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Abstract: A theoretical framework for the stabilization of con- 
trol systems defined by a class of nonlinear differential-alge- 
braic equations is established. Assumptions are stated which 
guarantee that the nonlinear differential-algebraic equations 
can be described by a nonlinear control system defined on a 
smooth manifold. A procedure for obtaining a local state 
realization is developed. Conditions for local stabilization of a 
single equilibrium solution, including one set of conditions 
which can easily be checked using standard computations, are 
indicated. 

Keywords: Differential-algebraic equations; stabilization; state 
realization, 

1. Introduction 

A n  important  research area is concerned with 
control  of  nonlinear  systems described by ordinary 
differential equat ions with certain outputs  re- 
quired to be identically zero. Such research has 
exposed the concepts  of  nonlinear  zeros and has 
had impor tant  ramifications in smooth  stabiliza- 
tion, feedback linearization and disturbance de- 
coupl ing [4,6,9]. "I~his research has led to the intro- 
duct ion of  the concept  of  zero dynamics;  recently, 
the more  general concept  of  c lamped dynamics  for 
a nonlinear  control  system has been introduced in 
[15]. A related area of  research has been con- 
cerned with initial value problems defined by non-  
linear differential-algebraic equations; existence 
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and uniqueness results have been developed in 
[14] and numerical  integration issues have been 
considered in [3]. Dur ing  the same period, there 
have been developments in the control  of  mecha-  
nical systems with holonomic  constraints  [11,12]. 
A recent paper  [1] has examined several control  
theoretic issues which pertain to bo th  holonomic  
and nonholonomic  constraints in a very general 
form. Stabilization of  mechanical  systems with 
classical nonholonomic  constraints  has been con- 
sidered in [2]. 

In this paper,  we study generalizations of  the 
previous models for constrained mechanical  sys- 
tems [1,2,11,12] using the formalisms developed 
for studying zero dynamics,  c lamped dynamics  
and differential-algebraic systems. Our  formula-  
t ion is a special case of  the c lamped dynamics  
formalism introduced in [15], but  our  specific as- 
sumptions allow us to give a precise characteriza- 
tion of  the nonlinear systems studied. The special 
structure of  the systems considered in this paper,  
with the associated assumptions,  is sufficiently 
general to be applicable to a large and impor tan t  
class of  electromechanical  systems where con- 
straints arise naturally f rom physical considera- 
tions [10]. 

2. Control systems described by a class of nonlin- 
ear differential-algebraic equations 

We begin by introducing a smooth  nonl inear  
system defined by 

m p 

- ~ = f ( x )  + Y ' . g , ( x ) v i +  E h , ( x ) u , ,  (2.1) 
i=1 i=1 

y i = k , ( x ) ,  i = 1  . . . . .  m,  (2.2) 

z , = l , ( x ) ,  i =  1 . . . . .  p ,  (2.3) 
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where x • M, with M an open subset of  R", 

U = ( U  1 . . . . .  Urn) • R m, u = ( U  1 . . . . .  Up) • R p, 

Y = ( Y l  . . . . .  y , , ) e R  m, z = ( z ,  . . . . .  z p ) • R  p. 

Here f (x) ,  gi(x), i = 1 . . . . .  rn, hi(x) ,  i = 1 . . . . .  p,  
are smooth vector fields on M and k , (x) ,  i =  
1 . . . . .  rn and I i (x),  i = 1 . . . . .  p,  are smooth  func- 
tions on M. In this formulat ion there are rn + p 
input variables (v, u) and rn + p  output  variables 
(y,  z). The input functions 

v : [O ,  oo) - -*R m and u : [ 0 ,  o o ) ~ R "  

are integrable on any finite interval. 
We are especially interested in the constrained 

dynamics,  i.e. the dynamics  of  equations (2.1)-  
(2.3) that are consistent with the imposit ion of  the 
constraints:  Yi = 0, i = 1 . . . .  , rn. We subsequently 
refer to v as the constraint  input  variables, to u as 
the control  input variables, to y as the constraint  
output  variables, and to z as the control  output  
variables. We now define in a more  formal way 
these constrained dynamics.  Our  definitions fol- 
low the existing literature on nonlinear control  
systems. 

