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We consider the problem of optimally filling a knapsack of fixed capacity by choosing from
among a collection of n objects of randomly determined weight and value. Under very mild condi-
tions on the common joint distribution of weight and value, we determine the asymptotic value
of the optimal knapsack, for large n.

1. Introduction

The random version of the classical single-constraint, 0-1 linear programming
problem is given by

V,=max }, X;d;,

I [vj:

(1.1)
subject to Z W.6;<1, 6;€{0,1},
i=1
where the pairs (W, X;)=0 are assumed to be independent draws from a common
joint distribution Fy . If we think of the pairs (W}, X;) as the weights and values,

. is . PRI nd o - .

respectively, of a collection of n objects, then this problem can be thought of as

findin t e collection of objects of maximum value which will fit in a ‘‘knapsack’’
with weight capacity 1.

Our main result, Theorem 2.4, computes the asymptotic value of the random
variables V,, with increasing n, for a very large class of joint distributions Fy .

Frieze and Clarke [2] computed the asymptotic value of this random knapsack
problem for a particular Fyy (where W and X are mutually independent and both
uniformly distributed on the interval (0, 1)) as part of their analysis of approxima-
tion algorithms for the deterministic knapsack problem. In a related paper, Meante,
Rinnooy Kan, Stougie, and Vercellis [3] analyze a random knapsack problem in
which the knapsack capacity grows in proportion to the number 7 of items. Under
M
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limit. In contrast, when the knapsack capacity is fixed the growth rate of ¥,
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depends on the joint distribution of weights and values. This dependence is our main
interest here.

In Section 2 we state and prove our main result (Theorem 2.4) characterizing the
asymptotic value of V. In Section 3 we present some examples. In one of them
(Example 3.2) we apply Theorem 2.4 to a multiconstraint knapsack problem of
Frieze and Clarke [2] to obtain a new asymptotic upper bound for the value of this
problem. In fact, our upper bound turns out to be the asymptotic value (Schilling
[4]). We also consider a class of examples in which weight and value are functionally
related.

2. Results

We define V, as in (1.1). Our goal is to compute the asymptotic value of ¥, as
n—o. We shall assume that the common joint distribution Fyx of the pairs
(W, X) satisfies:

W >0 and 0< X <1, the random variable X/W is absolutely con-
tinuous, and its density fy, (¢) is positive for all sufficiently
large 7. (AD)

Remark. The main point of (A1) is to require that X/W be unbounded. Indeed, if
X/W=t for some ¢, then V,<t; V, is uniformly bounded. On the other hand,
using (A1) it is easy to show that ¥, — o. This is important to our analysis because
it will allow us to use the ‘‘greedy’’ heuristic to approximate ¥, (see the end of the
proof of Theorem 2.4). We shall also require a “‘regularity’’ assumption (A2), which
we postpone stating until after Lemma 2.1 when we will have had a chance to
motivate it.

Definitions. Let (Z,) be a sequence of random variables, and (x,) a sequence of
numbers. We write Z,~x, to mean that P(x,(1-o(1))sZ,<x,(1+0(1)))—>1 as
n— oo, As usual, o(1) denotes a sequence that converges to 0 as n — c. This is the
standard notion of *‘almost everywhere’’ for random combinatorics (as in Bollobas

(1], e.g.).

For >0, let F(t) = E(W‘ I{X/Wat}), and G(t) = E(X' l{X/WZt})'
Our analysis begins by collecting some simple facts about the functions F and G.

Lemma 2.1. (i) For all sufficiently large t, F(t) and G(t) are continuous and
monotone decreasing, and lim,_, ,, F(f)=lim, ., , G()=0.

(i) F 1) exists for all sufficiently small positive t, and lim, _, o F~'(f) = oo.

(iiiy GoF~Y(t) is monotone increasing on some interval (0,¢), and
lim, , o+ GoF1(£)=0.

(iv) lim,_, o+ (Go F~Y(£))/t = .
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Proof. From assumption (Al) we can see that P(X/W =) decreases monotonically
to 0 as — o, (i) follows almost at once, then (ii) follows from (i), and (iii) from
(1) and (ii). To prove (iv), note that

Gu)=EX-lxweu))ZEW@W - 1 x> yy) = uF (u).
Let u=F"'(r); then we have
GoF '()=F (1,

i.e.,

o -1
G O,

and so (iv) follows from (i). O

In light of (iii), we let GoF~!(0)=0. Thus GoF~! is continuous at 0, increasing
to the right of 0, and has infinite derivative at 0. Any reasonable function with these
properties will be concave (i.e., lie above its chords) on some interval [0, €].

