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CONCERNING THE EMERGENCE OF TAG-MEDIATED LOOKAHEAD 

IN CLASSIFIER SYSTEMS 

John H. H O L L A N D  
Computer Science and Engineering, Psychology, The University of Michigan, Ann Arbor, MI 48109, USA 

This paper, after a general introduction to the area, discusses the architecture and learning algorithms that permit 
automatic parallel, distributed lookahead to emerge in classifier systems. Simple additions to a "standard" classifier system 
suffice, principally a new register called the virtual strength register, and a provision to use the bucket brigade credit 
assignment algorithm in "virtual" mode to modify values in this register. With these additions, current actions are decided on 
the basis of the expected values associated with the "lookahead cones" of possible alternatives. 

1. Introduction 

Whenever one studies adaptation or machine 

learning in realistic contexts one constraint soon 

comes to occupy a central position: Feedback 

about performance is intermittent and lacks detail. 
Samuel [1], at the very start of the modern study 

of emergent computation, realized that games -  

checkers is the example he u s e d -  provide a good 
paradigmatic example of the problem. During the 

play of a game there is a great flow of informa- 

tion, but only at the end of the game is there any 

feedback about performance, the game's payoff, 
and that is only a few bits of information. In more 

complex environments, such as ecological, eco- 

nomic or social settings, long sequences of actions 

are typically required before some reward or rein- 

forcement occurs (e.g. reduction of a "drive" like 
hunger, or the filling of some "reservoir"). Some- 
how the system must utilize the "sparse" informa- 
tion about performance, and the large flow of 

other kinds of information, to improve its perfor- 

mance over time. 
Samuel offered lookahead as a (perhaps, the) 

solution to this problem, and provided a convinc- 
ing demonstration of its efficacy. To utilize looka- 

head a system must generate an internal model of 
its environment. This model enables the system to 
"look ahead", allowing it to make predictions 

about the expected consequences of different se- 

quences of action. These predictions can be 

checked as experience accumulates, providing 

feedback that can be used directly in improving 

the model. Note that the resulting procedure for 

modifying the emergent model depends not at all 

on environmental measures of performance. Of 

course, if the model is to be the basis for improved 
performance, some of the predictions at least must 

be concerned with expected rewards or reinforce- 
ments. However, model-based lookahead neatly 
steps around a requirement for continual detailed 

information about performance, and it makes good 

use of the large flow of (non-performance) infor- 

mation supplied by the environment. 
This paper is concerned with the emergence, in 

classifier systems, of organized, rule-based models 
that permit "lookahead". (The paper is a continu- 
ation and elaboration of the paper on classifier 

systems that appeared in 1986 in Physica D 22 [2]. 
Section 1 of that paper details the definitions and 
notations used here; however, most of the relevant 

ideas are sketched below in figs. 1, 2, 5 and 6.) 
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2. Symbols and internal models 

An internal model is above all a "symbolic" 
entity and its predictions depend upon an appro- 
priate manipulation of those symbols. Most cur- 
rent computation-based approaches to symbols 
and symbol-processing can be assigned to one of 
two broad classes: The "language-based" systems, 
such as those implementing the physical symbol 
system hypothesis [3], and the "stimulus-oriented" 
systems, such as those investigated by the connec- 
tionists (see, for example, ref. [4]). In general, 
physical symbol systems are good at lookahead, 
anticipation, and means-ends analysis, when sup- 
plied with an appropriate internal model of the 
environment (usually given as a problem space), 
but they generally lack procedures for the au- 
tonomous construction of experience-based inter- 
nal models (new problem spaces). Connectionist 
systems are good at the autonomous construction 
of categories on the basis of knowledge acquired 
while exploring an environment, but they lack 
procedures for organizing that knowledge into 
models that guide the system by lookahead and 
anticipation. 

It is important that both kinds of system, dif- 
ferent as they are in most respects, share a 
common characteristic: Information about the en- 
vironment, as supplied by the input interface, 
always comes with "labels" of some kind. These 
labels may be quite sophisticated (such as labeling 
a given input image a "chair") or they may be 
quite primitive (such as the retinal coordinates of 
an input neuron). The question, in generating in- 
ternal models, is not whether or not input is 
labeled, but rather how sophisticated the labels 
are. Stated another way, it is a question of how 
much "intelligence" the input interface uses in 
translating the environment into the input mes- 
sages processed by the system. 

Both kinds of system thus share a common 
limitation on their ability to categorize the exter- 
nal world: Environmental states that cause the 
input interface to generate the same input "mes- 
sage" are indistinguishable, and further process- 

ing, however implemented, can only categorize the 
distinguishable. Indeed, this limitation is shared 
by any system that acquires all its environmental 
information via an input interface. If such a sys- 
tem is computationally complete with respect to 
sorting input "messages" into categories, then it 
has reached the limits of what categorization can 
do for it. 

