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I n t r o d u c t i o n  

Several researchers have studied the problem of buckling of beams attached to elastic founda- 
tions. Many of these studies exploited the simplicity of the beam-elastic foundation model in order 
to characterize the different types of postbuckling behavior as well as to demonstrate the variety 
of techniques that are available to study similar problems. As a result several simplifications were 
incorporated into the equations that bring out a particular type of response. For example in [1], 
n o n  linear terms entering into the equations as derivatives of the lateral displacement W(z), were 
dropped from the equation while still retaining terms of the same order in W(z) in the restor- 
ing force of the foundation. Several other studies dealt with the problem in the context of civil 
en~neering applications. A recent paper [2], which includes an extensive bibliography, addresses 
this problem within the framework of the improved Koiter[3] postbuckling theory. This same 
author addresses the issue of mode interaction in [4], and discusses its importance under certain 
circumstances. Basically, the approach adopted in [2,3 and 4] amounts to developing asymptotic 
expressions for the potential energy in the neighborhood of the critical load in terms of a small 
parameter, which is identified as the amplitude of the buckling mode. Koiters original work was 
extended in [5] where a formalism based on the principle of virtual work was used. The approach 
adopted in the present paper is to use asymptotic expansion considerations to differential equations 
obtained via the principle of stationary potential energy. 

In the present study the linear part of the foundation modulus is taken to be dependent 
linearly on the axial compression on the beam. The beam is thought of as modeling a single fiber 
of a unidirectional one fiber composite, while the foundation represents the supporting matrix. 
Thus, the assumed dependency of the foundation modulus on the axial compression on the beam 
is based on the premise that the lateral support offered by the foundation is a function of the 
overall compression on the composite. 
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P r o b l e m  Formula t ion  

Perfect beams 

We consider a rectangular, uniform beam of length L, unit breadth, and thickness h, subjected 

to an axial compressive load P applied at the ends. We assume that strains are small compared 

to unity and that planes normal to the centroidal line in the undeformed state remain normal to 

the deformed centroidai line. Further, we assume that the centroidal line of the beam remains 

inextensible. We choose a Lagrangian description with a fixed right handed rectangular Cartesian 

frame of reference to be used, with the X axis coinciding with the centroidal line of the beam in 

the initial unloaded state and the Z axis normal to it. Let the components of the displacement of 

a particle positioned initially at (X,Z) be denoted by U,W. In the Lagrangian description, the 

Greens strain tensor, referred to the initial configuration is used, whose components are 

dU 1 ,,dU .2 ,dW.2,  
Ex = T ~  + ~ L(7-~) + (7-~) ] 

dW 1 , ,dW.2 ,dU ,2, 
Ez = -~y + -~ L(-ZS-) + ('E~) ] (1) 

l dU d W  dV ~U d W  d W  
Exz  = -~ [ ~  + ~ + dX dZ + d--Y dZ ]" 

Consistent with the assumptions stated, we have 

v ( x ,  z)  = Vo(X) -  z dw° 
dX 
dUo (2) 

w ( x ,  z)  = Wo(X) + z g -Z  

Here, a subscript '0' is used to denote quantities associated with the centroidal line. The condition 

of inextensibility of the centroidal line renders a relation between Uo(X) and Wo(X) in the form 

.dUo .dW.2 
2Exo = ( - ~ y  + 1) 2 + ( - ~ y )  - x = o. (3) 

Substituting (2) in (1) and using (3), we find that the only non zero strain component is Ex. 

Thus, the displacement field (2), along with (3), simplifies the non-linear strain components of the 

Greens strain tensor to the extent that the shearing strain E x z  and the transverse normal strain 

Ez are both zero. Corresponding to the Greens strain tensor, we have Kirchhof's stress tensor Sij, 

which will be used in the analysis. Assuming a state of plane stress in the X Z  plane and with the 

assumption on the smallness of Ex,  we invoke Hooke's law in the form 

Sx = EIEx,  (4) 

where, E] is the Youngs modulus of the beam material. Next, we write the potential energy (H) 

of the beam, 
L ~  L 

0 _ ~  0 

L 

+ /(II(1Wo2 + ~K3Wo4)dX. 
o 

(5) 
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In the above expression, K1 and/ (3  are the linear and cubic spring constants of the elastic foun- 

dation. II can be expressed in terms of, Wo(X), the lateral displacement of the centroidal line, 

and its derivatives by using (4), (1) and (3) in (5). Then, carrying out the integration in Z and 

defining 

Z2dZ = I, ---~-dZ = J, (6) 

we obtain, 

L L L 

_ Eli  E/J P 1Wol4)d X II _---ff- / Wo"2(l + Wo' )dX + ---2- f Wo"4dX - 7 /(Wo'2 + 
0 0 0 