We shall assume from here on

for some £>0, GoF ! is concave on the interval [0, €]. (A2)

Assumption (A2) is required for our proof of the following technical lemma.

Lemma 2.2. There exist sequences (t,), (u,) of positive numbers with the following
properties:

() For all n, F(t,)>1/n>F(u,).
(iiy As n— oo, nF(t,)—1 and nF(u,)— 1.
(iii) As n— oo, 1,(1 —nF(t,,))Z—> o and u,(1 —nF(u,))*— .
(iv) As n— oo, G(t,)/(GoF~'(1/n)) - 1 and G(u,)/(GoF~'(1/n)) - 1.

Proof. Note that, for all €>0, by Lemma 2.1(ii), for all sufficiently large n,
F Y (1/n)(1+e)-e?>1/e. Let N,=min{n: F-((1/n)(1+¢))-e2>1/¢}. Now
N,— o as €07, so there exists a sequence (J,) of positive numbers such that
0,0 as n—> o, and Ns <N; <N <---. Finally, let

1, if n< Ny,

o1, if N5 =n<Ng,
0y, if N5, <n<Nj,
etc.

&y =

Now it is easy to check that g, — 0 and F~((1/n)(1 +&,))- sﬁ—» o as 7 — oo. Final-
ly, let ,=F~'((1/n)(1 +¢&,)). The parts of (i)-(iii) having to do with ¢ follow easily.
To verify the ¢-part of (iv), we require a sublemma.

Sublemma 2.3. Suppose that H is a nonnegative, concave function on [0,¢€], and
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H()=0. Then if a>1 and axel0,¢], then H(ax)/H(x)<a. If 0<a<]1, then
Hax)/H(x)>a.

Suppose a> 1, then ax>x, and because of the concavity of H we have

H{ax)—-H(x) < H(x)

ax—x X
Therefore,
H (ax) =1+@-1)- H(ax) - H(x) . <l+(@—1)=a.
H(x) ax—x H(x)

The second assertion follows since 0<a <1 implies

H(x)— H(ax) < Hax)
X—ax ax

Now apply Sublemma 2.3 with H=GoF ', x=1/n, and a=1+¢,. We have, for
all large enough n,
G(t,)  GoF '(1I/m( +¢,)
GoF'(1/n)  GoF Y (1/n)

<l+eg,.

On the other hand, since GoF ™! is increasing,
GoF ' ((1/n)1+¢€,) o1
GoF~'(1/n) -

and the #-part of (iv) follows. The u-parts of Lemma 2.2 are proved by replacing
1+¢& everywhere by 1 -¢. O

We now state and prove our main result:
Theorem 2.4. V,~n- GoF~'(1/n), where V,, is as defined as in (1.1).

Proof. For >0 let
n
W)= ¥ Wi Lix msn

i=1

n
X = Zl Xi Lix w=n
=

Now it is easy to compute E(W,(t))=nF(t) and
Var(W, (1) < nE(W? - 1y xw=4)

s(M/DEW - 1ixw=n)
since X< 1 and X/W=¢ imply W=1/t

=nF()/t.
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Let (z,) be as in Lemma 2.2. We have
P(W,(t,)<1) = P(W,(1,) = E(W,(1,)) <1~ nF(1,))

nk(t,)

<=———— (by Chebyshev’s inequaiity).
LA-nF@) ety

Thus, by Lemma 2.2, P(W,(¢,)<1)—>0 as n—>o. By a symmetrical argument,
P(W,(u,)>1)—0 as n- . Hence
PW,(t)=1=W,(u,))—>1 asn- . 2.1)

Next recall the greedy algorithm for problem (1.1). Order the pairs (W}, X;) so
that X,/ Wy, = Xo)/ Wy = - = X,/ W,y If we let V)] denote the value obtained in
(1.1) by the greedy algorithm, then V,/=X+ -+ Xy,, where k is the greatest
number among 1,...,n such that W)+ -+ W, <1. In particular if W,($)=1=
W, (u), then X, ()= V=X, (u). Thus from (2.1) we have

PX,(t,)=2V, =X, ()~ 1 asn— . 2.2)

E(X,(t,) = nG(1,),
Var(X,(1,)) < nE(X* Vix,w=1y)

= 2 (Y
= rne\Aa

(e}
[¢]