Clearly, when it comes to building models, there 
is a great difference between a system that has a 
selection of higher-level categories "wired" into its 
input interface and a system that uses only primi- 
tive, coordinate-like labels to formulate higher- 
level categories. In the latter case, categories and 
symbols, assuming they emerge, tend to be con- 
structed of "building blocks" - new categories and 
symbols are constructed by using "good" building 
blocks, and experience is thereby transferred to 
new situations. In the former case, categories and 
symbols tend to be monolithic and experience 
must be transferred from one domain to another 
by other means. 

Taking this into account, there are reasons that 
both the stimulus-oriented and language-based ap- 
proaches should pay close attention to Edelman's 
[5] points about "re-entrant connections": A sys- 
tem can only generate autonomous internal activ- 
i t y -  and lookahead is an example par excellance 
of such an ac t iv i ty- i f  it has "re-entrant connec- 
tions". This point is closely allied to the one Hebb 
[6] makes in his magnum opus The Organization of 
Behavior: Re-entrant connections provide a recir- 
culation of pulses that allows parts of the network 
to act independently of recent inputs. As the sys- 
tem learns, clusters of neurons use some of the 
re-entrant connections to form reverberating "cell 
assemblies", and these in turn become building 
blocks (a kind of flexible "compositionality", ~ la 
Pylyshyn [7]) for sophisticated sub-routines called 
"phase sequences". Several nerve net simulations 
of the 50's, now largely forgotten (e.g. Rochester 
et al. [8]), exhibited the emergence of "cell assem- 
blies", under Hebb's learning rule, when repeating 
input patterns were applied to randomly con- 
nected networks with re-entrant connections. 
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For the stimulus-oriented connectionists this 
point bears on the construction of internal models 
in another way: It is a long-established theorem of 
automata theory (going back to McCulloch and 
Pitts [9]) that a system constructed of intercon- 
nected "logical" elements (such as formal neu- 
rons), without internal feedback loops, can attain 
only a very limited subclass of the class of finite 
automaton behaviors. For example, networks 
without internal feedback loops cannot exhibit 
indefinite memory ("at  some time in the indefinite 
past, event x occurred"). Accordingly, without such 
loops, it is impossible to construct an internal 
storage for pulses or a counter for pulses. It fol- 
lows that most computational routines are impos- 
sible for nets without loops. In particular, internal 
feedbacks are necessary if the networks are to be 
able to produce emergent, semi-autonomous inter- 
nal models that provide predictions and anticipa- 
tions. 

At the other end of the scale, language-based 
systems are almost always computationally com- 
plete because they directly employ some "univer- 
sal" language such as LISP. However, they have 
little to say about the emergence of categories and 
internal models under the impetus of experience. 
This is partly the result of using symbols that are 
pre-defined and close to monolithic, and partly the 
result of designing systems that require inputs 
(" symbols") that activate appropriate sections of a 
high-level interpreter. It is difficult to design phys- 
ical symbol systems that can learn using the 
"low-level" data supplied by natural environ- 
ments. The learning mechanisms used for lan- 
guage-based systems (such as the "chunking" 
mechanism used by Laird et al. [3] in Soar) look 
much more like compilation than like the origina- 
tion of new categories. 

Classifier systems occupy a middle ground be- 
tween these two approaches. They construct mod- 
els by using experience to extract simple sub- 
structures (building blocks) that can be combined 
in a variety of ways to yield plausible models. 
(Hebb makes allowance for similar possibilities by 
providing for the recombination of parts of cell 
assemblies via processes he calls "fractionation" 

and "recruitment".)  It is important that these 
building blocks must be used in a fluid, context- 
dependent way. If we think of the resulting mod- 
els as complexes of symbols, then, in the sense so 
well described by Hofstadter (in chapters XI and 
XII of ref. [10]), the symbols must be active. In a 
later discussion on the topic of active symbols 
[11], Hofstadter quotes E.O. Wilson: 

" 'Mass  communication is defined as the trans- 
fer, among groups, of information that a single 
individual could not pass to another. '"  

and then goes on to say: 

"One  has to imagine teams of ants [read "neu- 
ral firings"] cooperating on tasks, and information 
passing from team to team that no ant [" neuron"] 
is aware o f . . .  

. . .  [W]hat guarantee is there that we can skim 
off the full fluidity of the top-level activity of a 
brain and encapsulate i t -  without any lower sub- 
s t r a te -  in the form of some computational rules. 
To ask an analogous question, what guarantee is 
there that there are rules at the "cloud level" 
(more properly speaking, the level of cold fronts, 
isobars, trade winds, and so on) that will allow 
you to say accurately how the atmosphere is going 
to behave on a large scale?... 

The difference between my active symbols 
(" teams") and the passive symbols (ants, tokens) 
of the information-processing school of AI is that 
the active symbols flow and act on their own. In 
other words, there is no higher-level agent (read 
"program")  that reaches down and shoves them 

around." 

It is the notion that symbols are composed of 
building blocks that can be recombined fluidly in 
response to context that makes emergence of sym- 
bols and internal models a natural, almost in- 
evitable, process. 