L (7) 

+ f wJ +l K3Wo*)dX, 
0 

where, we have retained all the quartic terms entering in (5). A prime indicates differentiation 

with respect to X (or x in the normalized expressions to appear later). The second term in II is 

the result of retaining quadratic terms (in Z) in the expression for Ex. It is seen that this term 

contributes a quartic (in W0) term to H. However, it will be shown later that this term can be 

omitted on account of its negligible contribution to H. Noting that K1 = K0 + 6 P ,  the following 

non-dimensional quantities are introduced next. 

W X L PA 2 
w=---~, x=-.~, l= ~, a - 4 E I '  

K 3 A s  J (8 )  
k3 - EI ' a = &A s, f l =  IA2, 

(4EI. a, 2IIA 
= ) , n ' _  . 

l t o "  EI 
Then, 

l l l 

0 0 0 
i (91 

+ /(4w2 + 4ctaw2 + lk3w4)dx. 
0 

At equilibrium, the variation of II* with respect to the virtual displacement 15w must vanish. Thus, 

l 

f ,  ,,d2(6w) .~ .2 ,d(6w) 2w,,w,2d2(t~w)] = t2w + w + 
0 

1 1 

+ f l / 4 w  "3d2('w)dx 2 o'/[8w'd(~wx) +aw'3~x)]dx  (10) 

0 0 

t 

+ f [8w~fw + 8aawSw + 2kaw3rSw]dx = O. 
0 
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Integrating by parts and collecting terms, we obtain, 

~II* = / Lg(w)~wd:z  + boundary terms = 0. (11) 

0 

Since ~w is arbi trary in the interval (0, l), we obtain the ordinary differential equation governing 

beam equilibrium, 

where, 

Here, 

L N ( w )  = 0, (12) 

L N ( w )  = L ( w )  T w '2w  'm T w ''3 T 4 w ' w n w  m 

+ 6 a w ' 2 w  '' + k3w 3 + f l (6w"2w '''' + 12w"w'"3). 

L( ) = ( ) ' "  + 4a( )" + 4 ( 1 +  a n ) ( ) .  

Clearly, w ( x )  = 0 is a solution of (12) for all values of a.  The value of P corresponding to 

the smallest value of a(designated a0) for which non-trivial solutions w ( x )  # 0, of arbitrarily 

small amplitude, exist, is identified as the buckling load. Let us per turb (12) about  the state 

(a  = ao, w ( x )  = 0). Thus, let 

O" .= ~ EnO'n  

.=0~ (13) 

~t----1 

Here, ewl is the buckling mode with shape w l ( x )  and small ampli tude e. Substituting (13) into 

(12) and grouping together terms according to ascending powers of e, we obtain, 

~1 . . . . . . . . . .  L ( w l )  = 0 

e 2 .......... L (w2)  = - 4 a l w ~ '  - 4 w l a a l  

e 3 . . . . . . . . . .  L ( w 3 )  = - w I'2 w i re '  _ 4 a l W t 2 ,  _ 4a2w~l _ 4 W l a a 2  

(14) 
l ,  3 l , l  m k 3  W l  3 - 4 w 2 a a l  - w 1 - 4w l w  1 W 1 - -  

12 I I  I I  2 l l l l  I I  I I I  2 - /~(6w 1 w,  + 6aow I w 1 - 12w 1 w 1 

. . . . . . .  e t c .  

