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1. Introduction 

Consider a linear control system w~th a transfer 
function or state space description parametenzed 
in terms of a vector of uncertain parameters q ~ R e. 
A fundamental problem addressed m a large num- 
ber of papers is: Determine the maximum uncer- 
tainty bound, call it rm~,, such that the system is 
stable for all q ~ Re with I[ q II < rrn~,' Note that 
the chosen norm for q is almost always d 2 or d °° 
and rm~ x is generally called the robustness margin; 
see Section 2 for a precise definition. 

In many cases, a shghtly different formulation 
of the problem above is considered; i.e., gtven an 
uncertainty bound r > 0, determine if the system 
is stable for all q ~ R e with II q II < r. In this case, 
only a 'yes '  or ' no '  answer is required. In the 

sequel, all analysis is carried out m the robustness 
margin framework but it should be noted that the 
consequences apply equally well to this alternative 
ye s /no  formulation; e.g., see the discussion asso- 
ciated with the example in Section 3. 

The simple paradigms above are at the heart of 
many robust stability analysis techmques; e.g., see 
the literature ranging f rom real /1 as in Doyle [1] 
and Packard [2] to the post-Khari tonov [3] litera- 
ture (see Barmish [4] and Jury [5] for reviews of 
the continuous-time and discrete-time cases re- 
spectively), to polytope stability problems as m 
Bartlett, Hollot and Huang [6] and to the theory 
dealing with frequency sweeping methods; e.g., see 
de Gaston and Safonov [7], Biernackl, Hwang and 
Bhattacharryya [8], Hinrichsen and Pritchard [9] 
and Barmish [10]. 

Our main techmcal objective in this paper is to 
demonstrate that the robustness margin rm~ is not 

necessartly continuous with respect to the problem 
data; the notion of problem data will be fully 
explained in the sequel. This discontinuity phe- 
nomenon is seen to be independent of the compu- 
tational algorithm used to actually calculate rma x- 
Matters are further complicated by the fact that at 
the point of discontinuity in the space of problem 
data, the robustness margin may be much smaller 
than at neighboring points. This may lead to 
potentially deceptive conclusions. 

We feel that the most important  imphcatlon of 
the present paper  is that there is a serious issue 
pertaimng to conditioning properties of the 
robustness margin Despite the possibility that 
discontinuity of this margin may be nongeneric, in 
regions close to the discontinuity set, ill condition- 
ing of rm~ , must nevertheless be addressed. There- 
fore, our conclusion is that a thorough analysis of 
conditioning properties of the robust stability 
problem is an important  area for future research. 

The case which we make for discontmuity of 
the robustness margin is based on a simple exam- 
ple of a unity feedback system - the plant has 
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uncertain parameters  entering hnearly into numer-  
ator and denormnator  coeffioents.  We call this a 
hnear uncertainty structure. Using d to represent 
the data describing the system, the robustness 
margin is written explicitly as rm~,(d ) and we 
prove the following: There exasts a sequence of  
data (d(n) )~= 1 converging to some d *  such that 

lim rm,x(d(n)) > rrn~x(d* ) 
~ ---* oo 

That  is, ff one solves the sequence of robustness 
margins problems corresponding to d(n), the 
margins rma,(d(n)) may differ considerably f rom 
rm~,(d* ) This happens even as the data  d(n) gets 
arbitrarily close to d* .  

For  the s~mple case of  linear uncertainty struc- 
tures as m Section 3, ~t is felt that it should be 
possible to perform some sort of  a p n o n  check for 
dlscont inmty However,  the fact that the discon- 
t lnmty phenomenon  occurs at the level of linear 
uncertainty structures serves as a 'warn ing '  that 
care must be exerosed when dealing with more  
complicated nonlinear problems. This is consistent 
with the example mvohang  a nonhnear  uncer- 
tainty structure m the paper by Ackermann,  H u  
and Kaesbauer  [11] - severe computaUonal  prob- 
lems arase arise as a certain data  parameter  ~s 

changed 

2. Notation and definition of the robustness margin 

We consider polynomials  with real coefficients 
a, which depend continuously on a vector of un- 
certam parameters q ~ R e whose t-th componen t  is 
q, To denote the dependence of  a, on  q, we write 
a , (q) .  Hence, we take an uncertain polynomtal to 
be of  the form 

m - 1  

p(s ,  q ) = s m +  Y'~ a,(q)s ' .  
1 = 0  

In Section 3, a,(q) is affme linear and in Section 
4, a , (q )  is multlhnear.  When  q = 0, we obtain  the 
so-called nominal polynomial p(s, 0), wluch is as- 
sumed to be strictly stable; i.e., its roots lie in the 
open left half  plane. 

