
Physica D 42 (1990) 188-201
North-Holland

CONCERNING THE EMERGENCE OF TAG-MEDIATED LOOKAHEAD

IN CLASSIFIER SYSTEMS

John H. H O L L A N D
Computer Science and Engineering, Psychology, The University of Michigan, Ann Arbor, MI 48109, USA

This paper, after a general introduction to the area, discusses the architecture and learning algorithms that permit
automatic parallel, distributed lookahead to emerge in classifier systems. Simple additions to a "standard" classifier system
suffice, principally a new register called the virtual strength register, and a provision to use the bucket brigade credit
assignment algorithm in "virtual" mode to modify values in this register. With these additions, current actions are decided on
the basis of the expected values associated with the "lookahead cones" of possible alternatives.

1. Introduction

Whenever one studies adaptation or machine

learning in realistic contexts one constraint soon

comes to occupy a central position: Feedback

about performance is intermittent and lacks detail.
Samuel [1], at the very start of the modern study

of emergent computation, realized that games -

checkers is the example he u s e d - provide a good
paradigmatic example of the problem. During the

play of a game there is a great flow of informa-

tion, but only at the end of the game is there any

feedback about performance, the game's payoff,
and that is only a few bits of information. In more

complex environments, such as ecological, eco-

nomic or social settings, long sequences of actions

are typically required before some reward or rein-

forcement occurs (e.g. reduction of a "drive" like
hunger, or the filling of some "reservoir"). Some-
how the system must utilize the "sparse" informa-
tion about performance, and the large flow of

other kinds of information, to improve its perfor-

mance over time.
Samuel offered lookahead as a (perhaps, the)

solution to this problem, and provided a convinc-
ing demonstration of its efficacy. To utilize looka-

head a system must generate an internal model of
its environment. This model enables the system to
"look ahead", allowing it to make predictions

about the expected consequences of different se-

quences of action. These predictions can be

checked as experience accumulates, providing

feedback that can be used directly in improving

the model. Note that the resulting procedure for

modifying the emergent model depends not at all

on environmental measures of performance. Of

course, if the model is to be the basis for improved
performance, some of the predictions at least must

be concerned with expected rewards or reinforce-
ments. However, model-based lookahead neatly
steps around a requirement for continual detailed

information about performance, and it makes good

use of the large flow of (non-performance) infor-

mation supplied by the environment.
This paper is concerned with the emergence, in

classifier systems, of organized, rule-based models
that permit "lookahead". (The paper is a continu-
ation and elaboration of the paper on classifier

systems that appeared in 1986 in Physica D 22 [2].
Section 1 of that paper details the definitions and
notations used here; however, most of the relevant

ideas are sketched below in figs. 1, 2, 5 and 6.)

0167-2789/90/$03.50 © Elsevier Science Publishers B.V.
(North-Holland)

J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems 189

2. Symbols and internal models

An internal model is above all a "symbolic"
entity and its predictions depend upon an appro-
priate manipulation of those symbols. Most cur-
rent computation-based approaches to symbols
and symbol-processing can be assigned to one of
two broad classes: The "language-based" systems,
such as those implementing the physical symbol
system hypothesis [3], and the "stimulus-oriented"
systems, such as those investigated by the connec-
tionists (see, for example, ref. [4]). In general,
physical symbol systems are good at lookahead,
anticipation, and means-ends analysis, when sup-
plied with an appropriate internal model of the
environment (usually given as a problem space),
but they generally lack procedures for the au-
tonomous construction of experience-based inter-
nal models (new problem spaces). Connectionist
systems are good at the autonomous construction
of categories on the basis of knowledge acquired
while exploring an environment, but they lack
procedures for organizing that knowledge into
models that guide the system by lookahead and
anticipation.

It is important that both kinds of system, dif-
ferent as they are in most respects, share a
common characteristic: Information about the en-
vironment, as supplied by the input interface,
always comes with "labels" of some kind. These
labels may be quite sophisticated (such as labeling
a given input image a "chair") or they may be
quite primitive (such as the retinal coordinates of
an input neuron). The question, in generating in-
ternal models, is not whether or not input is
labeled, but rather how sophisticated the labels
are. Stated another way, it is a question of how
much "intelligence" the input interface uses in
translating the environment into the input mes-
sages processed by the system.