Different combinations of building blocks yield 
different internal models that compete and gain 
varying degrees of confirmation as experience ac- 
cumulates. Parts of highly confirmed models, and 
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sometimes whole models, serve as building blocks 
for still more sophisticated models and competi- 
tions. (As one implementation of this notion, see 
the parallel, rule-based, message-passing systems 
discussed in Holland et al. [12].) In principle, such 
a system could yield an "upper"  layer that be- 
haves much as described by the physical symbol 
system hypothesis. However, when it comes to the 
origination of new hypotheses and models, the 
upper layer is the servant of the lower layers. 
Whether one prefers the stimulus-oriented or the 
language-based approach; it seems to me a great 
risk to ignore processes that construct models by 
extracting and combining building blocks. 

3. Classifier systems and marker-passing Iookahead 

The remainder of this paper is devoted to an 
outline of a classifier system (a distributed, paral- 
lel system, hence essentially connectionist) that is 
rule-based and lookahead-oriented (hence akin to 
physical symbol systems that use means-ends 
analysis). It continually augments its models by 
adding rules and proto-symbols (tags) as it gains 
experience in its environment. The objectives of 
the design are to (i) use a small set of domain- 
independent "local" mechanisms to (ii) provide 
for the emergence of a hierarchical, epoch-guided 
lookahead based on experience. 

A standard classifier system involves a set of 
message-passing rules in condit ion/act ion form. 
The action part of a rule specifies a message that is 
to be posted when it is executed. A rule is only 
executed when there are messages present that 
satisfy its condition part. Many rules can be active 
simultaneously. Overt actions (affecting the envi- 
ronment) are the result of messages directed to the 
output  (effector) interface. (See figs. 1, 2 and 5, 
and, for more detail, Holland [2].) 

Lookahead amounts to an extension of this 
system wherein the system attempts to predict the 
effect of a sequence of actions so as to base its 
current overt action on expected long-term conse- 
quences. (For example, in the game of checkers, 
the program decides to move a checker to the edge 
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I Input interface I Bucket brigade 
detectors (adjusts rule strengths) 

Genetic algorithm 
(generates new rules) 

,,,, 
,,,, 

I Output interface 
effectors I 

Environment 

Fig. 1. General organization of a classifier system. Each rule 
is in condi t ion/ac t ion  form and has an assigned strength that 
reflects its past usefulness. On  each time step, all conditions are 
checked against the message list for matching messages. If all 
the conditions of a rule are matched then it competes in terms 
of its strength to post  the message specified by its action part. 
Many rules may win the competition, with many  messages 
being posted for processing on the next round. The input 
interface provides one or more messages that describe the 
current state of  the environment,  and the output interface 
translates some messages into actions that affect that environ- 
ment. Learning takes place by (i) modifying the strengths of 
rules to reflect experienced usefulness, and by (ii) generating 
new rules to replace weak rules. The overall performance of the 
system is measured in terms of payoff it receives from the 
environment.  

of the board, anticipating that the move will make 
possible a adouble-jump" four moves hence.) 

Because classifier systems are parallel systems it 
is natural to think of a lookahead process that 
traces many possible courses of action simultane- 
ously. Marker propagation over a network pro- 
vides a useful metaphor for exploring this possibil- 
ity. (Fahlman's [13] treatise provides a detailed 
description of parallel marker propagation.) In the 
present context we can describe the network, and 
marker propagation over it, as follows (see figs. 3 
and 4): 

(1) Each node in the marker propagation net- 
work corresponds to some equivalence class (cate- 
gory) over the environmental states. The directed 
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MESSAGE LIST 
k-bitstrings cond 1 

10011011 i####### 
00100000 11111111 

RULE LIST 
cond z / message[strength] 

####00## / 00110000 [68] 
00000000 / 11111111 [83] 

11101100 #00110## 00###### / 11111111 [240] 

J ) 
specifies subset adjusted by credit 
of messages assignment (bucket 

bdgade) to reflect 
average "usefulness" 

Fig. 2. Specification of messages and conditions in a classifier 
system. " ~ " ' s  in the condition part of a rule act as "wild 
cards" or "don ' t  cares", accepting any value at that position in 
a message. A condition with more ~ ' s  is more general in the 
sense that it accepts a broader range of messages. Rules with 
matched conditions bid to post the message specified by their 
action part. The bid is equal to c(rule strength)(rule specificity) 
where c is a fraction (say c = 0.1) and rule specificity is given 
by k -  (no. of  :~'s). Winners are chosen with a probability 
proportional to the size of their bids. 

a v 

b 
IF the environ, is in state (category) U 

°~ r '  action r' is taken AND 

"%V' THEN the environ, state is (expected to be 
in category) V' 

Fig. 3. An example of a causal network. (a) Fragment  of a 
"causal  net" version of an internal model. (b) Interpretation of 
an edge of the causal net in terms of rules. 

edges connecting the nodes correspond to possible 
actions that will cause state transitions in the 
environment. (The directed edges amount to hy- 
pothesized causal relations.) 

(2) The lookahead process is initiated by placing 
a marker on the node corresponding to the current 
state (more carefully, the equivalence class con- 
taining the current state). 

v 

b 

U r 

r 
Fig. 4. An example of lookahead using marker propagation. 
(a) Marker propagation prior to an action decision at state S. 
(b) Marker propagation after action is carried out  at state S, 

(3) Copies of the marker are then propagated 
along each directed edge leading from that node, 
the result being that the initial node and all nodes 
that can be reached from it in one step are marked. 