A smooth  manifold N c M is an output  hulling 
controlled invariant manifold for equations (2.1)-  
(2.2) if there exists a smooth  feedback such that N 
is an invariant manifold for the closed loop equa- 
tions for each input  funct ion u : [0, oo) ---, R p and 
the output  functions kf ix) ,  i = 1 . . . . .  rn, are zero 
on N. If  there is an output  nulling controlled 
invariant manifold N for equations (2.1)-(2.2) we 
refer to the implicitly defined system on N, with 
input u and output  z, as a constrained system. 
This system is formally described by the nonlinear 
differential-algebraic equations 

rn p 

2 = f ( x )  + )-". gi(x)vi+ E hi(x)ui ,  (2.4) 
i = 1  i = 1  

k , ( x )  = 0, i = 1  . . . . .  rn, (2.5) 

z=l~(x) ,  i = 1  . . . . .  p .  (2.6) 

The constrained system can also be viewed as 
the system implicitly defined by the differential- 
algebraic equations (2.4)-(2.6); such an implicit 
definition is consistent with the perspective for 
singular or implicit differential equations, of  which 
equations (2.4)-(2.6) represent an impor tant  spe- 
cial class. We emphasize that these equations do 

not provide a state realization for the constrained 
system, and a suitable output  nulling controlled 
invariant manifold is not  explicitly identified. 
Consequently,  the existence of  'well  defined'  solu- 
tions of equations (2.4)-(2.6) requires justifica- 
tion. 

Our  fundamental assumptions for the class of 
nonlinear constrained systems defined by equa- 
tions (2.4)-(2.6) are now introduced.  Assume that 
x 0 • M and there are finite positive integers r,, 
i = 1 , . . . ,  rn, such that: 

(AI)  LgjL~ki(x ) = 0, for all k = 0 . . . . .  r, - 2, i = 
1 . . . . .  m, j = l  . . . . .  m, and x • M f ~ N ( x  0). 

(A2) rank A(xo) = rn where A(x)  is an rn × rn 
matrix whose element on the i-th row and the j - th  
column is 

r I -- l a , j ( x )=LgjL f  k i (x  ). 

(A3) LhjL~k~(x ) = 0, for all k = 0 . . . . .  r, - 2, i = 
1 . . . . .  m, j = l  . . . . .  p,  and x • M N N ( x o ) .  

As usual N(xo) denotes a ne ighborhood  of  x 0 
and the notat ion L/ki(x  ) indicates the directional 
derivative of ki(x ) along the vector field f ( x )  and 

L~k i (x )  = L ,  ( L ?  l k i ( x ) ) .  

Assumptions  (A1)- (A3)  are essentially that the 
constraint  relative degrees of  ( f ,  g, k)  are well 
defined and finite, that  the decoupl ing matrix 
A(xo) has full row rank and that the control  
relative degrees of  ( f ,  h, k )  are well defined and 
finite and no less than the constraint  relative 
degrees. In other  words, the constraint  relative 
degree vector of  ( f ,  g, k )  is ( r  1 . . . . .  r,,) at x 0 • M 
and is not greater than the control  relative degree 
vector of  ( f ,  h, k), componentwise,  where 

g ( x )  = . . . . .  

h ( x )  = [ h l ( X  ) . . . . .  hp(X)]  

[6, p.235]. If  rg = r, i = 1 . . . . .  rn, these assumptions  
are equivalent to the assumpt ion that  the index, as 
defined for nonlinear singular (or imphcit)  equa- 
tions as in [3], is r + l  at x 0 • M .  We ment ion 
that models of  mechanical  systems with holo- 
nomic constraints,  as studied in [11,12], are exam- 
ples of  constrained systems with global constraint  
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relative degree vector (2 . . . . .  2), and that the mod- 
els of mechanical systems with classical nonholo- 
nomic constraints, as studied' in [2], are examples 
of constrained systems with global constraint rela- 
tive degree vector (1 . . . . .  1). 

We now assert that the differential-algebraic 
equations (2.4)-(2.5) are well posed in the sense 
that an associated initial value problem has a 
unique solution, at least locally. Suppose that u(t)  
is a given integrable function. A pair of vector 
functions (x ( t ) ,  v( t))  defined on an interval [0, T)  
is a solution of the initial value problem defined 
by equations (2.4)-(2.5) and the initial condition 
data x 1 if x ( t )  is differentiable, v( t )  is integrable, 
the vector function (x( t ) ,  v(t))  satisfy the dif- 
ferential-algebraic equations (2.4)-(2.5) almost ev- 
erywhere on their domain of definition and x(0) 

= X 1 . 

