K~/2(1 - ~).  

In terms of the stretched variable 7/ the two 
derivatives aO/Or and 02 o/a~ 2 become of the 
same order in the transient-diffusive region. 

Substituting Eqs. 22 and 23 in Eq. 21, the 
governing equation in the inner reactive region 
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becomes 

02 ~2 02 XI¢ 0 02 xit I 62 _ _  
- - + 6 - - +  

OX 2 OX 2 OX 2 

-62K12K20-0~ ~O~ItO + 0(63) 
oo 

= -6K{lK~/2exp[a- X + ~o 

+6 , ,  + 6 b, + o(62)1 ,  
(25) 

and it can be seen that the unsteady term is of 
higher order than the reactive and diffusive terms. 

From Eq. 18 it follows that in terms of the 
stretched variables the initial condition becomes 

'I ' j(x, 0) = 0as  a =  - o o ,  

j = 0 , 1 , 2  . . . . .  

while the boundary conditions become 

3~I'° 0 3~I'l 
( , a )  = G-X (0, a ) = 0  

~I'o(X, a ) ,  * , ( x ,  a)  = 0 as x = oo 

To lowest order in the inner region it now follows 
from Eq. 25 that '~'o satisfies the equation 

32 ~I, o 3~, 0 
- 0, with (0, 0) = 0. 3x 2 3X 

The corresponding solution is xI' 0 = XI'o(a), where 
9o(a) is a function of o to be determined from 
the matching conditions. To next order, Eq. 25 
yields the following equation for ~z: 

02 XI/1 
K;tK~/2 exp[a - X + *o(a) ]  3X2 

with the boundary condition 

OX~I 
- - ( 0 , 0 )  = o .  
3x 

The solution of this equation is 

¢11 = -K;IK~/2[exp(-x) + X + f l ( e ) ]  

× [exp(a + *o) (a ) ]  , 

where the function f~(a) is to be determined 
from the matching conditions between the inner 
and outer solutions. 

Substituting Eq. 24 and the stretched variable 7 
into Eq. 21, the equation for the outer region 
becomes 
00-~0 02 W0 ( 00"~1 02 ~1 ) 

- - -  + 6 + 0 ( 6  2) 00 072 00 072 

= 6-1K1K~t/z 

×exp(-6-1K,K2'/27 + O(1)) .  

(26) 

From Eq. 18 it follows that the coefficients of the 
outer expansion satisfy the initial conditions 

6oj(7, o)--~Oasa--* --00, j =  0 , 1 , 2 , ' " ,  

and the boundary conditions are 

o o j ( f - l K 2 1 / 2 , e )  = 0 ,  j =  0 , 1 , 2 , " .  

The matching conditions between the inner and 
outer regions must now be found. The one term 
outer expansion, i.e., O~o(~t, o) is first expanded 
in terms of the inner variable X, so that 

¢.00(7, 0) = (.00(0 , 0) -~ 6K1 /2KI  l X 

0O~o (0,  0 )  + . . .  
× 07 

0o~ o 
= OJo(O, a) + ~ - ~ ( 0 ,  a ) .  (27) 

The two-term inner expansion, i.e., 'tto(X, o) 
+ 6 ~l(X, 0), expressed in terms of outer vari- 
ables becomes 

'1to(O ) + 6{-K~'K~/2[exp( Kz'/: Kill ) 

K-E'/2K1~ ] } 
+ 6 + f l ( a )  exp[a + *o(0)1 
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From this result it follows that the one term outer 
expansion of the inner expansion is 

• = f r o ( a ) -  ~ /exp[a+ ~o(a)]  + " " .  (28) 

Matching now requires that Eqs. 27 and 28 be 
equal, which then leads to the relations 

 o(0, = 

0w° (0, a) = - e x p [ a  + Wo(0, a ) ] .  (29) 
0a 

Keeping only the lowest-order terms, Eq. 26 
reduces to the following partial differential equa- 
tion for the outer expansion coefficient 00o(7/, a): 

0W 0 0 2 600 
- -  = 0 .  (30) 

OOr 01~ 2 

Not surprisingly, the lowest-order outer expan- 
sion coefficient satisfies the nonreactive diffusion 
equation with the boundary condition (Eq. 29) 
determined from matching with the inner reactive 
solution. As already shown, it follows from Eq. 
18 that in the limit ~ = 0, ~0 o satisfies the initial 
condition 

~0o(7/, a ) - *0as  o-~ - o o ,  (31) 

while the additional boundary condition becomes 

O~o(~/, a) ~ 0as  ~ /~  oo. (32) 

Equations 29-32 were solved by Lififin and 
Williams [2] in their study of the ignition of a 
semiinfinite solid combustible material, even 
though the problem that they considered is dif- 
ferent from that considered here. Thus, although 
they considered a semiinfinite solid material ex- 
posed to a constant heat flux, the present study is 
concerned with the convective heating of a spher- 
ical particle. Their solution showed that thermal 
runaway, i.e., Wo = oo, occurred at the finite 
time a = b o = - 0 . 4 3 1 .  Using the result a = 
- 0 . 4 3 1 ,  the ignition time r c can be calculated 
from Eqs. 15 and 23. 