(4) The process is iterated T times, with the 
result that a "cone" of nodes is marked represent- 
ing the states (equivalence classes) that can be 
attained from the current state via various action 
sequences of length T. 

This elementary process can be made more so- 
phisticated in several ways. Among the possible 
extensions, the following two play a key role in the 
extended classifier system: 

(1) The system's experience will typically be 
indeterministic. That is, a given action applied to 
a given node (equivalence class) leads to different 
consequences (equivalence classes) at different 
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times. (This happens because the equivalence 
classes are too "coarse" to capture some distinc- 
tions necessary for a fully causal description.) 
Under such circumstances the edges can be as- 
signed probabilities corresponding to the relative 
frequency with which the alternatives occur. 
Marker propagation still proceeds in parallel, but 
probabilistically. The lookahead "cone" now con- 
tains action sequences of various lengths, looka- 
head proceeding to greater depth along more 
probable paths. 

(2) Equivalence classes often have "values" at- 
tached to them. (The evaluation functions used in 
game-playing programs provide a concrete exam- 
p l e -  the evaluation function provides an estimate 
of the general value of attaining a given equiva- 
lence class.) To induce the system to explore more 
valuable paths, the probability of propagation can 
be made proportional to the product of the proba- 
bility assigned to the edge and the value assigned 
to the node at the tip of the edge. This number is 
akin to the expected value of the transition. With 
this addition, the length of each path in the looka- 

Messages are assigned a tag region (say a prefix) 

I ~  1001 ...001 ...0 
tag region [0000 = "message from input interface"] 

Classifiers are coupled by tags 

Classifier (~) is coupled to classifiers ( ~  and ( ~  via tag 1000 

,*-"from input interface~. . 
( prey 

(~) rffff~ #0##...#0#.,.# / ff-0o--~l 11...11 
- mosVinagl ;~9  t"non-striped" 

"execute 'pursue' 
("prey" (sequence" 

0 ~-@#...#/fo-~oo...o 

(,.-"from input interface" ., . 

( ~  ~i~##1#...##1 .., 1# / r~(Pr;~o0._o 

.round.J t t"On'the'ground" 
~-"dull-colored" 

Fig. 5. Tags and rule coupling. 

head "cone"  varies roughly as the average ex- 
pected value assigned to that path. 

Note that the purpose of lookahead is to influ- 
ence the decision as to what action is to be taken 
next. That is, the current action is predicated upon 
an estimate of the future value of moving in that 
general "direction". (More carefully, the first step 
away from the current state is chosen on the basis 
of the estimated values of the alternatives attain- 
able in the part of the lookahead cone that in- 
cludes that first step.) Note also that, once that 
first step has been taken, the parts of the looka- 
head cone involving other possible first steps are 
now largely irrelevant. However, the part of the 
lookahead cone involving the chosen first step 
applies and can be ex tended-  marker propagation 
can continue from the end-points of the sub-cone, 
rather than starting all over at the new "current"  

state. 

4. Tag-mediated Iookahead 

The first step in providing a classifier system 
with lookahead is implementation of the "causal" 
network that constitutes the system's internal 
model of its environment. For each transition to 
be modeled, this is a matter of implementing the 
rule " IF  the environment is in state S A N D  action 
A is taken T H E N  (the system expects) state S' will 
occur". This can be accomplished by coupling a 
rule that is active when state (category) S is de- 
tected to a rule that is active when state (category) 
S' is detected. In classifier systems, tags (see fig. 5) 
typically provide the couplings that implement 
pointers, action sequences, and the like. Thus, tags 
play a central role in the construction of the 
causal network, and they constitute natural build- 
ing blocks for emergent models. 

Tags are implemented by setting aside certain 
regions in internal messages, typically a prefix or a 
suffix, though any region will do. For example, 
any message with the prefix 1101 will satisfy a 
condition of the form 1101 # . . .  # .  Stated another 
way, a classifier with the condition 1101# . . .  # 
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has an "address".  To send a message to it, simply 
put the prefix 1101 on the message. There are 
many variations on this theme. For example, con- 
sider a pair of classifiers C1 and C2 that send 
messages tagged with 1101 and 1001, respectively. 
A classifier with the condition 1101# .. .  # will 
attend only to C1, but a classifier with condition 
1 # 0 1 # . . . #  will attend to both C1 and C2. 
Moreover, a message with a given tag can activate 
a whole cluster of classifiers, if all the classifiers in 
the cluster have conditions that are sensitive to 
that tag. Fig. 5 provides an example of this use of 
tags, and the interested reader will find a detailed 
description of the use of tags to implement a 
semantic net (KL-One) in Stephanie Forrest's pa- 
per [14]. 

Tags supply the "glue" for models in classifier 
systems and, as with any other part of a classifier, 
they are subject to modification and elaboration 
under the recombinations induced by the genetic 
algorithm. As the genetic algorithm supplies the 
system with additional coupled rules, the tags 
acquire meaning in terms of the model-based ef- 
fects they mediate (actions, anticipations, predic- 
tions, and the like). In effect, tags serve as active 
proto-symbols providing context dependent asso- 
ciations: Many classifiers can be activated by a 

message with a single t a g - t h e  particular cluster 
activated being dependent on the other messages 
present. 