A boundmg set for the vector of uncertain 
parameters q will be a box parametenzed  by  its 
radius r; this box Is denoted as Qr and is de- 
scribed by 

0 r -  ( q  ~ R I :  IIq, l[ < r ;  z = l , 2  . . . .  l )_  

Note  that the discussion to follow can easily be 
adapted to handle the case when Qr is a sphere; 
1 e., the discontinuity phenomenon  is not  particu- 
lar to the E~ no rm on uncertain parameters.  In 
addition, dlscontlnuittes can occur when working 
with many  other s tablhty regtons besides the open 
left half plane the unit disk being a prime 
example. 

Robustness margin In accordance with the discus- 
sion m Section 1, the robustness margm (for stabil- 
Ity) is given by  

rm~ ~ -" sup ( r:  p (s ,  q ) ts strictly stable 

for all q ~ Qr }- 

Dependence on problem data. In  each of the exam- 
ples to follow, the integers 

l = d i m q  and m = d e g p ( s ,  q)  

are held fixed and problem data consists of the 
coefficient functions a 0 ( ) ,  al( ) . . . .  a,~ l( ) 
To illustrate the discontinuity phenomenon,  we 
use a f lmte-dlmenslonal  space for this problem 
data. That  is, each a , ( - )  is viewed as a mapping  
on data vectors d @ R e to continuous functions of 
q For  example, a famtly of problems imght be 
described by p = 6, 1=  2, m = 2 and 

p(s ,  q) = s e + (d  1 + d2q I + d3q2)s 

+ ( d  4 + dsql + d6q2 ) 

A spectfic robustness margin problem is obtained 
with d 1 = 2, d e = 1, d 3 = 4,  d 4 = 3, d 5 = 6 and 
d 6 = 12. This leads to 

p(s ,  q) = s 2 + (2 + qa + 4q2)s  + (3 + 6ql + 12q2 )_ 

W~thin this data  space framework, two problems 
are deemed to be 'close together'  if their associ- 
ated data  vectors (call them d I and d 2) are close 
together in some arbi trary but  fixed norm o n  R P ;  

i.e., II d l -  d2 {I is small. 
To denote  dependence on d, we henceforth 

wnte  pd(S, q) and rmax(d ) in heu of p(s, q) and 
rma ~ respectively We are now prepared to present 
our  main example. 

3. Example establishing discontinuity of the robust- 
ness margin 

Before formally proceeding, it is impor tant  to 
note  that it ~s easy to construct  relatively trivial 
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examples for which discontinuity of rm~ , can easily 
be demonstrated. Such examples involve cases 
when there is only one uncertain parameter,  cases 
when the uncertainty structure is highly nonlinear, 
cases when the limiting polynormal pd.(S, q) is 
only marginally stable and cases when pd.(S, q) 
lS structurally different from pd(,)(S, q), e.g, 
Pal* (S, q) has lower degree or a smaller number of 
uncerta_mtxes than pd.(S, q). In contrast, the ex- 
ample below is simple yet nontrivial. 

Indeed, consider a unity feedback system with 
open loop transfer function denoted by 

( s , q )  
Pd(s, q )=  Kd--~dd(S, q) 

where Nd(s, q) and Dd(S, q) are uncertain poly- 
nomials and K d is the loop gain. The subscript 
' d '  is used to emphasize dependence on the data. 
In this example, l = 2 ,  r n = 4  and with d = d * ,  
consider 

gd .  = a ,  

Na.(s ,  q) = 4a + lOaqa, 

and 

Dd. (s,  q) = s 4 + (20 -- 20q2)s 3 

+ (44  + 2a + 10ql -- 40q2)s 2 

+ (20  + 8a + 20aql -- 20q2)s + a 2, 

where 

a -  3 + 2x/-2. 