The influence of particle acceleration enters the 
asymptotic analysis implicitly through the recov- 
ery temperature Tf and film conductance h, which 
must be specified in Eq. 11 for the particle sur- 

face boundary condition. These parameters are 
treated as constants in the asymptotic analysis; 
however, Ty as well as h change as the particles 
are accelerated to the gas velocity behind the 
incident shock wave, and this variation was taken 
into account in the numerical analysis as de- 
scribed above. In the asymptotic analysis suitable 
average values were used for h and Ty. The 
particle trajectory equation (Eq. 1) can be inte- 
grated independently of the heat conduction equa- 
tion so that the variation of 7"i and h with time 
during particle acceleration are readily deter- 
mined. The average values of Tf and h were 
then evaluated using 

1 f0t '  1 f0t '  Ty= ~ Ty dt,  -h = -- hd t .  (33) 
ti 

The ignition delay time t i is determined using the 
asymptotic analysis, which in turn depends on 
these average values so that iteration was re- 
quired to obtain the solution. 

R E S U L T S  A N D  D I S C U S S I O N  

Ignition delay times of 53-pm-diameter coal par- 
ticles computed using the asymptotic analysis de- 
scribed above are compared to experimentally 
measured and numerically computed delay times 
in Fig. 2. The experimental measurements, which 
were conducted using air as the oxidizing gas, are 
described in detail in Refs. 13 and 19. The dust 
particles were injected into the shock tube just 
before arrival of the shock wave using either an 
air injector or a special inertial injector, and the 
data obtained using both methods of injection are 
shown. The ignition delay time was determined 
by measuring the particle radiation using a photo- 
multiplier tube. 

The following physical and kinetic data for the 
coal dust were used in the calculations and were 
taken from Badzioch et al. [21], Gan et al. [22], 
and Field et al. [23]: 

Density, Pc = 1.2 g/cm 3 

Thermal conductivity, X --- 0.00212 cal /cmK s 

Spec. heat, C = 0.236 cal/gm K 

Heat of combustion, Q = 8559 cal/g 
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G, EXPERIMENTAL DATA BY AIR INJECTOR 

o EXPERIMENTAL DATA BY INERTIAL INJECTOR 

• NUMERICAL SOLUTION 
x SOLUTION BY ASYMPTOTIC ANALYSIS 
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x 
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Fig. 2. Comparison of asymptotically computed and measured ignition delays for coal dust. 
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Int. surf. area, S i = 4.26 X 10 6 cm2/g 

Activation energy, E = 35.7 kcal/gmol 

Preexponential factor,A =8.71x 103 g/cm2s atm 

Ignition delay times are plotted on a logarith- 
mic scale versus the inverse of the postshock gas 
static temperature nondimensionalized by the ini- 
tial temperature of 295 K. The corresponding 
incident shock wave Mach numbers are also indi- 
cated on the abscissa. This form of representation 
is used to plot Arrhenius rate law data since the 
resultant plots are then linear. The present results 
also lie on an almost straight line even though 
dust ignition involves a complex combination of 
physical and chemical processes. This behavior 
also has been observed in the case of droplet 
ignition, suggesting that these complex processes 
can, in some cases, be represented by an equiva- 
lent Arrhenius rate law. 

The theoretically computed ignition delay times 
using the high-activation-energy asymptotic anal- 
ysis were in good agreement with the numerical 
solution of the governing equations and with the 
experimentally measured values. The calculations 
were performed using physical constants from 
independent sources in the literature. In view of 
the many approximations used in the analysis and 
the difficulties involved in measuring ignition de- 

lay times [13] these results are encouraging and 
suggest that ignition delay times of dust particles 
behind incident shock waves can reasonably be 
predicted using either the asymptotic or numeri- 
cal analysis described above. 

From the analysis it can be seen that for the 
conditions considered here the heat-up time of the 
particles is the main factor governing the incident 
shock wave ignition of solid particles. The 
asymptotic analysis leads to the result that in 
terms of the transformed variables particle igni- 
tion is governed by the same system of one 
dimensional heat conduction equations solved by 
Linan and Williams [2] in their study of the 
ignition of a semiinfinite solid. This reflects the 
fact that behind an incident shock, prior to igni- 
tion, particle heating is restricted to a thin layer 
near the particle surface so that the particle, 
locally, behaves like a semiinfinite solid. 

The use of constant average values for the film 
coefficient and recovery temperature greatly com- 
plicates the asymptotic analysis but is necessary 
because there is no simple analytical way to 
represent the particle trajectories during accelera- 
tion to the fluid velocity behind the incident shock. 
Even so, a major advantage of the asymptotic 
analysis is that it eliminates the need to numeri- 
cally integrate the heat conduction equation for 
the particle interior in order to compute ignition 
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delay times, and the validation of this approach is 
an important contribution of the present article. 
Use of the asymptotic solution should signifi- 
cantly reduce computing time in the numerical 
simulation of the shock ignition of more complex 
dust cloud configurations. In cases in which a 
characteristic particle acceleration time is much 
less than a characteristic chemical time it may be 
quite reasonable to equate the constant surface 
conditions to those at the end of particle accelera- 
tion, while use of conditions immediately behind 
the shock may be appropriate if the particle accel- 
eration time is very long. 

The main result of this article is to show that 
high activation energy asymptotic analysis can be 
used to determine the ignition delay times of 
combustible dust particles behind incident shock 
waves. 
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