As the system evolves, it seems reasonable to 
expect that these proto-symbols will become asso- 
ciated with external, manipulatable patterns 
(physical symbols). These external patterns, feed- 
ing back through the input interface, would "close 
the loop", moving the proto-symbols to full-fledged 
symbols with distal access. 

5. Hierarchical models 

The internal models that arise naturally in the 
classifier system format are best described as de- 
fault hierarchies (see fig. 6). The (useful) rules that 
are easiest for the system to discover are those 
with many # ' s  (don't cares) in the condition part. 
This is true both because such rules are easy to 
formulate and because they are tested often. Any 
such rule that gives the system a slight statistical 
advantage will be quickly strengthened. These rules 
act as default rules. More specific rules that con- 
tradict the default rules in specific situations are 
tested and established less quickly. These rules act 
as exception rules. There can of course be excep- 

"moving . . . .  near . . . .  small" 

1#10##### is a more specific condition than 1######## and hence tends 
to win competitions when both conditions are satisfied. 
The emerging default hierarchy is "symbiotic" 

(~) prevents 0 from making mistakes, therefore 
increasing ( ~  's net payoff rate, while (~) increases 
the overall pay off rate. 

Fig. 6. An example of a simple internal model in a classifier system. 
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tions to the exceptions, and so on, whence comes 
the default hierarchy. Fig. 6 illustrates the point 
that, in classifier systems, these contradictory rules, 
rather than competing to displace each other, can 
act in a symbiotic fashion. Because of this, default 
hierarchies form a "natural"  emergent structure in 
classifier systems. 

The elements (rules) in the hierarchy can also 
respond to events of different duration. For exam- 
ple (see fig. 7), there could be a rule that has a 
condition that is satisfied so long as it is daytime 
and the " food  reservoir" (stomach) is unfilled. 
Such a rule could continue to post its message 
over a considerable time interval, which could be 
called the H U N T  epoch. There could also be a 
more specific rule that has its condition satisfied 
under the same conditions but only so long as 
there is no "prey"  in sight. This rule would be 
active for only a part of the H U N T  epoch, a 
sub-epoch that could be called the SEARCH 
epoch. Again a hierarchy forms, an epoch hierar- 
chy, involving conditions that are increasingly spe- 
cific (as in the earher default hierarchy) and activi- 
ties of progressively shorter duration with more 
detailed specification. 

In the figures and discussions that follow, it is 
useful to keep in mind a simple system-environ- 
ment configuration, wherein the state of the con- 
figuration can be described as a vector over four 
properties: 

{ day, night} x { hungry, not hungry) 

x {prey (in sight) ,no prey (in sight)} 

x { (prey) off-center, (prey) centered}. 

Actions (the edges of the transition graph) can be 
restricted to the set: 

{"  r u n " , "  twiddle", center, forward }. 

The intended action sequences of the system could 
then be collected into equivalence classes with 
various levels of refinement and duration (see fig. 
7). At the coarsest level, the system's action, 

"hunting",  is an activity that could last the better 
part of a day and would consist of admixtures of 
the elementary actions " run" ,  "twiddle",  etc. Early 
in the system's experience the epoch hierarchy 
would consist of a single level and this admixture 
of elementary actions would be more or less ran- 
domly determined. With experience, the epoch 
hierarchy supplies additional levels of specificity 
and the admixture becomes more context depen- 
dent. That is, the coarsest equivalence class, which 
extends over both "space" (different instanta- 
neous states) and " t ime",  is progressively refined 
into classes of shorter duration and fewer states, 
yielding an epoch hierarchy. 

6. The lookahead process in classifier systems 

We are now in a position to look at an outline 
of the mechanisms necessary for a classifier system 
to produce emergent experience-based internal 
models. The basic objective is to add lookahead to a 

standard classifier system without adding new rule 
types or changing the operators that generate the 

rules. In particular, this means that the lookahead 
process should use the same coupled rules that are 
generated by the "triggering" processes in the 
standard classifier system (see section 3.2 of ref. 
[12] or section 9.3 of ref. [15]). 

- ~ .  {day, hungry} / HUNT 
/ / / 

/ "  
{~ay, hungry, _ I _ I{day, hungry, " ~ "  noprey} /SEARC.H[--~ prey} /PURSUE--I~ 

,. .-z.. 
/ t ¢ "'1 ~ 

~ {daYo hpUeyg}ry' ' R U N H {daYo ~rUnyg}ry' / TWlD D L E ~'IP 1 ', 

~_~{6ay, hungry, | l { d a y ,  hungry, 
prey, off-ctr.} /CENTER/L~I~| prey, ctr'd.} / FORWARD 

Fig. 7. An example of an epoch-directed hierarchical model 
(see text). 
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The main triggering mechanism is that for pro- 
ducing coupled rules (see p. 90 of ref. [12]). The 
paradigm case occurs when: 

(1) Rule R is executed at time t, 
(2) Rule R', not coupled to R, is executed at 

time t + 1, 
(3) R' is substantially strengthened (via the 

bucket brigade credit assignment algorithm or by 
direct payoff from the environment). 