Both kinds of system thus share a common
limitation on their ability to categorize the exter-
nal world: Environmental states that cause the
input interface to generate the same input "mes-
sage" are indistinguishable, and further process-

ing, however implemented, can only categorize the
distinguishable. Indeed, this limitation is shared
by any system that acquires all its environmental
information via an input interface. If such a sys-
tem is computationally complete with respect to
sorting input "messages" into categories, then it
has reached the limits of what categorization can
do for it.

Clearly, when it comes to building models, there
is a great difference between a system that has a
selection of higher-level categories "wired" into its
input interface and a system that uses only primi-
tive, coordinate-like labels to formulate higher-
level categories. In the latter case, categories and
symbols, assuming they emerge, tend to be con-
structed of "building blocks" - new categories and
symbols are constructed by using "good" building
blocks, and experience is thereby transferred to
new situations. In the former case, categories and
symbols tend to be monolithic and experience
must be transferred from one domain to another
by other means.

Taking this into account, there are reasons that
both the stimulus-oriented and language-based ap-
proaches should pay close attention to Edelman's
[5] points about "re-entrant connections": A sys-
tem can only generate autonomous internal activ-
i t y - and lookahead is an example par excellance
of such an ac t iv i ty- i f it has "re-entrant connec-
tions". This point is closely allied to the one Hebb
[6] makes in his magnum opus The Organization of
Behavior: Re-entrant connections provide a recir-
culation of pulses that allows parts of the network
to act independently of recent inputs. As the sys-
tem learns, clusters of neurons use some of the
re-entrant connections to form reverberating "cell
assemblies", and these in turn become building
blocks (a kind of flexible "compositionality", ~ la
Pylyshyn [7]) for sophisticated sub-routines called
"phase sequences". Several nerve net simulations
of the 50's, now largely forgotten (e.g. Rochester
et al. [8]), exhibited the emergence of "cell assem-
blies", under Hebb's learning rule, when repeating
input patterns were applied to randomly con-
nected networks with re-entrant connections.

190 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

For the stimulus-oriented connectionists this
point bears on the construction of internal models
in another way: It is a long-established theorem of
automata theory (going back to McCulloch and
Pitts [9]) that a system constructed of intercon-
nected "logical" elements (such as formal neu-
rons), without internal feedback loops, can attain
only a very limited subclass of the class of finite
automaton behaviors. For example, networks
without internal feedback loops cannot exhibit
indefinite memory ("at some time in the indefinite
past, event x occurred"). Accordingly, without such
loops, it is impossible to construct an internal
storage for pulses or a counter for pulses. It fol-
lows that most computational routines are impos-
sible for nets without loops. In particular, internal
feedbacks are necessary if the networks are to be
able to produce emergent, semi-autonomous inter-
nal models that provide predictions and anticipa-
tions.

At the other end of the scale, language-based
systems are almost always computationally com-
plete because they directly employ some "univer-
sal" language such as LISP. However, they have
little to say about the emergence of categories and
internal models under the impetus of experience.
This is partly the result of using symbols that are
pre-defined and close to monolithic, and partly the
result of designing systems that require inputs
(" symbols") that activate appropriate sections of a
high-level interpreter. It is difficult to design phys-
ical symbol systems that can learn using the
"low-level" data supplied by natural environ-
ments. The learning mechanisms used for lan-
guage-based systems (such as the "chunking"
mechanism used by Laird et al. [3] in Soar) look
much more like compilation than like the origina-
tion of new categories.

Classifier systems occupy a middle ground be-
tween these two approaches. They construct mod-
els by using experience to extract simple sub-
structures (building blocks) that can be combined
in a variety of ways to yield plausible models.
(Hebb makes allowance for similar possibilities by
providing for the recombination of parts of cell
assemblies via processes he calls "fractionation"

and "recruitment".) It is important that these
building blocks must be used in a fluid, context-
dependent way. If we think of the resulting mod-
els as complexes of symbols, then, in the sense so
well described by Hofstadter (in chapters XI and
XII of ref. [10]), the symbols must be active. In a
later discussion on the topic of active symbols
[11], Hofstadter quotes E.O. Wilson:

" 'Mass communication is defined as the trans-
fer, among groups, of information that a single
individual could not pass to another. '"

and then goes on to say:

"One has to imagine teams of ants [read "neu-
ral firings"] cooperating on tasks, and information
passing from team to team that no ant [" neuron"]
is aware o f . . .