Theorem 2.1. Define 

N * =  { x ~ M ~ N ( x o )  [ 

L ~ k i ( x ) = O , k = O ,  1 . . . . .  r i - 1 ,  

i = 1  . . . . .  m } .  (2.7) 

Then N *  is an n - ( r  1 + . . .  +r,~) dimensional 
integral manifold of the maximal controlled in- 
variant distribution contained in 

k e r { d k l ( x  ) . . . . .  d k m ( x ) } .  

Assume that x o ~ N*  and the input function 
u : [0, oo) -~ R p is a given integrablefunction. There 
is a neighborhood N(xo)  of x o such that if  the 
initial condition data satisfy x 1 ~ N* ,  then there 
exists a unique solution (at least locally defined) of 
the initial value problem defined by the differential 
algebraic equations (2.4)-(2.5) and the solution 
satisfies x(  t) E N *  for each t for which the solution 
is defined. 

Proof. The properties of N*  follow from the 
stated assumptions using the development in [6, 
pp. 236-237]. Following the development in [14], 
it is easily demonstrated that for each u : [0, oo) 
R p the differential-algebraic equations (2.4)-(2.5) 
define a smooth vector f idd on the manifold N*;  
the results follow according to [5]. A more detailed 
and direct proof of this result is given in [10]. 

We thus make the additional assumption that 
x o ~ N*  in our subsequent development. Since 

the differential-algebraic equations (2.4)-(2.5) de- 
fine, for each integrable input function u:[0,  oo) 
--* R P, a smooth vector field on the manifold N *, 
a number of others results could be stated, includ- 
ing conditions for continuous dependence of the 
solution on initial conditions and parameters, con- 
ditions for non-existence of finite escape times, 
etc. Such results are important, but  they are not 
given here since they are easily obtained. The 
stated assumptions guarantee that the space of 
solutions of the differential-algebraic equations 
(2.4)-(2.5) lie in the manifold N*  defined by 
(2.7). An algorithmic specification of consistent 
initial data for a more general class of 
differential-algebraic equations has recently been 
given in [13]. 

3. A feedback stabilization problem for systems 
described by nonlinear differential-algebraic equa- 
tions 

Our particular interest is to study feedback 
systems which are defined using equations (2.4)- 
(2.6) and a feedback map defined by u : N * × R p 

R p where 

P 

u i = Yi(x) + Y'~ oi j (x )wj ,  i = 1 . . . . .  p;  (3.1) 
j = l  

here w = (w 1 . . . .  , wp) ~ R p is the closed loop in- 
put. The closed loop constrained system is defined 
by the nonlinear differential-algebraic equations 

= x) + E h,(x)y,(x 
i = 1  

+ g,(x)v,+ E IF., oj,(x)hj(x)w , 
i = 1  i ~ l  j = l  

(3.2) 

(3.3) 

(3.4) 

k , ( x ) = O ,  i = 1  . . . . .  m, 

zi = l i (x ) ,  i = 1  . . . . .  p .  

It is easy to show that Assumptions (A1)-(A3) 
also are satisfied at x 0 ~ N*  for all closed loop 
equations of the form (3.2)-(3.4). Consequently, 
the stated properties of N * hold for all such 
closed loops. The following result is easily ob- 
tained. Assume that the closed loop input 
w:[0, o0)-~ R p is a given integrable function. If 
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the initial condition data satisfy x~ ~ N* ,  then 
there exists a unique solution (at least locally 
defined) of the initial value problem correspond- 
ing to equations (3.2)-(3.3) which satisfies x(t) 
N * for each t for which the solution is defined. 
We subsequently use the notation 

(x(t, w), oct, :'1, w)) 

to denote the solution of equations (3.2)-(3.3) at 
time t >/0 corresponding to the initial data x 1 and 
the closed loop input function w : [0, ~ )  ~ R p. 

A particularly important class of solutions are 
the equilibrium solutions. A solution of equations 
(3.2)-(3.3) is an equilibrium solution if it is a 
constant solution. Suppose that w( t ) = O, t >1 0 
and that 7i(x), i = 1 . . . . .  p, are smooth functions 
defined on M. Equations (3.2)-(3.3) have equi- 
libria solutions defined by 

(x ,  v ) ~ N * ×  Rml 

p m 

f(x)+ Eh,(x)v,(x)+ Eg,(x)v,=o, 
i = l  i=1  

k i (x )=O,  i = 1  . . . . .  m} .  