This condition triggers the generation of a pair 
of coupled offspring rules, R1 and RI' ,  that are 
activated under the same conditions as R and R' 
but are coupled by a (newly generated) tag. The 
pair so generated does not replace the parents, but 
simply enters the system as a competing hypothe- 
sis. If the coupled pair captures a causal relation 
in the environment, it will be strengthened under 
the bucket brigade (because of the profit made by 
RI ' )  and it will persist. If not, it will quickly lose 
strength (because R1 fails to set the stage for the 
activation of RI'),  becoming a candidate for re- 
placement by other newly generated hypotheses. 

There are three types of rules that serve as the 
elements of a causal network in a standard classi- 
fier system: 

(1) Node rules. The condition part of a node 
rule is satisfied by a message designating a particu- 
lar state (category). The action part of the rule 
sends a message indicating that the state has been 

"marked" .  
(2) Transition rules. The condition part of a 

transition rule is satisfied by a message designat- 
ing a particular state (category). The action part of 
the rule sends a message designating a response 
(the label of the corresponding edge in the causal 
network) and the state (category) expected when 
that response is made to the state designated in 
the condition part. 

(3) Action rules. An action rule has two condi- 
tions in its condition part: The first condition is 
satisfied by a message designating a particular 
state (category), and the second condition requires 
the presence of a special action message. The 
action part of the rule sends a message to the 
output interface that causes some overt action in 
the environment. 

The messages produced by these rules have three 

parts: 
(1) a prefix part allocated to tags, 
(2) a middle part typically allocated to response 

specification, and 
(3) a final part typically allocated to state speci- 

fication. 
Where helpful in the discussions and figures 

that follow the three parts will be indicated by a 
sequence of three pairs of parentheses correspond- 
ing to the three parts: ( )( ) ( ) .  

Three different tags are used to distinguish dif- 
ferent interactions between the coupled rules rep- 
resenting the causal network: 

(1) An " i "  (" input")  tag indicates that the mes- 
sage originates from the input interface. 

(2) An "a"  ("action") tag indicates that the 
message is directed to the output interface. 

(3) A " v "  (" virtual") tag indicates a message 
that is involved in node marking. There are two 

subtypes to the v tag: 
(i) A "v 0 "  tag is used on messages that initiate 

the marking process. 
(ii) A " v l "  tag is used on messages involved in 

an ongoing marking process. 
The lookahead process depends upon the fact that 

the node and transition rules are coupled so that 

messages tagged with (v) are propagated just as 
messages tagged with an (a). However, when the 
message is tagged with a (v), actions upon the 
environment are not carried out, and the "next  
states" are those anticipated by the transition rules 
under the response (r) specified by the message. 

Fig. 8 uses these conventions to show in detail 
how a classifier system would carry out the mark- 
ing process illustrated in fig. 4. The caption for the 
figure gives an overview of the process. 

7. The virtual bucket brigade 

We emphasized at the start that the purpose of 
lookahead is to allow a system to make current 
action decisions on the basis of anticipated future 
consequences of those decisions. So far we have 
described a classifier system that can use causal 
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Fig. 8. Timing diagram for classifiers implementing the lookahead process of fig. 4. The process begins, on the top line of the 
diagram, when a message (i0)-- S comes from the input interface, indicating that the environment is in state (category) S. This 
message starts the lookahead process by activating the transition rules on lines 2 and 3 of the diagram. The "pass through" # in the 
action part of these rules transf6rms the (i0) tag to a (vl) tag producing the messages (vl)(r)U and (vl)(r')U', at time t + 1 on fines 4 
and 5, indicating that markers are passing over the corresponding edges in the causal network. These messages activate the node rules 
on lines 6 and 7, issuing the messages (v0)(r)U and v(0)(r')U', at time t + 2 on lines 8 and 9. These messages initiate further marker 
passing from the nodes corresponding to U and U'. This basic process is continued until an "act" signal appears at time t + T + 3, 
indicating that the system must take some overt action. This causes the action rule associated with state S, on the fifth line from the 
bottom of the diagram, to be activated yielding the message (a0) - - S. This message now causes the transition rules on lines 2 and 3 to 
issue messages (al)(r)U and (al)(r')U', which, because of their tags, are directed to the output interface. There they compete since 
they specify different responses. (Lookahead affects this competition through the virtual bucket brigade discussed below.) In this 
example, the response r wins out, causing the state transition from S to U to occur in the environment. The new environmental 
message (i0)-- U keeps the transition rules for V and V' (lines 10 and 11) active, but the transition rules for V" and V '" (line 12 and 
.. .  ) go inactive, in effect dropping the markers from the latter nodes because they are not accessible from the new state U. 

couplings (acquired through triggering) as the ba- 
sis for marker-passing lookahead. We have yet to 
indicate the way in which this lookahead can 
influence current decisions. Once again Samuel [1] 
leads the way. In the checkersplayer, he associates 
a "cone"  of future possibilities (cf. step 4 of the 
description of marker-passing lookahead in sec- 

tion 3) with each currently possible response 
(move). That  is, for each currently possible move, 
his program looks down all sequences of moves 
(to some feasible depth) that begin with that move. 
He then weighs each first move by applying an 
evaluation function to the far ends (anticipated 
future states) of the associated cone. In effect, he 
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"backs  up" the values of future possibilities to the 
current decision point. 