. . . [W]hat guarantee is there that we can skim
off the full fluidity of the top-level activity of a
brain and encapsulate i t - without any lower sub-
s t r a te - in the form of some computational rules.
To ask an analogous question, what guarantee is
there that there are rules at the "cloud level"
(more properly speaking, the level of cold fronts,
isobars, trade winds, and so on) that will allow
you to say accurately how the atmosphere is going
to behave on a large scale?...

The difference between my active symbols
(" teams") and the passive symbols (ants, tokens)
of the information-processing school of AI is that
the active symbols flow and act on their own. In
other words, there is no higher-level agent (read
"program") that reaches down and shoves them

around."

It is the notion that symbols are composed of
building blocks that can be recombined fluidly in
response to context that makes emergence of sym-
bols and internal models a natural, almost in-
evitable, process.

Different combinations of building blocks yield
different internal models that compete and gain
varying degrees of confirmation as experience ac-
cumulates. Parts of highly confirmed models, and

,LH. Holland/Concerning the emergence

sometimes whole models, serve as building blocks
for still more sophisticated models and competi-
tions. (As one implementation of this notion, see
the parallel, rule-based, message-passing systems
discussed in Holland et al. [12].) In principle, such
a system could yield an "upper" layer that be-
haves much as described by the physical symbol
system hypothesis. However, when it comes to the
origination of new hypotheses and models, the
upper layer is the servant of the lower layers.
Whether one prefers the stimulus-oriented or the
language-based approach; it seems to me a great
risk to ignore processes that construct models by
extracting and combining building blocks.

3. Classifier systems and marker-passing Iookahead

The remainder of this paper is devoted to an
outline of a classifier system (a distributed, paral-
lel system, hence essentially connectionist) that is
rule-based and lookahead-oriented (hence akin to
physical symbol systems that use means-ends
analysis). It continually augments its models by
adding rules and proto-symbols (tags) as it gains
experience in its environment. The objectives of
the design are to (i) use a small set of domain-
independent "local" mechanisms to (ii) provide
for the emergence of a hierarchical, epoch-guided
lookahead based on experience.

A standard classifier system involves a set of
message-passing rules in condit ion/act ion form.
The action part of a rule specifies a message that is
to be posted when it is executed. A rule is only
executed when there are messages present that
satisfy its condition part. Many rules can be active
simultaneously. Overt actions (affecting the envi-
ronment) are the result of messages directed to the
output (effector) interface. (See figs. 1, 2 and 5,
and, for more detail, Holland [2].)

Lookahead amounts to an extension of this
system wherein the system attempts to predict the
effect of a sequence of actions so as to base its
current overt action on expected long-term conse-
quences. (For example, in the game of checkers,
the program decides to move a checker to the edge

of tag-mediated Iookahead in classifier systems 191

Message Rule
List List

i,
!

I Input interface I Bucket brigade
detectors (adjusts rule strengths)

Genetic algorithm
(generates new rules)

,,,,
,,,,

I Output interface
effectors I

Environment

Fig. 1. General organization of a classifier system. Each rule
is in condi t ion/ac t ion form and has an assigned strength that
reflects its past usefulness. On each time step, all conditions are
checked against the message list for matching messages. If all
the conditions of a rule are matched then it competes in terms
of its strength to post the message specified by its action part.
Many rules may win the competition, with many messages
being posted for processing on the next round. The input
interface provides one or more messages that describe the
current state of the environment, and the output interface
translates some messages into actions that affect that environ-
ment. Learning takes place by (i) modifying the strengths of
rules to reflect experienced usefulness, and by (ii) generating
new rules to replace weak rules. The overall performance of the
system is measured in terms of payoff it receives from the
environment.

of the board, anticipating that the move will make
possible a adouble-jump" four moves hence.)