These equilibria solutions for equations (3.2)-(3.3) 
define a subset of N * ,  

Are= x E N * I f ( x ) +  ~_,hi(x)Yi(x) 
i = 1  

+ ~ g,(x)v,=o, 
i = 1  

for some v~  R m, k i (x  )=0 ,  i=1 .. . . .  m) ,  

so that if x l ~ N e  then x(t, x 1 , 0 ) = x  1 for all 
t>~0. 

We now formulate a feedback stabilization 
problem for nonlinear constrained systems de- 
fined by differential-algebraic equations (2.4)- 
(2.5); a suitable stability definition is first intro- 
duced for the closed loop differential-algebraic 
equations (3.2)-(3.3). 

Definition 3.1. Assume that w(  t ) = O, t >~ O, in the 
specification for the closed loop constrained sys- 
tem defined by equations (3.2)-(3.4). Let x 0 ~ N e. 

Then x0 is locally stable if for any neighborhood 
U of x 0 there is a neighborhood V of x o with 
U p  V such that if x 1 ~ V n  N*  then the solution 
of equations (3.2)-(3.4) satisfies 

x(t ,  x l , 0 ) ~ U ~ N *  foral l  t>~0. 

If, in addition, 

x ( t , x  1 , 0 ) - - , x  0 a s t ~  

then we say that x 0 is locally asymptotically sta- 
ble. 

It is clear that if x 0 is a locally asymptotically 
stable equilibrium solution then it must be an 
isolated equilibrium on N* .  The following stabi- 
lizability concept is introduced. 

Definition 3.2. The nonlinear differential-algebraic 
equations (2.4)-(2.6) are said to be locally stabiliz- 
able to x 0 ~ N e if there exists a feedback function 
of the form given in (3.1) such that x 0 is a locally 
asymptotically stable equilibrium solution of the 
closed loop equations (3.2)-(3.4). 

If there exists such a feedback function of the 
form (3.1) which is smooth on N * then we say 
that the constrained system defined by equations 
(2.4)-(2.6) is smoothly stabilizable to x 0. Note 
that Definition 3.2 requires that there exists a 
feedback function of the form (3.1) for which x 0 
is at least an isolated equilibrium of the closed 
loop. The constrained problems considered in [2] 
represent a class for which no smooth stabilizing 
feedback exists but nonsmooth stabilizing feed- 
back may exist. It is possible to define the notions 
of stability of a set of equilibria and stabilizability 
to a set of equilibria as in [2], but such generaliza- 
tions are not considered here. 

4. A state realization approach to the local stabili- 
zation of systems described by nonlinear differen- 
tial-algebraic equations 

One approach to an analysis of the stabilizabil- 
ity problem is to introduce a coordinate transfor- 
mation (x, v) ~ (~, v) so that the constraints have 
a trivial specification; then the constraints are 
enforced so that a set of decomposed differential 
and algebraic equations for the constrained system 
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are obtained:  the reduced differential equations 
characterize the solution ~(t ,  x a, u) on the con- 
straint manifold independent ly  of  v and the alge- 
b r a i c  e q u a t i o n s  cha rac t e r i ze  the so lu t ion  
v ( t ,  x l, u) in terms of  the solution ~(t ,  x 1, u). 
Define 

"X1 = k ] ( x ) ,  

x 2 =  L / k , ( x ) ,  

j = l  

P 

+ E (L.j.,(x))uj, 
j = l  

i = r ~ +  . . .  + r m + l  . . . .  , n ,  

Yi--x , ,_ ,+l ,  i = l  . . . . .  m,  

z i = l i ( ~  ) ,  i = l  . . . .  , p ,  

Xr, = t ;1 - l k l (X )  , 

Xrl+ l  = k 2 ( x ) ,  

where r 0 = 0. An  equivalent representat ion of  the 
constrained system defined by equat ions (2.4)-  
(2.6) is obtained by imposing the constraints  yi = 0, 
i = 1 . . . . .  m. These constraints are satisfied if 

Y~,+ ... +, = L ' F - ' k , ( x ) .  

It is possible to introduce functions 

epi(x) ,  i = r 1 + . . .  + r  m + 1 . . . . .  n,  

so that if 

Y , = ~ , ( x ) ,  i = r l +  . . .  + r m + l  . . . . .  n,  

then the mapping  x ---, ~ = ~ ( x )  is a local diffeo- 
morphism on M N N ( x o )  and xl . . . .  , Yn define 
local coordinates on M N N ( x o ) .  In terms of  the 
t ransformed variables, the differential equations 
(2.1)-(2.3) are in the normal  form 

X = X 2 ,  

xq-  ] = x¢ i '  

x ,  = L ~ / k , ( x ) +  ~ ( L g L ? - ' k , ( x ) ) o j  
j = l  

P 

+ E 
j = l  

Xrl+l = Xr}+2 , 

x i ( 0 ) = 0 ,  i = l  . . . . .  r ] +  . - .  + r , , ,  

and if 

p 
v i = a i ( x ) +  ~ f l u ( x ) u ; ,  i = 1  . . . . .  m,  

where 

, ,m(x)]  

~,,(~) ... 