Using our data notation, we wnte 

K d = do, 

N a ( s , q ) = d  l+d2qa, 

Now, we consider the data sequence (d(n)).~=l 
descnbed by 

d , ( n )  = (d,* for i 4 :0 ,  

a n for t = 0, 

where 

a n - a - 1 / n .  

This sequence corresponds to the case where the 
plant data is fixed and the gain a n is converging 
to a. 

Robustness margin. In order to obtain the robust- 
ness margin along the d(n) sequence for the 
feedback system above, we study the closed loop 
polynomial 

Pd(.)( s, q ) =  Ka(.)Na(.)(s, q )+  Dd~.)(s, q) 

= s 4 + (20--  20q2)s 3 

+ (44 + 2a + 10ql -- 40q2)s 2 

+ (20 + 8a + 20aql -- 20qE)s 

+ a ( 5 a - 4 + l O ( a - 1 ) q l )  (1) 

and for the llrntting case, we study the closed loop 
polynormal 

pd*(S, q ) = a N a . ( s ,  q) + Dd.(S, q) 

= s  4 + (20--  20q2)s 3 

+ (44  + 2a  + 10ql -- 40q2)s 2 

+ (20 + 8a + 20aql -- 20q2)s 

+ ( 5 a  2 + 10a2ql). (2) 

and 

Dd(S, q) = $ 4  "} - (d  3 +d4q2)s 3 

+ (d  5 + d6q 1 + dTq2)s 2 

+ (d8 + d9q 1 + dloqE)s +dll .  

By comparing the expressions for Kd., Nd. (s, q) 
and Dd.(S, q) with Ka, Nd(S , q) and Dd(S, q), 
respectively, it is clear that the d,* are readily 
available, e.g., do* = a, dl* = 4a,  dE* = 10a, d3* 
= 20, etc. 

Discontinuity claim (see next subsection for proof). 
We claim that 

0.417 = lim rmax(d(n)) > rmax(d* ) =0.234.  
?/--- '~ O O  

That is, we claim that the robustness margin ts 
dtscontmuous at the data point d *. In fact, for this 
example, along the data sequence (d(n))n~°=l, the 
robustness margin is given by 

lim rmax(d(n)) = 1 - ~ a  = 0.417 
n ---~ o o  
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However, precisely at d* ,  the robustness margin 
becomes 

7 - a  
rm,x(d* ) = ~ = 0 234. 

This example dhistrates the ' false sense of secur- 
ity' associated with the robustness margin. To 
further elaborate, if q~* = q2*--0 234, two of  the 
roots of the closed loop polynomial  pdt,)(S, q*)  
approach the imaginary axis as n ---, o¢. That  is, 
pd~)(S, q*)  is 'near ly '  destabilized by an uncer- 
tainty vector q* whose norm is 0.234 despite the 
fact that the predicted margin is approximately 
0 417 

P roo |  o |  claim. Along the data sequence, we ex- 
amine the closed loop polynomial  pa~,)(s, q) given 
by (1). Then, to obtain the robustness margin, we 
use the fact that the leading manors of  the Hurw~tz 
testing matrix must  be positwe. This leads to the 
following four conditions: 
Condttton 1 : 

(20 - 20q2 ) > 0 

Condttton 2. 

(20 - 20q2)(44 + 2a  + 10q, - 40q2 ) 

- (20 + 8a + 20aq 1 - 20q2) > 0. 

Condttton 3 

(20 - 20q2)(44 + 2a  + a0ql - 40q2 ) 

(20 + 8a + 20aql - 20qz) 

- ( 2 0  2 0 q z ) 2 ( 5 a 2 - 4  + l O a ( a - -  n a 1 ) q l )  

- (20 + 84 + 204ql - 20q2) 2 > 0. 