Because classifier systems are parallel systems it
is natural to think of a lookahead process that
traces many possible courses of action simultane-
ously. Marker propagation over a network pro-
vides a useful metaphor for exploring this possibil-
ity. (Fahlman's [13] treatise provides a detailed
description of parallel marker propagation.) In the
present context we can describe the network, and
marker propagation over it, as follows (see figs. 3
and 4):

(1) Each node in the marker propagation net-
work corresponds to some equivalence class (cate-
gory) over the environmental states. The directed

192 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

MESSAGE LIST
k-bitstrings cond 1

10011011 i#######
00100000 11111111

RULE LIST
cond z / message[strength]

####00## / 00110000 [68]
00000000 / 11111111 [83]

11101100 #00110## 00###### / 11111111 [240]

J)
specifies subset adjusted by credit
of messages assignment (bucket

bdgade) to reflect
average "usefulness"

Fig. 2. Specification of messages and conditions in a classifier
system. " ~ " ' s in the condition part of a rule act as "wild
cards" or "don ' t cares", accepting any value at that position in
a message. A condition with more ~ ' s is more general in the
sense that it accepts a broader range of messages. Rules with
matched conditions bid to post the message specified by their
action part. The bid is equal to c(rule strength)(rule specificity)
where c is a fraction (say c = 0.1) and rule specificity is given
by k - (no. of :~'s). Winners are chosen with a probability
proportional to the size of their bids.

a v

b
IF the environ, is in state (category) U

°~ r ' action r' is taken AND

"%V' THEN the environ, state is (expected to be
in category) V'

Fig. 3. An example of a causal network. (a) Fragment of a
"causal net" version of an internal model. (b) Interpretation of
an edge of the causal net in terms of rules.

edges connecting the nodes correspond to possible
actions that will cause state transitions in the
environment. (The directed edges amount to hy-
pothesized causal relations.)

(2) The lookahead process is initiated by placing
a marker on the node corresponding to the current
state (more carefully, the equivalence class con-
taining the current state).

v

b

U r

r
Fig. 4. An example of lookahead using marker propagation.
(a) Marker propagation prior to an action decision at state S.
(b) Marker propagation after action is carried out at state S,

(3) Copies of the marker are then propagated
along each directed edge leading from that node,
the result being that the initial node and all nodes
that can be reached from it in one step are marked.

(4) The process is iterated T times, with the
result that a "cone" of nodes is marked represent-
ing the states (equivalence classes) that can be
attained from the current state via various action
sequences of length T.

This elementary process can be made more so-
phisticated in several ways. Among the possible
extensions, the following two play a key role in the
extended classifier system:

(1) The system's experience will typically be
indeterministic. That is, a given action applied to
a given node (equivalence class) leads to different
consequences (equivalence classes) at different

J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems 193

times. (This happens because the equivalence
classes are too "coarse" to capture some distinc-
tions necessary for a fully causal description.)
Under such circumstances the edges can be as-
signed probabilities corresponding to the relative
frequency with which the alternatives occur.
Marker propagation still proceeds in parallel, but
probabilistically. The lookahead "cone" now con-
tains action sequences of various lengths, looka-
head proceeding to greater depth along more
probable paths.

(2) Equivalence classes often have "values" at-
tached to them. (The evaluation functions used in
game-playing programs provide a concrete exam-
p l e - the evaluation function provides an estimate
of the general value of attaining a given equiva-
lence class.) To induce the system to explore more
valuable paths, the probability of propagation can
be made proportional to the product of the proba-
bility assigned to the edge and the value assigned
to the node at the tip of the edge. This number is
akin to the expected value of the transition. With
this addition, the length of each path in the looka-

Messages are assigned a tag region (say a prefix)

I ~ 1001 ...001 ...0
tag region [0000 = "message from input interface"]

Classifiers are coupled by tags

Classifier (~) is coupled to classifiers (~ and (~ via tag 1000

,*-"from input interface~. .
(prey

(~) rffff~ #0##...#0#.,.# / ff-0o--~l 11...11
- mosVinagl ;~9 t"non-striped"

"execute 'pursue'
("prey" (sequence"

0 ~-@#...#/fo-~oo...o

(,.-"from input interface" ., .

(~ ~i~##1#...##1 .., 1# / r~(Pr;~o0._o

.round.J t t"On'the'ground"
~-"dull-colored"

Fig. 5. Tags and rule coupling.

head "cone" varies roughly as the average ex-
pected value assigned to that path.