The bucket brigade algorithm does a similar 
kind of "backing up" over coupled classifiers. 
Classifiers at the end of a chain of coupled classi- 
fiers "pass their strength back", via bids, to earlier 
classifiers in the sequence (see p. 309 of ref. [2], 
section 3.1.2 of ref. [12], or section 5 of ref. [15]). 
This occurs only over an overt sequence of actions 
(and over several trials of the action sequence), 
but it does suggest that the bucket brigade might 
be used for a similar purpose during the "vir tual"  

actions. 
To this end, we add a virtual strength register to 

each rule in the system, to supplement the strength 
register already possessed by each rule. (This is 
the only substantial modification we have to make 
to a standard classifier system to implement the 
overall lookahead process.) Now, a rule activated 
by a message with an (a) tag passes its bid back to 
the strength register of the sender, in the usual 
way, but a rule activated by a message with a (v) 
tag passes its bid back to the sender's virtual 
strength register. Each time a rule is first activated 
in a marker-passing (v) process, its virtual strength 
register is set to the value of its strength register. 
Thereafter, as long as it is involved in the ongoing 
marker-passing process, the virtual strength is re- 
peatedly modified by the bucket brigade. More- 
over, the bids it makes are based on the virtual 
strength rather than the actual strength. Under 
this regime, the associated rules in each cone, once 
active, stay active as long as they are part of the 
cone (i.e., so long as the corresponding nodes are 
"marked") .  This means that the bucket brigade is 
iterated over and over again through those rules. 
In effect, the virtual strengths come to reflect the 
value that would have been passed back over 
many overt trials of the action sequence (assuming 
that sequence accurately predicts the state changes 
in the environment). 

To have the lookahead process influence the 
current action decision, we need only have the 
bids of the rules sending action messages be in- 
fluenced by values in their virtual strength regis- 

ters. As stated earlier, overt acts occur only when 
an "act"  message is posted. Then, each rule at the 
start of a lookahead cone (1) posts a message with 
an (a) tag and a mid-part that specifies a response 
(see fig. 8), and (2) makes a bid that determines 
how it fares in the competition to control the 
output interface. When this bid is influenced by 
the virtual strength register, the competition at the 
output interface is affected by the cumulative 
"backing up" of future values under the virtual 
bucket brigade. (It is probably sensible to let the 
actual strength also influence the bid; the relative 
influence of the two strengths could be determined 
by a "daringness" coefficient, which could be 
"wired in" or could be set adaptively by other 
rules.) 

Note that, if the competition between rules is 
probabilistic, based on the relative sizes of their 
bids, then lookahead proceeds more rapidly along 
paths wherein the corresponding transition rules 
make high bids. (Even though the competition is 
probabilistic, many winners are allowed at any 
given time, thereby exploiting the inherent paral- 
lelism of the system. See (3) in section 8.) More- 
over, under this regime, the virtual bucket brigade 
produces a sophisticated estimate of the future: 
The value returned to each rule amounts to the 
expected value of its lookahead cone (the values of 
the endpoints weighted by the probabilities of 
reaching them). 

8. Further refinements 

(1) Because epoch hierarchies arise naturally 
when the genetic algorithm is applied to classifier 
systems, it is worth while to try to exploit them 
under marker-passing lookahead. One way to do 
this is to modify the triggered coupling. Under the 
modification, node rules would be formed with 
two conditions in the condition part. One condi- 
tion would be the same as before, being satisfied 
by a message designating the state (category) of 
the corresponding node. The other condition 
would be satisfied by the message of some more 
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general classifier active at the same time. That is, 
the second condition would (often) couple the 
node rule to high level, "epoch-marking" rules. 

Fig. 9 sketches the use of rules to implement 
this kind of epoch hierarchy. Support (see sections 
2.3.2 and 4.1.5 of ref. [12]) enables rules (and 
anticipations) belonging to the coarser epochs to 
influence the more detailed actions at deeper levels 
of the hierarchy. In other words, the "desirability" 
of a given epoch, as measured by the strength of 
the corresponding rule and the virtual strength 
supplied by lookahead at that level, adds support 
(as defined in section 2.3.2 of ref. [12]) to various 
branches at lower levels, influencing lookahead 
and decisions at that level. The resulting structure 

can be interpreted as a quasi-homomorphic image 
(see section 2.1 and appendices 2A and 2B of ref. 
[12]) of the environmental dynamics. 