/L , (x )  .., 

: - A - ' ( ~ )  

j = l  

[ Lpk,(x) ] 

/ i 1' 
LL;~,.(x)] 

# ,p (~ ) -  

/Lp( x ) 

[ LhL~l'-'k](x) ... 

Lh L?-]k,,,(x ) ... 

LhpL p- lk 1 ( x ) 

It follows that 

x i ( t ) = 0 ,  t>~0, i - - 1  . . . . .  r l + - - -  + r  m. 

Thus Xr, + .-. + r m + l  . . . . .  X n  define local coordinates  
on N *  and the nonlinear  constrained system is 
described in these local coordinates  by the ordinary  
differential equations 

X r  l + . . .  + r  m 

j = l  

p 

+ E 
j = l  

p 

~, =j((x) + E ~,.(~)u,, 
j = l  

i = r l +  . . .  +rm + l , . . . , n  ' 

z i = ] i ( ~  ), i = l  . . . . .  p ,  

(4.0 

(4.2) 
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where 

+ E 
k = l  x = ~  l(~) '  

= ¢,(x) 

k = l  J x = ~  (~) 

i i ( . ~  ) = l i ( * - I ( x ) ) .  

The right hand sides of equations (4.1) and (4.2) 
can be expressed solely in terms of the trans- 
formed variables -~,+ ... +~m+l . . . . .  X, and 
u 1 . . . . .  up. Consequently, equations (4.1)-(4.2) 
provide an n - ( r ~  + - . .  +rm) dimensional local 
nonlinear state realization for the nonlinear con- 
strained system defined by the differential-alge- 
braic equations (2.4)-(2.6). 

One approach to the local stabilization of the 
nonlinear differential-algebraic equations (2.4)- 
(2.5) depends on the classical linearization of the 
state realization given by equations (4.1)-(4.2). 
Suppose that (Xo, V o ) ~ N * x R  m is an equi- 
librium solution of equations (2.4)-(2.5) corre- 
sponding to u = 0. Thus there is a corresponding 
vector x0 = (0 . . . . .  0, ~'0) which is an equilibrium 
solution of equations (4.1)-(4.2) with u = 0. Con- 
sider the linear differential equations, associated 
with the nonlinear differential equations (4.1)- 
(4.2), 

P 

E 
, /= 1 

where 

3~j 

-t'r, +-.-+r.+,. j( O) 

(4.3) 

- - ,  i, j = r l  + . . .  + r m + l  . . . . .  ] n 
~=X o 

]" 

The following result is based on classical argu- 
ments. 

Theorem 4.1. I f  the linear differential-algebraic 
equations (4.3) are stabilizable then the equilibrium 
solution ( x 0, v o) of the nonlinear differential-alge- 
braic equations (2.4) (2.5) is locally stabilizable. 

Corollary 4.2. / f  each eigenvalue of the matrix A,, 
with real part that is nonnegative, is controllable 
(according to equations (4.3)) then the equilibrium 
solution (x0, to) of the nonlinear differential-alge- 
braic equations (2.4)-(2.5) is locally stabilizable. 

General conditions for the existence of a local 
stabilizing controller for the constrained system 
defined by the differential-algebraic equations 
(2.4)-(2.5), which hold even in the critical cases 
not covered by the assumptions in Theorem 4.1, 
can be developed using the state realization given 
by equations (4.1)-(4.2). In particular, we men- 
tioned that if equations (4.1)-(4.2) define a 
minimum-phase nonlinear system which satisfies a 
certain invertibility condition as defined in [4] 
then it, and hence also the constrained system 
defined by the differential-algebraic equations 
(2,4)-(2.5), can be locally stabilized. 

Theorem 4.1 and Corollary 4.2 are important 
results, but their practical utility depends on con- 
struction of a nonlinear diffeomorphism required 
to obtain a state realization. 