Note that the purpose of lookahead is to influ-
ence the decision as to what action is to be taken
next. That is, the current action is predicated upon
an estimate of the future value of moving in that
general "direction". (More carefully, the first step
away from the current state is chosen on the basis
of the estimated values of the alternatives attain-
able in the part of the lookahead cone that in-
cludes that first step.) Note also that, once that
first step has been taken, the parts of the looka-
head cone involving other possible first steps are
now largely irrelevant. However, the part of the
lookahead cone involving the chosen first step
applies and can be ex tended- marker propagation
can continue from the end-points of the sub-cone,
rather than starting all over at the new "current"

state.

4. Tag-mediated Iookahead

The first step in providing a classifier system
with lookahead is implementation of the "causal"
network that constitutes the system's internal
model of its environment. For each transition to
be modeled, this is a matter of implementing the
rule " IF the environment is in state S A N D action
A is taken T H E N (the system expects) state S' will
occur". This can be accomplished by coupling a
rule that is active when state (category) S is de-
tected to a rule that is active when state (category)
S' is detected. In classifier systems, tags (see fig. 5)
typically provide the couplings that implement
pointers, action sequences, and the like. Thus, tags
play a central role in the construction of the
causal network, and they constitute natural build-
ing blocks for emergent models.

Tags are implemented by setting aside certain
regions in internal messages, typically a prefix or a
suffix, though any region will do. For example,
any message with the prefix 1101 will satisfy a
condition of the form 1101 # . . . # . Stated another
way, a classifier with the condition 1101# . . . #

194 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

has an "address". To send a message to it, simply
put the prefix 1101 on the message. There are
many variations on this theme. For example, con-
sider a pair of classifiers C1 and C2 that send
messages tagged with 1101 and 1001, respectively.
A classifier with the condition 1101# .. . # will
attend only to C1, but a classifier with condition
1 # 0 1 # . . . # will attend to both C1 and C2.
Moreover, a message with a given tag can activate
a whole cluster of classifiers, if all the classifiers in
the cluster have conditions that are sensitive to
that tag. Fig. 5 provides an example of this use of
tags, and the interested reader will find a detailed
description of the use of tags to implement a
semantic net (KL-One) in Stephanie Forrest's pa-
per [14].

Tags supply the "glue" for models in classifier
systems and, as with any other part of a classifier,
they are subject to modification and elaboration
under the recombinations induced by the genetic
algorithm. As the genetic algorithm supplies the
system with additional coupled rules, the tags
acquire meaning in terms of the model-based ef-
fects they mediate (actions, anticipations, predic-
tions, and the like). In effect, tags serve as active
proto-symbols providing context dependent asso-
ciations: Many classifiers can be activated by a

message with a single t a g - t h e particular cluster
activated being dependent on the other messages
present.

As the system evolves, it seems reasonable to
expect that these proto-symbols will become asso-
ciated with external, manipulatable patterns
(physical symbols). These external patterns, feed-
ing back through the input interface, would "close
the loop", moving the proto-symbols to full-fledged
symbols with distal access.

5. Hierarchical models

The internal models that arise naturally in the
classifier system format are best described as de-
fault hierarchies (see fig. 6). The (useful) rules that
are easiest for the system to discover are those
with many # ' s (don't cares) in the condition part.
This is true both because such rules are easy to
formulate and because they are tested often. Any
such rule that gives the system a slight statistical
advantage will be quickly strengthened. These rules
act as default rules. More specific rules that con-
tradict the default rules in specific situations are
tested and established less quickly. These rules act
as exception rules. There can of course be excep-

"moving near small"

1#10##### is a more specific condition than 1######## and hence tends
to win competitions when both conditions are satisfied.
The emerging default hierarchy is "symbiotic"

(~) prevents 0 from making mistakes, therefore
increasing (~ 's net payoff rate, while (~) increases
the overall pay off rate.

Fig. 6. An example of a simple internal model in a classifier system.

J.H. Holland//Concerning the emergence of tag-mediated lookahead in classifier systems 195

tions to the exceptions, and so on, whence comes
the default hierarchy. Fig. 6 illustrates the point
that, in classifier systems, these contradictory rules,
rather than competing to displace each other, can
act in a symbiotic fashion. Because of this, default
hierarchies form a "natural" emergent structure in
classifier systems.

