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We consider the problem of optimally filling a knapsack of fixed capacity by choosing from 

among a collection of n objects of randomly determined weight and value. Under very mild condi- 

tions on the common joint distribution of weight and value, we determine the asymptotic value 

of the optimal knapsack, for large n. 

1. Introduction 

The random version of the classical single-constraint, O-1 linear programming 

problem is given by 

(1.1) 
subject to C I$ais 1, 6ie {O,ll, 

i=l 

where the pairs (I+$, Xi) 2 0 are assumed to be independent draws from a common 
. . . . . 
joint distribution Fwx. If we think of the pairs (w,Xi) as the weights and values, 

respectively, of a collection of n objects, then this problem can be thought of as 

finding the collection of objects of maximum value which will fit in a “knapsack” 

with weight capacity 1. 

Our main result, Theorem 2.4, computes the asymptotic value of the random 

variables I$, with increasing n, for a very large class of joint distributions Fwx. 

Frieze and Clarke [2] computed the asymptotic value of this random knapsack 

problem for a particular F,, (where Wand X are mutually independent and both 

uniformly distributed on the interval (0,l)) as part of their analysis of approxima- 

tion algorithms for the deterministic knapsack problem. In a related paper, Meante, 

Rinnooy Kan, Stougie, and Vercellis [3] analyze a random knapsack problem in 

which the knapsack capacity grows in proportion to the number n of items. Under 

this assumption, v,/n converges. Among their results, Meante et al. compute this 

limit. In contrast, when the knapsack capacity is fixed the growth rate of V, 
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depends on the joint distribution of weights and values. This dependence is our main 
interest here. 

In Section 2 we state and prove our main result (Theorem 2.4) characterizing the 
asymptotic value of V,. In Section 3 we present some examples. In one of them 
(Example 3.2) we apply Theorem 2.4 to a multiconstraint knapsack problem of 
Frieze and Clarke [2] to obtain a new asymptotic upper bound for the value of this 
problem. In fact, our upper bound turns out to be the asymptotic value (Schilling 
[4]). We also consider a class of examples in which weight and value are functionally 
related. 

2. Results 

We define V, as in (1.1). Our goal is to compute the asymptotic value of V, as 
n -+ 00. We shall assume that the common joint distribution F,x of the pairs 
(IV, X) satisfies: 

W> 0 and 0 <X< 1, the random variable X/W is absolutely con- 
tinuous, and its density fx,w(t) is positive for all sufficiently 
large t. (Al) 

Remark. The main point of (Al) is to require that X/W be unbounded. Indeed, if 
X/W5 t for some t, then Vn5 t; V, is uniformly bounded. On the other hand, 
using (Al) it is easy to show that V, + 03. This is important to our analysis because 
it will allow us to use the “greedy” heuristic to approximate V, (see the end of the 
proof of Theorem 2.4). We shall also require a “regularity” assumption (A2), which 
we postpone stating until after Lemma 2.1 when we will have had a chance to 
motivate it. 

Definitions. Let (Z,) be a sequence of random variables, and (x,) a sequence of 
numbers. We write Z, -x,, to mean that P(x,(l -o(l))<Z,~x,(l+o(l)))+ 1 as 
12 + 00. As usual, o(1) denotes a sequence that converges to 0 as n --f 03. This is the 
standard notion of “almost everywhere” for random combinatorics (as in Bollobas 

tll, e.g.>. 

For t>O, let F(t) = E(W. lix,wztl), and G(t) = E(X. llx,wzrl). 
Our analysis begins by collecting some simple facts about the functions F and G. 

Lemma 2.1. (i) For all sufficiently large t, F(t) and G(t) are continuous and 

monotone decreasing, and lim,, o. F(t) = lim,, Q, G(t) = 0. 

(ii) F-‘(t) exists for all suf$ciently smaN positive t, and lim,,,+ F-‘(t) = 00. 

(iii) Go F-‘(t) is monotone increasing on some interval (O,E), and 
lim,,,+ GoF-‘(t)=O. 

(iv) lim,,,+ (GoF-‘(t))/t=w 
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Proof. From assumption (Al) we can see that P(X/Wr t) decreases monotonically 
to 0 as t -+ 03. (i) follows almost at once, then (ii) follows from (i), and (iii) from 
(i) and (ii). To prove (iv), note that 

G(u) = E(X. 1{,,,,1)2E(uW. l{,,,,l) = uF(u). 