(2) For rules dealing with coarse equivalence 
classes, as in the upper levels of an epoch hierar- 
chy, a given response may at different times lead 
to states in different categories. That is, the model 
at that level is ambiguous as to outcomes because 
it inadequately distinguishes external states. As a 
result, the triggering operators generate more than 
one rule for a given category-response pair (S, r). 
Under such conditions, it is important that proba- 
bilities be assigned to each transition rule that 
leads from S and predicts a different outcome 
under response r. This probability can be treated 

[The nodes below ( 0 and • ) are labelled with the corresponding marker 
message; The edges are labelled with the corresponding transition rule.] 

..,0 (vO)( "search")({day, hungry, prey}) higher-level 
(epoch) ~ .  !##,O)#({day, hungry, no prey})/(#11){"search")({day, hungry, prey}) 

(vO }( "search")({day, hungry, no prey}) 

lower-level ~ '  (vO)("¢tr.')({day, hungry, prey, ctr'd. }) 
/ (##O)#({day, hungry, prey, off-ctr. })/(#11 )("ctr.") 

~/(vO )("ctr.") ({day, hungry, prey, off-ctr.}) ({day, hungry, prey, ctr'd.}) 

support ~ "search" 

Fig. 9. Sketch of a support-based classifier implementation of an epoch hierarchy. 
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as a frequency count that is updated each time the 
response r is overtly executed. The frequency count 
is increased for the rule R predicting the state 
category S' that actually follows the response, and 
it is decreased for all other rules associated with 
the pair (S, r). This can all be normalized to a 
fraction between 0 and 1 by treating the count as 
an average: Let P(R, t) be the normalized fre- 
quency associated with rule R at time t, and let 
d(S', t) = I just in case S' occurs at time t. Then 

P ( R ,  t + 1) = [1 - ( 1 / n ) ] P ( R ,  t) + d(S ' ,  t ) /n  

provides a reasonable updating formula when a 
constant n >> 1 is used. For example, if P(R, T)  
= 0.5 and n = 4, and the corresponding d(S', t) = 
1 at T, T + 3, and T + 4, then P(R, T + 4) = 0.70, 
a reasonable approximation to the 0.75 experi- 
enced in the last 4 steps. If S" corresponds to the 
category S', and R' is the transition rule from (S, r) 
to S", then P(R' ,  T + 4 ) =  0.30, as is appropriate. 

Note that, when a prediction is verified, the 
corresponding rule is also strengthened. Consider, 
then, two pairs of rules: 

(i) { (#  ) ( #  )(no p r e y ) / ( # ) ( "  twiddle")(no prey); 
( # ) ( # ) ( n o  p r e y ) / ( # ) ( "  twiddle")(prey)) 

(ii) ( ( # ) ( # ) ( n o  p r ey ) / (# ) ( " run" ) (no  prey); 
( # ) ( # ) ( n o  prey)/(~e)("run")(prey)) .  

Under either "twiddle" or " run"  the result of a 
search at any instant may be either "no  sighting 
of prey", or "prey  comes into view". Past proba- 
bilities will determine the relative frequency with 
which the second rule in each pair wins, which is 
tantamount to determining the expected length of 
a "search" before prey is encountered. This, in 
turn, under the virtual bucket brigade and compe- 
tition (see (3) below), determines the probability 
that " twiddle" will be employed over "run" .  

(3) The list of satisfied rules becomes a sample 
space, once the associated probabilities of winning 
are available. This observation provides a useful 
way for determining the number of rules that will 
be allowed to win the competition at any given 
time: The list of satisfied rules is sampled repeat- 
edly until some rule is selected for a second time, 

at which point the sampling process terminates. 
The rules so selected post their messages. This 
process has the advantage that the list will be 
short if there are a few high-probability rules (the 
system has well-established means of acting upon 
the situation), and long otherwise (allowing exten- 
sive alternatives, to be resolved in terms of mutual 
exclusions at the output interface). 

(4) In order that competition and limitation of 
the size of the message list not cause "marked"  
nodes to be deactivated, the system could be sup- 
plied with a special message list for messages from 
nodes. Note that a special list is only necessary if 
the node rules are weak. Otherwise the method in 
(3) provides for an expanding message list with 
occasional losses-something closer to human 
lookahead with its difficulty of retaining a con- 
scious picture of all the branches in a "bushy"  
structure. 

9. Commentary 

The emergent structure discussed in this paper 
is an architecture that provides for parallel looka- 
head under distributed control. Though we have, 
by now, accumulated considerable experience with 
learning procedures and emergent structures in 
"s tandard" classifier systems (see ref. [15]), we 
have no experience with classifier systems exhibit- 
ing lookahead. For this reason, the new system is 
organized to exploit structures that are known to 
emerge under the learning algorithms (the bucket 
brigade algorithm and triggered genetic algo- 
rithms) of the standard systems. It is interesting 
that a small change in the standard sys t em-ad-  
dition of a virtual strength register coordinated 
with an additional use of the bucket brigade algo- 
rithm in virtual mode-p rov ides  a sophisticated 
way for future anticipations to influence current 
action. In effect, the decisions are based on the 
"expected" value of the cone of future possibilities 
associated with each perceived action possibility. 
It should be emphasized that these ideas have yet 
to be tested in a complete sys tem-  we have expe- 
rience only with fragments. 
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