The elements (rules) in the hierarchy can also
respond to events of different duration. For exam-
ple (see fig. 7), there could be a rule that has a
condition that is satisfied so long as it is daytime
and the " food reservoir" (stomach) is unfilled.
Such a rule could continue to post its message
over a considerable time interval, which could be
called the H U N T epoch. There could also be a
more specific rule that has its condition satisfied
under the same conditions but only so long as
there is no "prey" in sight. This rule would be
active for only a part of the H U N T epoch, a
sub-epoch that could be called the SEARCH
epoch. Again a hierarchy forms, an epoch hierar-
chy, involving conditions that are increasingly spe-
cific (as in the earher default hierarchy) and activi-
ties of progressively shorter duration with more
detailed specification.

In the figures and discussions that follow, it is
useful to keep in mind a simple system-environ-
ment configuration, wherein the state of the con-
figuration can be described as a vector over four
properties:

{ day, night} x { hungry, not hungry)

x {prey (in sight) ,no prey (in sight)}

x { (prey) off-center, (prey) centered}.

Actions (the edges of the transition graph) can be
restricted to the set:

{" r u n " , " twiddle", center, forward }.

The intended action sequences of the system could
then be collected into equivalence classes with
various levels of refinement and duration (see fig.
7). At the coarsest level, the system's action,

"hunting", is an activity that could last the better
part of a day and would consist of admixtures of
the elementary actions " run" , "twiddle", etc. Early
in the system's experience the epoch hierarchy
would consist of a single level and this admixture
of elementary actions would be more or less ran-
domly determined. With experience, the epoch
hierarchy supplies additional levels of specificity
and the admixture becomes more context depen-
dent. That is, the coarsest equivalence class, which
extends over both "space" (different instanta-
neous states) and " t ime", is progressively refined
into classes of shorter duration and fewer states,
yielding an epoch hierarchy.

6. The lookahead process in classifier systems

We are now in a position to look at an outline
of the mechanisms necessary for a classifier system
to produce emergent experience-based internal
models. The basic objective is to add lookahead to a

standard classifier system without adding new rule
types or changing the operators that generate the

rules. In particular, this means that the lookahead
process should use the same coupled rules that are
generated by the "triggering" processes in the
standard classifier system (see section 3.2 of ref.
[12] or section 9.3 of ref. [15]).

- ~ . {day, hungry} / HUNT
/ / /

/ "
{~ay, hungry, _ I _ I{day, hungry, " ~ " noprey} /SEARC.H[--~ prey} /PURSUE--I~

,. .-z..
/ t ¢ "'1 ~

~ {daYo hpUeyg}ry' ' R U N H {daYo ~rUnyg}ry' / TWlD D L E ~'IP 1 ',

~_~{6ay, hungry, | l { d a y , hungry,
prey, off-ctr.} /CENTER/L~I~| prey, ctr'd.} / FORWARD

Fig. 7. An example of an epoch-directed hierarchical model
(see text).

196 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

The main triggering mechanism is that for pro-
ducing coupled rules (see p. 90 of ref. [12]). The
paradigm case occurs when:

(1) Rule R is executed at time t,
(2) Rule R', not coupled to R, is executed at

time t + 1,
(3) R' is substantially strengthened (via the

bucket brigade credit assignment algorithm or by
direct payoff from the environment).

This condition triggers the generation of a pair
of coupled offspring rules, R1 and RI' , that are
activated under the same conditions as R and R'
but are coupled by a (newly generated) tag. The
pair so generated does not replace the parents, but
simply enters the system as a competing hypothe-
sis. If the coupled pair captures a causal relation
in the environment, it will be strengthened under
the bucket brigade (because of the profit made by
RI ') and it will persist. If not, it will quickly lose
strength (because R1 fails to set the stage for the
activation of RI'), becoming a candidate for re-
placement by other newly generated hypotheses.

There are three types of rules that serve as the
elements of a causal network in a standard classi-
fier system:

(1) Node rules. The condition part of a node
rule is satisfied by a message designating a particu-
lar state (category). The action part of the rule
sends a message indicating that the state has been

"marked" .
(2) Transition rules. The condition part of a

transition rule is satisfied by a message designat-
ing a particular state (category). The action part of
the rule sends a message designating a response
(the label of the corresponding edge in the causal
network) and the state (category) expected when
that response is made to the state designated in
the condition part.