Condttton 4: 

(1t 5a 2 - - 4 a + l O a  a -  > 0 .  
n n ql 

Note  that rmax(d(n)) is the supremal value of r 
such that the four lnequafitles above hold for all 
q ~ Q r That  is, letting 

r, ( d ( n ) )  = sup { r. Condi t ion i holds 

for all q ~ Q r }, 

it follows that 

rmax(d(n) )= rain ( r , ( d ( n ) ) } .  
r = l ,  _ , 4  

The remainder  of the proof  will proceed via a 
number  of  steps 

Step 1" We claim that  

a 
hm r3 (d (n ) )  = 1 - - ~  --- 0.417 

t / ~ o o  

To prove this clmm, it is first verified that 
Condi t ion  3 is equivalent to 

214v~ - 20 + lOvCaq, + 20q2] 2 

• (20 - 2a  - 20q2 ) 

1 
+ - a ( 4  + 1 0 q l ) ( 2 0 -  20q2) 2 > 0. 

n 

Now, to obtaan the quant i ty  l x m , ~ r 3 ( d ( n ) ) ,  we 
rewrite the inequahty  above as 

2F~(q)Fz (q )  + G~(q) > 0 

where 

V, (q )  = [4~/-a-  20 + 10~/Sq, + 20q2] 2, 

Fz(q)  = (20 - 2a  - 20q2),  

and 

1 a ( 4  + 10q l ) (20  - 20q2) 2 G , ( q )  = n 

To estabhsh the desired hrmt for r3(d(n)), we 
observe that if q2 = 1 - ~ a  and qa = - 0 4, then 

2Fl( q)F2( q)  + G,( q)  = O. 

That  is, for all n, 

r , ( d ( n ) )  <_ l -  ~ a .  

Furthermore,  ~t is also easy to verify that for 
arbitrarily small e > 0, there exasts an integer N, 
having the following property:  For  any fixed n > 
N~ and any uncer ta inty q ~ Q1-~/lo-~, 

2Fl( q)F2( q)  + G,( q)  > O. 

Hence, for n > N~, 

r3 (d (n ) )  > 1 - ~ a -  e 

F r o m  the two inequahUes involving r3(d(n)) 
above, we conclude that 

hm r3 (d (n ) )  = 1 - l~a. 

Hence, the claim is established 
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Step 2: We clatm that for n sufficiently large, 

r , (d(n) )  > r3(d(n))  (3) 

for t = 1, 2, 4. Indeed from Condition 1, it is 
trivial to see that 

r](d(n))=l. 

To verify (3) for r2(d(n)), we vaew the left hand 
side of Condmon 2 as a function of (ql, q2) It  
suffices to show that this function is positive on a 
box of radius r = 1 - ~ a .  To this end, notice that 
for arbitrary I q] I < r < 0.5 and q2 < r < 0.5, it is 
easy to verify that we have crude bounds 

(20 - 20q2)(44 + 2a + 10ql - 40q2 ) > 300 

and 

20 + 8a + 20aq] - 20q2 < 150. 

Therefore, the left hand side in Condition 2 re- 
mains positive as required. 

Finally, setting the left hand side of Condition 
4 to zero, it is straightforward to obtain the for- 
mula 

5na - 4 
r4(d(n))  = 1 0 ( h a -  1)" 

Hence, it ~s easy to see that 

lim r4(d(n))  = ½ 
I ]  " ~  0 0  

which tmplies that r4(d(n)) > rs(d(n)) for n suffi- 
ciently large. 

Step 3: We claam that 

lim rm~( d (n ) )  = 1 - ~ a  -- 0.417. 
r/----) oO 

This clann follows easily from Steps 1 and 2. That  
is, we have 

lim r m ~ ( d ( n ) ) =  hm r3(d(n))  
Pl.-.-~ o o  n ---~ o o  

= 1 - ~ a  - 0.417. 

Step 4: We claim that 

7 - a  
rm~ ( d * ) = -~ 0.234. 5 

Indeed, as in the d(n) analysis, we use the for- 
mula 

rmax(d*) = mm { r , ( d * ) }  (4) 
t ~ l ,  - , 4  

where r,(d*) is obtained from the i-th Hurwitz 
inequality at d *. Analogous to Steps 1-3,  we first 
analyze Condition 3 with n ---, oo. By a straightfor- 
ward computation,  it is easy to verify that Condi- 
tion 3 is equivalent to 

2 ( 4 v : a -  2 0 +  10Caq1 + 20q2) 2 

• ( 2 0 -  2 4 -  20q2 ) > 0. 