The first of these equations correspond to classical buckling. Let us assume a solution of the 

form Wl = sin(#x), where we presume the beam to be of sufficient length so that  the boundary 

conditions at the two ends of the beam are not accounted for. Then, the classical buckling load a0 

and the corresponding wave number are found to be, 

#2 #2 { / '4+  a 2 + a .  (15) O" 0 : - ~ - ,  = 
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This reduces to 0.0 = 1,# 2 = 2 for a = 0. The rest of the sequence of equations, (14), can be solved 

by appealing to the boundedness of w(z) and suppressing secular terms. In so doing we obtain 

successively (0.1, w2), (a2, w3),...etc. Thus, we have, 

where, 

w = e s i n ( ¢ { / 4  + a s + az )  + ¢3w3(z ) + ..... 

1 ,  .~f--'i--'~ 0.= ~(Q'4  + a~ + or) + ~20.2 + ....... , 
(16) 

and, 

where, 

LIN(w) = LN(~) + y,(~)~"" +/~(w)~'" + y3(~)~" + f4(w)~/, 

fl(w) = 1 , ~  

/2(w) = 3w'w" + w' 

f3(w)  = 3w '2 + 4w'w'" + w" + 0"(4 + 6w") 

f4(w) = 2(wm' w ' + 2w" w m + 6aw' w"). 

Let the initial imperfection have non-dimensional amplitude r (normalized by A) and shape v(z). 

Thus, ffJ(x) = rv(z),  with, 0_< r ~ 1. Unlike before, (18) is a non-homogeneous equation in w, due 

~k3 - ¼~' + ~av ' 
w2 = 0, 0.1 = 0 and 0.2 = 4( 24v/~ a 2) 

Imperfect beams 

When the beam contains an initial imperfection ~h(x), then the expression for the potential 

energy needs to be modified. In the present analysis it is assumed that the imperfection is 'small' 

in the sense that, terms of higher powers of *h(x) or its derivatives entering in the expression 

for the potential energy will be omitted, but terms with ~(x)  (or its derivatives) by itself or as 

products with w(x) (and/or its derivatives) will be retained. If we denote by II~, the potential 

energy corresponding to the case with an initial imperfection, then, 

l 

= II" + / 2 w " ~ w %  ' + 
P 

. I  

0 (17) 
# 

0 . / (2w '~ '  + wr~ ~t)dx. 

o 

In the above we note that the expression for II* is given by (9) and in (17), to(x) is understood to 

be the additional displacement measured from the initial configuration containing the imperfection. 

As before, by setting the first vaxiation of II*t to zero, we obtain the ordinary differential equation 

governing beam equilibrium; 

LIN(w) = 0, (18) 
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to the terms containing the initial imperfection. Thus, w(x)  = 0 is not a solution of (18) for any 

value of a .  Since we already have some information regarding the behavior of the perfect system, 

it suffices for us to characterize the imperfect system with respect to the perfect system in terms 

of the imperfection ampli tude r and shape v(x).  Thus, let, 

- -  0 " 0  

¢(~) and w(x)  = ¢ l ( r ) w , ( x )  + ~b2(v)w2(x) + ..... 

Then,  upon subst i tu t ing for a and w(x)  in (18) and considering the dominant  terms, we find that,  

¢ , ( ~ )  = ~ t , e ~ ( ~ )  = ~ ,¢ (~ )  = ~ 

Next, we group together terms in (18), according to ascending powers of r ,  to find, 

1 
r ~ . . . . . . . . . .  L ( w l )  = 0 

r .......... L (w2 )  = - w  x'2 w l " "  _ 4 & w l  , _ w~,3 _ 4 w l w l w  ,, ,,, 

4aO'Wl -- k3w31 t 2 rl - - 6w I w 1 - 4 v ' & .  

(20) 

The first of these equations produces the results we already know; the classical buckling load and 

the associated mode number  given by (15) with Wl(X) = Asin(#x) ,  where A is as yet an arbi t rary 

ampli tude.  Assuming the initial  imperfection t o  have the same shape as the classical buckling 

mode [v(x) = sin(#x)], and imposing the boundedness of w(x)  via suppression of the secular terms 

arising in the second equation of the sequence (20), we obtain,  

& = -4#2o'0 - A3C1 
4A(#2 - a )  ' 

where, 
1 s 3 4 3 

c,  = - ~  + ~ - ~ 3 .  