(3) Action rules. An action rule has two condi-
tions in its condition part: The first condition is
satisfied by a message designating a particular
state (category), and the second condition requires
the presence of a special action message. The
action part of the rule sends a message to the
output interface that causes some overt action in
the environment.

The messages produced by these rules have three

parts:
(1) a prefix part allocated to tags,
(2) a middle part typically allocated to response

specification, and
(3) a final part typically allocated to state speci-

fication.
Where helpful in the discussions and figures

that follow the three parts will be indicated by a
sequence of three pairs of parentheses correspond-
ing to the three parts: ()() () .

Three different tags are used to distinguish dif-
ferent interactions between the coupled rules rep-
resenting the causal network:

(1) An " i " (" input") tag indicates that the mes-
sage originates from the input interface.

(2) An "a" ("action") tag indicates that the
message is directed to the output interface.

(3) A " v " (" virtual") tag indicates a message
that is involved in node marking. There are two

subtypes to the v tag:
(i) A "v 0 " tag is used on messages that initiate

the marking process.
(ii) A " v l " tag is used on messages involved in

an ongoing marking process.
The lookahead process depends upon the fact that

the node and transition rules are coupled so that

messages tagged with (v) are propagated just as
messages tagged with an (a). However, when the
message is tagged with a (v), actions upon the
environment are not carried out, and the "next
states" are those anticipated by the transition rules
under the response (r) specified by the message.

Fig. 8 uses these conventions to show in detail
how a classifier system would carry out the mark-
ing process illustrated in fig. 4. The caption for the
figure gives an overview of the process.

7. The virtual bucket brigade

We emphasized at the start that the purpose of
lookahead is to allow a system to make current
action decisions on the basis of anticipated future
consequences of those decisions. So far we have
described a classifier system that can use causal

J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems 197

t t+l t+2
I I I

(io)--S , I I

(##o)#s / (#11)(r)U [J
(##O)#S / (#11)(r')U' [j

(v l) (r) U , St

(v l) (r ') U ' I IJ

(v l) # U / (vO)#U [J

(v l) # U ' / (vO)#U' IJ

(vO)(r)U , If

(vO)(r ')U' , It

(##O)#U / (#11 X r)V m J

(##O)#U / (#11)(r ')V ' ~ J

(##O)#U' / (#11)(r)V" m J

(v l) (r) V , /t

(v l) (r ')V' , It

(v l) (r) V " , It

act

(iO)#S, [act] I (aO)#S

(aO)--S

(a l) (r) U

(a l) (r ')U '

[envi ron. : SL~ U] = (iO)--U

I I I

t+l t+2

t+T t+T+l
I l q l [I I I t I I

I Note: i, v, and a are treated I
as compound symboEs I
bO, bl and c1. Thus. a rule
like (##0)#S/(#11)(r)U
transforms message (iO)--S
to (vl (r)U.

[-) (iO)-'Ul eBB
[--> (iO)--U

l i e

iooo

iooo

I

, , j m e s s a g e on list

i i ac t ive rule

I I

I I

I I

i iDDD

j IIi i i i i i i i
t+T t+T+l

Fig. 8. Timing diagram for classifiers implementing the lookahead process of fig. 4. The process begins, on the top line of the
diagram, when a message (i0)-- S comes from the input interface, indicating that the environment is in state (category) S. This
message starts the lookahead process by activating the transition rules on lines 2 and 3 of the diagram. The "pass through" # in the
action part of these rules transf6rms the (i0) tag to a (vl) tag producing the messages (vl)(r)U and (vl)(r')U', at time t + 1 on fines 4
and 5, indicating that markers are passing over the corresponding edges in the causal network. These messages activate the node rules
on lines 6 and 7, issuing the messages (v0)(r)U and v(0)(r')U', at time t + 2 on lines 8 and 9. These messages initiate further marker
passing from the nodes corresponding to U and U'. This basic process is continued until an "act" signal appears at time t + T + 3,
indicating that the system must take some overt action. This causes the action rule associated with state S, on the fifth line from the
bottom of the diagram, to be activated yielding the message (a0) - - S. This message now causes the transition rules on lines 2 and 3 to
issue messages (al)(r)U and (al)(r')U', which, because of their tags, are directed to the output interface. There they compete since
they specify different responses. (Lookahead affects this competition through the virtual bucket brigade discussed below.) In this
example, the response r wins out, causing the state transition from S to U to occur in the environment. The new environmental
message (i0)-- U keeps the transition rules for V and V' (lines 10 and 11) active, but the transition rules for V" and V '" (line 12 and
.. .) go inactive, in effect dropping the markers from the latter nodes because they are not accessible from the new state U.