Lxywsy,y) sin
=nG(t,),

so  Var((X,(t,))/(nG(t,) =1/nG(t,). Now by Lemma 2.1(iv), as n-» oo,
nGoF~'(1/n) = o, so by Lemma 2.2(iv), nG(t,) - o. Thus by Chebyshev’s in-
equality, X,(¢,)~nG(t,). By another use of Lemma 2.2(iv), we have X,(¢,)~
nGoF~!(1/n). By a symmetric argument, applied to u,, it can be shown that
X, (u,)~nGoF~'(1/n). Thus, by (2.2), ¥/ ~nGoF~'(1/n). But it is well known
that ¥, <V,<V,+1; therefore V,~nGoF (1/n), which completes the proof of
Theorem 2.4. [J

3. Examples

Example 3.1 (Frieze and Clarke [2]). Consider the knapsack problem (1.1) where
W and X are mutually independent and both distributed uniformly of the interval
(0,1). For t=1, we have

1
Fity=EW -l x,w ‘)=“ wdwdx = —,
j{(w,x)e(o,l)z:xzrw}

and

1
G(t)=E(X'1{X/W2t}):§ Xde.X:;.

{(w,x) € (0, )% x= 1w}
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Therefore, by Theorem 2.4, V,~nGoF ’l(l/n)=]/2n/3. This duplicates a result
originally obtained in Frieze and Clarke [2].

Example 3.2 (Frieze and Clarke [2]). Consider the m-dimensional knapsack
problem

n
V,=max }, X;d;,
=1

subject to Y, Wj;d;<1 (3.1
j=1

fori=1,2,...,m, d;€{0,1}.

The W, and X; are assumed to be mutually independent, and all uniformly
distributed on the interval (0, 1). This problem may be compared to two related one-
dimensional problems:

14 o J Y
. (.2)
subject to Y, W;d,<1, 6;€{0,1},
=
where Wj=max{W1j, Wajseees Wy} for j=1,2,...,n and
h
V,=max ¥, X;d;,
a (3.3)

n
subject to Y, W;8;=<1, d;€{0,1},
i

where
Wi+ Wot o+ Wy
m

W, = for j=1,2,...,n.

It is not hard to see that we have V,, <V, <V,. A series of computations, along with
Theorem 2.4, show that

m+1D"n \1/(m+1) _ n 1/(m+1)
Yn~<~(—)—> and V,l~(m+l)<——> .

m™(m+2) (m+2)!
Hence
(m+ DM \1/0m+1)
P<<_——m’"(m+2)> (1-o(1) =<V,
n —2 N " o)) - 1 (3.4)
< — A
<(m+ )((m+2)!) 1+ o )))

as n-— oo,
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The lower bound in (3.4) duplicates a result in Frieze and Clarke

bound in (3.4) is, so far as we know, new. Furthermor

shown in Schilling [4] that

(¢

V,~(m+ 1) ————
n )( (m+2)! )
Our third example relates the shape of the joint density of W and X near the x-axis
to the growth rate of the value of the knapsack.

Example 3.3. Suppose that for some &£>0, fyx(w,x)=awfx? on the set

J{y wY v/wSsel Tha for t>¢
AWy Ve AT WY~ G, Au\.u, 1Vl L~ Gy

G = W xawP x P dw dx
{(w x): x/w=t}
_ o
(Bi+ D(By +fy +3)e /171
oo H‘ B: B 3 s
r{)= aww”ix” dw dx

U {w,x): x/w=t}

Ie4
124

(BB + Byt AT
Thus, by Theorem 2.4,

V,~nGoF~ 1( \
\n/

(@ \VED /(B + 2)Bi+ DA *2)\/1\@’1 +DAB+2)
\+.32+3/ \ pr+1 J\n/
/(B +2)(B1+1)/(ﬁ1+2)\/ an \1/1+2)

\ a1 Np+mr3s)

Il
3

J
tinuous, only that X/W be a continuous random variable. When weigh
are related in a deterministic fashion, Fy may be singular with respect to

Lebesgue measure on (0,1)%, but X/W still nonetheless continuous. Our final ex-
ample is such a case.
Example 3.4. Consider the problem
n
V,=max Y, X;J;,

i=1

o~
W
wn
S’

n

subject to Y X%d;<1, §;€{0,1},

i=1

where ¢>1, and each X; is uniform on the interval (0, 1).
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Then

1
a+1

G(t) = E(X‘ l{Xalet}) = [(2/(‘1”1))

F(t)=EX“ lxei5y) = (e D1

so, by Theorem 2.4,
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