Let u =F-l(t); then we have 

GoF-‘(t)zF-‘(t)t, 

i.e., 

t 

0 

In 

(i) all F(t,)> > 
(ii) n 03, --$I nF(u,) 1. 

As --f t,(l nF(t,,))‘+ and - 00. 
As G(t,J/(GoF-‘(l/n))-,1 G(u,)/(GoF-‘(l/n))-+ 

Proof. that, all by 2.l(ii), all large 
F-‘((l/n)(l+~)).~~>l/e. Let N,=min{n:F-‘((l/n)(l+s))~&2>1/&}. Now 
NC-too as E-O+, so there exists a sequence (S,) of positive numbers such that 
a,-+0 as n+w, and N,,<N,,<N,,<.=+. Finally, let 

1, if n<N6,, 

6 1, E, = 
if N8,_(n<Nd,, 

829 if N,,Sn<N6,, 

etc. 

Now it is easy to check that E, -to and F-‘((l/n)(l +a,)). E:+ 00 as n--f 03. Final- 
ly, let t,, = F-‘((l/n)(l + E,)). The parts of (i)-(iii) having to do with t follow easily. 
To verify the t-part of (iv), we require a sublemma. 

Sublemma 2.3. Suppose that H is a nonnegative, concave function on [0, E], and 
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H(O)=O. Then if a>1 and axE[O,c], then H(ax)/H(x)<a. If O<a<l, then 
H(ax)/H(x) > a. 

Suppose a> 1, then ax>x, and because of the concavity of H we have 

H(ax) -H(x) < H(x) 
-. 

ax-x X 

Therefore, 

H(ax) H(ax) - H(x) x 
-= l+(a-1). 
H(x) 

.-<l+(a-l)=a. 
ax-x H(x) 

The second assertion follows since 0 <a< 1 implies 

H(x) - H(ax) < H(ax) 

x-ax ax ’ 

Now apply Sublemma 2.3 with H=GoF’, x= l/n, and a= 1 +E,. We have, for 
all large enough n, 

G&J 
GoF-‘(l/n) = 

GoF-‘(UMl + 0 < 1 

GoF-‘(l/n) 
+E 

?I’ 

On the other hand, since GoF-’ is increasing, 

GoF-‘((l/n)(l +E,)) > 1 

GoF-‘(l/n) - ’ 

and the t-part of (iv) follows. The u-parts of Lemma 2.2 are proved by replacing 
1 + E everywhere by 1 -E. q 

We now state and prove our main result: 

Theorem 2.4. Vn-n. GoF-‘(l/n), where V, is as defined as in (1.1). 

Proof. For t>O let 

R?(l) = f wl:* l{,,,Vq:,,), 
i=I 

Now is easy to E(wn(t))=nF(t) and 

and X/Wrt l/t 

= nF(t)/t. 
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Let (t,) be as in Lemma 2.2. We have 

P&Q,)< 1) = P(?Q&)-E(lQt,))< 1 -nF(t,)) 

W4,) 
5 t,(l - nF(tn))2 

(by Chebyshev’s inequality). 

Thus, by Lemma 2.2, P(wn(tn)< l)-rO as n-+ co. By a symmetrical argument, 
P(@n(~,)>l)+O as n-tm. Hence 

P(bQt,) 2 12 IJ$(z4J) -+ 1 as n --f co. (2.1) 

Next recall the greedy algorithm for problem (1.1). Order the pairs (M$,X,) so 
that Xo~/~~1~~X~2~/W~2,~ ... ?.Xcnj/W&). If we let Vi denote the value obtained in 
(1.1) by the greedy algorithm, then f$‘=Xo, + .*. +J&, where k is the greatest 
number among 1, . . . , n such that FQ + ... + W&I 1. In particular if tin(t)2 12 

F&(u), then xfl(t) I Vi zJfn(u). Thus from (2.1) we have 

P(~~(t,)2V,‘1~~(u,))~l as n-+a. (2.2) 

Finally compute, 

~(%z(t,)) = nG(t,), 

Var($&)) 5 nE(X2. ~(x/w~~,}) 