5. A classical linearization approach to the local 
stabilization of systems described by nonlinear dif- 
ferential-algebraic equations 

We now extend the classical approach to local 
stabilization based on the use of linearized equa- 
tions to the nonlinear differential-algebraic equa- 
tions (2.4)-(2.6). We develop a set of linear dif- 
ferential-algebraic equations that represent a first 
order approximation to the nonlinear differential- 
algebraic equations (2.4)-(2.6) at an equilibrium, 
and we demonstrate that, under certain assump- 
tions, if the linearized equations can be stabilized 
then the nonlinear constrained system can be lo- 
cally stabilized to the equilibrium solution. Such a 
plan is similar to recent results in [16] for a more 
general class of behavioral differential equations 
that are not in state variable form. 
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Suppose that (x 0, v0) ~ N*  × R"  is an equi- 
librium solution of the differential-algebraic equa- 
tions (2.4)-(2.6) corresponding to u = 0. That is, 

m 

f ( x o )  + ~_, g i ( xo )Vo ,=O,  (5.1) 
i = l  

O = k , ( x o ) ,  i = l  . . . . .  m.  (5.2) 

Introduce the linear constrained system defined 
by the linear differential-algebraic equations 

,~ = An + hA', + ~ c,o~,, (5.3) 
i = l  i=1  

O,=d i*  1 = 0 ,  i =  l . . . . .  m, (5.4) 

%=f/r/, i =  1 . . . . .  p,  (5.5) 

where 

~- X 

bi = g, ( xo ) , 

< = h , ( x o ) ,  

i=1  JJX=XO.V=v 0 

i = 1 , . . . ,  m ,  

i = 1  . . . . .  p,  

)[ , i = 1  . . . . .  m, 
J x ~ X  o 

, , - - 1  . . . . .  p 
LV.~ l x : X  o 

If Assumptions (A1)-(A3) hold at x 0 it can be 
shown, using the normal form equations, that 

diAkbj = O, k = O . . . . .  r i - 2, i = l . . . . .  m ,  

j = l  . . . . .  m, 

rank[ d ,A"- lb j ]  = m,  

d~Akci=O, k = 0  . . . . .  r ~ - 2 ,  i = 1  . . . . .  m, 

j = l  . . . . .  p. 

Consequently, the following result is a corollary of 
Theorem 2.1 for the linear differential-algebraic 
equation (5.3)-(5.5). 

Assume that the input function o~ : [0, oo) ~ R p 
is a given integrable function. I f  the initial condition 
data satisfy *la ~ S * ,  then there exists a unique 
solution of  the initial value problem defined by the 
linear differential-algebraic equations (5.3)-(5.5) 
and the solution satisfies *1(t) ~ S * 

The main result of this section is stated in the 
following theorem. 

Theorem 5.2. I f  the linear dtfferential-algebraic 
equations (5.3)-(5.4) are stabilizable (as defined in 
Definition 3.2) then the equilibrium solution ( x o, v0) 
of  the nonlinear differential-algebraic equations 
(2.4)-(2.5) is locally stabilizable. 

Proof. Note that the tangent plane of N*  at x 0 is 
a translation of the subspace S*.  The proof fol- 
lows according to [5] and the facts that equations 
(2.4)-(2.5) define a smooth vector field on the 
manifold N*  and that the linearized vector field 
on the tangent plane of N*  at x 0 is exactly the 
linear vector field defined by equations (5.3)-(5.4) 
o n  S *  

The design of a linear stabilizing controller for 
the linear differential-algebraic equations (5.3)- 
(5.4) is nonstandard. One effective approach is to 
construct the (linear in this case) diffeomorphism 
developed in Section 4 to obtain a linear state 
realization for the linearized differential-algebraic 
equations (5.3)-(5.4). The linear state realization 
thereby obtained is precisely equation (4.3). This 
approach has been developed in [7] into a direct 
computational procedure, avoiding construction of 
any nonlinear diffeomorphism, to solve the local 
feedback stabilization problem. The main part of 
the computations to obtain the linear state realiza- 
tion (4.3) involves a singular value decomposition. 
Application of this approach to local stabilization 
of a class of constrained robot problems is de- 
scribed in [8]. 

Corollary 5.1. Define 

S *  = { * 1 ~ R " l d i A k n = O ,  k = 0  . . . . .  i",.- 1, 

i = 1  . . . .  , m } .  

Then S * is an n - (r  1 + • • • + r m) dimensional sub- 
space of  R" which is the maximal  controlled in- 
variant subspace contained in ker { d 1 . . . . .  d m }. 
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