Redefining ~ = r ~ A  and noting the values of a0 and /~ in (15), we arrive at a relation that  

characterizes the response of the imperfect system, in terms of the imperfection ampli tude r ,  near 

the buckling load; 
#4r Cl e3 (21) 

ae = aoe 2~r~ + a2 424V ~ a2 

D i s c u s s i o n  o f  R e s u l t s  

Figure 1 shows a graph of the dependence of a0 on the softening (hardening) parameter  

of the foundat ion (corresponding to equation (15) in the text) .  Notice tha t  as a ~ 0 ,#  2 ~ 2 

and ao ~ 1 and thus, we recover the result for classical buckling of a beam on a linear elastic 

foundat ion ([2],[3],[6]). As a ~ oo,a0 --* o0 as expected.  As a ~ - o o , #  2 --* 0 and a0 ~ 0, and 

this shows tha t  increasing amounts  of softening tends to have a highly undesirable destabilising 
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effect on the unbuckled beam. In the context of fiber composites, these results show quantitatively 

how fiber buckling loads are affected due to the softening behavior of the matrix material. 

In figure 2, we have presented results corresponding to equation (16) for a fixed value of k3, 

which characterizes the response of a perfect beam on a non-lineax elastic foundation. These a vs 

e plots show the response of the beam in the initial stages of post buckling. Notice the negative 

slope of the a - e curve immediately proceeding buckling, indicative of the unstable post buckling 

behavior. In the case when k3=0 and a = 0, and noting that /~ = ,~/'2, we obtain a2=-0.25+3/~. 

For the present s tudy/3 = 0.04(4) 2. Since the buckle mode shape is sin(/~x), we can express /3 
0 .04/4~r2 ~ in terms of the buckle wave length l~ as, /~ [ ~"~-] (~',)~" Thus, a2 = -0 .25 + 0 .78(~)  ~. 

Therefore, the influence of the term containing/~ on the slope of the a - e plot is negligible. In 

figure 3, we have presented results showing the variation of as as a function of the parameter ~. 

The corresponding expression in the text is given in (16) (note that or2 controls the slope of the a - e  

plots). From this figure, it is seen that when k3 = 0, ~r2 becomes more negative with increasing ~, 

while, for k3 = -100 ,  as is a maximum at a = 0.21. Inferring from figure 2, the effects of a on 

the buckling load, we note here that the buckling load is independent of the value of k3, with k3 

influencing only the postbuckling response. 

The influence of a on the postbuckling paths for imperfect beams is displayed in figure 4. From 

this figure, it is seen that with decreasing a,  the load maximum is seen to occur at decreasing values 

of e. Further, the a - e plots tend to 'flatten'  out for decreasing values of a,  indicating a gradual 

drop in the load, beyond the maximum load point. Such a gradual change is very desirable from a 

structural stand point. The shallowness of the a - e plot gives an indication of the severity of the 

imperfection sensitivity of the system. Thus, there is a compromise to be achieved in increasing the 

buckling load (increasing a),  and reducing the severity of the imperfection sensitivity (decreasing 

a).  The influence of k3 on the postbuckling paths can be inferred from equation (21). It is 

noted that  a positive k3 has a tendency to stabilize the postbuclding response, while a negative k3 

contributes further to the destabilising effect in the postbuckling response. 

To summarize, the effects of foundation softening on the initial postbuckling behavior of a beam 

resting on a non-linear elastic foundation have been studied. It was found that compression induced 

softening (hardening) of the foundation resulted in a decrease (increase) of the buckling load while 

simultaneously decreasing (increasing) the imperfection sensitivity of the postbuckling response. 

Within the context of fiber composites, these features may be related to the observed compression 

failure modes([7]). In brittle systems (with respect to the matrix), the initiation of compression 

failure occurs at loads which are relatively higher than their ductile counterparts. Beyond this 

point, the transition to final failure occurs suddenly. For systems in which the matrix material tends 

to soften with increasing load, the buckling point is not as sharply defined. Further, the transition 

to final failure occurs gradually. This study shows that  the softening (hardening) characteristics of 

the foundation have an appreciable effect on the buckling and postbuckling response of the beam 

structure. 
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FIG 1. The critical buckling load (ao) vs. the parameter a. 
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FIG 2. Postbuckling paths  for k3=-500 and for various values of a .  
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FIG  4. Influence of a on the pos tbuckl ing  paths  for imperfect  beazns ( r  = 0.01, k3 = 0). 