5 nE(X. lIX,Wrl,)) since X< 1 

= flG(t,), 

so Var((zn(t,))/(nG(t,J)) = l/nG(t,). Now by Lemma 2.l(iv), as n + 03, 
nGoF-‘(l/n)+ 00, so by Lemma 2.2(iv), nG(t,) * 03. Thus by Chebyshev’s in- 
equality, zn(t,)-nG(t,). By another use of Lemma 2.2(iv), we have zn(t,,) - 

nGo F-‘(l/n). By a symmetric argument, applied to u,, it can be shown that 
xn(u,)--nGoF-‘(l/n). Thus, by (2.2), V;-nGoF-‘(l/n). But it is well known 
that V, % V, 5 VL+ 1; therefore V, - nGo F-‘(l/n), which completes the proof of 
Theorem 2.4. 0 

3. Examples 

Example 3.1 (Frieze and Clarke [2]). Consider the knapsack problem (1.1) where 
W and X are mutually independent and both distributed uniformly of the interval 
(0,l). For tz 1, we have 

1 

and 

F(t) = E(W. l{x,w+) = 
{(w,x) E (0, l)? x2 rw} 

wdwdx=6t,, 

1 
G(t) = EW* l{x/w>r~) = 

{(WJ) E (0, I)? xstw} 
xdwdx=3t. 
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Therefore, by Theorem 2.4, V, - nG~F~‘(l/n) = l/?%?. This duplicates a result 
originally obtained in Frieze and Clarke [2]. 

Example 3.2 (Frieze and Clarke [2]). Consider the m-dimensional knapsack 
problem 

V, = max i XjSj, 
j=l 

subject to i II$j6jS 1 
j=l 

(3.1) 

for i= 1,2 ,..., m, sjE{O,l}. 

The wj and Xi are assumed to be mutually independent, and all uniformly 
distributed on the interval (0,l). This problem may be compared to two related one- 
dimensional problems: 

_V, = max i XjSj, 
j=l 

subject to i wj6jS1, dj~{O,l), 
j=l 

where ~j=max{W’ij, Wzj, . . . . Wmj} for j= 1,2, . . . . n and 

Vn = max i XjSj, 
j==l 

subject to i E$&j~l, aj~(O,l}, 
j=l 

where 

I+ 
W,j$ W2j+ ‘.’ + Wmj 

forj= 1,2 ,..., n. 
m 

(3.2) 

(3.3) 

It is not hard to see that we have _V, 5 V, 5 vn. A series of computations, along with 
Theorem 2.4, show that 

and E-(m+ l)(&)l’(mil). 

Hence 

(3 -4) 

as n-co. 
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The lower bound in (3.4) duplicates a result in Frieze and 
bound in (3.4) is, so far as we know, new. Furthermore, it 
shown in Schilling [4] that 
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Clarke [2]. The upper 
is sharp. Indeed, it is 

Our third example relates the shape of the joint density of Wand X near the x-axis 
to the growth rate of the value of the knapsack. 

Example 3.3. Suppose that for some .s>O, f&,(w,x) =cN~‘x~~ on the set 
{(x, PV):X/W>E}. Then, for t>c, 

G(t) = 
.i.i’ 

xmvp1xp2 dw dx 
{(W,X):X/W>f} 

CY 

= (pi + l)(& +p2 + 3pP1+1’ 

F(t) = 
!Ic 

mvwp’x~z dw dx 
{(W,X):X/WZt} 

a 

= (P,+2)(P,+p,+3)tP1+*’ 

Thus, by Theorem 2.4, 

~/,-nGc@ L 
0 n 

= “(P,+;2+3)I/u3’+2)( (P’+2~~~1’/‘“1+“)(~~o,+I)/(dl+2) 

= (PI +2)W1+W1+2) 

( &+I )(p,+;+3)li(B1+2)* 

The hypotheses of Theorem 2.4 do not require that W and X be jointly con- 
tinuous, only that X/W be a continuous random variable. When weight and value 
are related in a deterministic fashion, Fwx may be singular with respect to 
Lebesgue measure on (0, 1)2, but X/W still nonetheless continuous. Our final ex- 
ample is such a case. 

Example 3.4. Consider the problem 

V, = max i XjSi, 
i=l 

subject to t Xi’SiSl, 6iE(O,l), 
i=l 

where CZ> 1, and each Xi is uniform on the interval (0,l). 

(3.5) 
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Then 

1 
F(t) = E(Xa. l{xad>t)) = --J((@+‘)‘(ap’)), 

G(t) = E(X. lixc+tI) = t@‘@-‘)) 

SO, by Theorem 2.4, 

v, -+(a+ 1) w@+ IN,Ka- IMa+ 1)) 
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