Now, we examine each factor separately and ob- 
tain the margin 

7 - a  
r3(d* ) = ~ = 0.234. 

Next, reasoning exactly as in Steps 2-3,  it is easy 
to venfy that 

r l ( d *  ) = 1 > r3 (d* ) ,  

r2(d* ) > r3( d* ), 

r 4 ( d * ) =  ½ > r3(d* ). 

Hence, from (4), we obtain 

7 - a  
rm~x(d* ) = r3(d* ) = ~ ---0.234. 

The proof of the claim is now complete. 

Y e s - N o  Problem. The dlscontinmty claim above 
can also be interpreted in terms of the y e s / n o  
problem formulation discussed in the Introduc- 
tion. To illustrate, consider a robust stability prob- 
lem with given uncertainty bound r = 0.3. Now, 
the following problem arises: When using d *, the 
answer to the robust stabihty question is " n o "  but 
taking d(n)  the answer is "yes" .  

Remarks. In practice, the robustness margin can 
be computed via a number  of methods. For exam- 
ple, instead of using a Hurwltz matrix as in the 
proof of the claim above, one can use the well- 
known frequency sweep method. That  is, letting 

rma~(d, 6 0 ) -  sup{r :  pd(j6o, q) *O 

for all q ~ Q, }, 

it then follows that 

rma~(d ) = inf rm~,(d , ~) .  
to 
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In our specific example, solution by frequency 
sweep method for n finite leads to 

r~ (d (n ) ,  ~) 

/ m a x ( C . ( ~ ) ,  D , ( ~ ) }  if ~ 4 : 0 ,  

= ~ 5na- 4 
l O - - ~  - - ~ )  If ~ = 0 ,  

where 

(2 -TO~-~-(-d-)a)Z(w2 - 1) - 0 4 , co( ) = 

D. (~0) = a(~2 - a)2 1 

and 

1 An(~O) =~4 --a(2--  1)6~2+a(a--  -if). 

In the hmitlng case, we obtmn 

t " ' 2 - 5  'i a 
max{ - - i - i f -  1 - ] ~ }  

r~a~(d*, ~ )  = f ~=~0, w *  C ,  

½ if ~ = 0 ,  

1(7  - a )  if ~ = v~- 

4. More complicated uncertainty structures 

Given the uncertmn polynomial pa(s, q), it is 
natural to wonder whether some simple apriori 
test for discontinuity of rmax(d ) is possible Al- 
though we feel that this may ultimately prove to 
be the case at the basic level of hnear uncertainty 
structures, the apnon  detecUon of discontinmty 
may be extremely difficult for more complicated 
uncertainty structures. 

In this sectmn, we show that examples of dis- 
continuity for mulUhnear uncertainty structures 
are easily created by 'embedding' the polynonual 
gaven in Section 3 into a more complicated struc- 
ture m such a way that it may not be apparent 
what is causing the trouble. To this end, let 

ga(.)(s, q)=pa<.)(s, q)f(s,  q) 

where pa{.)(s, q) is given by (1) and 

f(s ,  q) = s 2 + (1 + q2)s + (1 + q3)- 

Similarly, we take 

g~. (s ,  q)=pd.(S, q)f(s,  q) 

where pa.(s, q) is given by (2). Note that the 
uncertainty structures above are multlhnear and 
the first factors in gd(,)(S, q) and ga.(s ,  q) are 
the same polynormals which were used m Section 
3. Moreover, since the robustness margm of f(s, q) 
~s umty, it follows that the margins for ga{.)(s, q) 
and ga* (s, q) are exactly the same as those found 
for pd{~)(s, q) and pa.(s, q) in Section 3 Notxce 
that ff ga<~)(s, q) and ga.(S, q) are given in ex- 
panded form rather than factored as above, the 
detectmn of the discontinuity becomes much more 
difficult. That is, if one has a theory to flag 
discontinuity at the level of affine linear uncer- 
talnues, then one is faced with a comphcated 
factorlzation problem. As seen below, matters can 
be even worse because it ~s easy to construct 
examples for which a factorization does not exats 

Modification which does not permit factorization. 
Take f(s, q), ga{~)(s, q), ga . (s ,  q), pd(.)(s, q), 
pa . (s ,  q), d(n) and d*  as above and let (bn).~_l 
be any sequence of posmve real numbers con- 
verging to zero. Now, using the polynomials 
ga(n)(s, q)+ b. and ga. (s ,  q), it can be shown 
(see Appendtx) that the same dlscontinmty phe- 
nomenon occurs along appropriately constructed 
subsequences (d(nj))~_ 1 of (d(n))~= 1 and 
(bn~)~= 1 of (b  n)n~__ 1- Moreover, by exarmnatlon of 
the coefficients of s o , it is easy to see that a 
factorization of the modified polynomials into a 
product of polynomials each having affine uncer- 
tainty structure is tmposstble. That is, it ts 
straightforward to verify that the quantity 

4 1 0 ( a  - n coef(s°)=a(5a n + 1 )q] ) (1  + q3) 

+ b .  

cannot be factored as a product of two affine 
linear funcUons of q. 

5. Conclusion 

In view of the arguments and examples given in 
ttus paper, it IS felt that investigation into condi- 
tioning properties of the robust stability problem 
~s an ~mportant area for future research. 
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Appendix 

We consider the same setup as in Sectmn 3; t.e., 
pd(s, q) is a monic polynormal with robustness 
margin rmax(d) and (d(n)),~ffil is a sequence con- 
verging to d*.  Given any e > 0, define 

Pa(s, q, e )=pa(s ,  q )+  

whose robustness margin is denoted by 7m~,(d, e). 
Now, we establish a basic lemma. 

Lemma. Suppose that for each n, 

r m a x ( d ( n ) )  > f t .  

Then there extsts an integer N and a sequence 
( e,),~=l of positwe numbers conoergmg to zero such 
that 

> 

for all n >_ N. 

Proof. Since d(n) converges to d* ,  pick N such 
that 

I d ( n ) - d *  l <-I 

for all n > N. Now, letting n > N be fixed, the 
proof continues with a sequence of claims. 

Claim 1. There exists an ~o > 0 having the 
following property: For arbitrary I ~l  > ~0, q ~ 
Qa and e ~ [0, 1], 

[fia(.)O~o, q, e) l * 0 .  

Thas clatm is easily established after noting that 
for ~o sufficiently large, 

~m > max{[ p,~O.,, q) -- 0 ~ ) "  I' 

q~Q p;  e~[O, 1]; I d - d * [ < l ) .  

Clmm 2. With w 0 as in Claim 1 and e ~ [0, 1], 
let 

q, e) l: q ~ Q o ;  I~l  <~o}-  

Then 

F, (0) > 0. 

This claim is estabhshed by contradiction. Indeed, 
if F.(0) -- 0, it follows that [/~a(.)(.j~0*, q*, 0) I -- 0 
for some I~o* I < wo and q* ~ Qt3. Hence, 

rmax(d(n)) -- ~max(d(n), O) _~< n,  

which is a contradiction. 

Claim 3. F,(e) Is continuous with respect to 
~ [0, 1]. This claim follows from continuous de- 

pendence of Pat,)(J~, q, e) on (~, q, e) and com- 
pactness of [ -w0,  ~0] and Qa" That is, F,(e) is an 
inftmal value function; e.g., see Berge [12] 

* > 0 such that Clatm 4. There exasts some e, 

Fo( ) >0 

for all e ~ [0, t*]. This claim is immediate from 
the fact that F,(0) > 0 and F,(e) is continuous. 

To complete the proof of the lemma, take 

. 1 
e . -  m m { n ,  E*) 

Now, by constructmn, it follows that the sequence 
oO ( e , ) ,  = 1 converges to zero and 

F , (~ , )  > 0 

for all n > N. Consequently, 

pa(,)(j~o, q, ~ . ) *  0 

for all ~0 ~ R and q ~ Q~. This implies that 

~ m a x ( d ( n ) ,  En) > 

for all n > N  The proof of the lemma is now 
complete. 
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