couplings (acquired through triggering) as the ba-
sis for marker-passing lookahead. We have yet to
indicate the way in which this lookahead can
influence current decisions. Once again Samuel [1]
leads the way. In the checkersplayer, he associates
a "cone" of future possibilities (cf. step 4 of the
description of marker-passing lookahead in sec-

tion 3) with each currently possible response
(move). That is, for each currently possible move,
his program looks down all sequences of moves
(to some feasible depth) that begin with that move.
He then weighs each first move by applying an
evaluation function to the far ends (anticipated
future states) of the associated cone. In effect, he

198 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

"backs up" the values of future possibilities to the
current decision point.

The bucket brigade algorithm does a similar
kind of "backing up" over coupled classifiers.
Classifiers at the end of a chain of coupled classi-
fiers "pass their strength back", via bids, to earlier
classifiers in the sequence (see p. 309 of ref. [2],
section 3.1.2 of ref. [12], or section 5 of ref. [15]).
This occurs only over an overt sequence of actions
(and over several trials of the action sequence),
but it does suggest that the bucket brigade might
be used for a similar purpose during the "vir tual"

actions.
To this end, we add a virtual strength register to

each rule in the system, to supplement the strength
register already possessed by each rule. (This is
the only substantial modification we have to make
to a standard classifier system to implement the
overall lookahead process.) Now, a rule activated
by a message with an (a) tag passes its bid back to
the strength register of the sender, in the usual
way, but a rule activated by a message with a (v)
tag passes its bid back to the sender's virtual
strength register. Each time a rule is first activated
in a marker-passing (v) process, its virtual strength
register is set to the value of its strength register.
Thereafter, as long as it is involved in the ongoing
marker-passing process, the virtual strength is re-
peatedly modified by the bucket brigade. More-
over, the bids it makes are based on the virtual
strength rather than the actual strength. Under
this regime, the associated rules in each cone, once
active, stay active as long as they are part of the
cone (i.e., so long as the corresponding nodes are
"marked") . This means that the bucket brigade is
iterated over and over again through those rules.
In effect, the virtual strengths come to reflect the
value that would have been passed back over
many overt trials of the action sequence (assuming
that sequence accurately predicts the state changes
in the environment).

To have the lookahead process influence the
current action decision, we need only have the
bids of the rules sending action messages be in-
fluenced by values in their virtual strength regis-

ters. As stated earlier, overt acts occur only when
an "act" message is posted. Then, each rule at the
start of a lookahead cone (1) posts a message with
an (a) tag and a mid-part that specifies a response
(see fig. 8), and (2) makes a bid that determines
how it fares in the competition to control the
output interface. When this bid is influenced by
the virtual strength register, the competition at the
output interface is affected by the cumulative
"backing up" of future values under the virtual
bucket brigade. (It is probably sensible to let the
actual strength also influence the bid; the relative
influence of the two strengths could be determined
by a "daringness" coefficient, which could be
"wired in" or could be set adaptively by other
rules.)

Note that, if the competition between rules is
probabilistic, based on the relative sizes of their
bids, then lookahead proceeds more rapidly along
paths wherein the corresponding transition rules
make high bids. (Even though the competition is
probabilistic, many winners are allowed at any
given time, thereby exploiting the inherent paral-
lelism of the system. See (3) in section 8.) More-
over, under this regime, the virtual bucket brigade
produces a sophisticated estimate of the future:
The value returned to each rule amounts to the
expected value of its lookahead cone (the values of
the endpoints weighted by the probabilities of
reaching them).

8. Further refinements

(1) Because epoch hierarchies arise naturally
when the genetic algorithm is applied to classifier
systems, it is worth while to try to exploit them
under marker-passing lookahead. One way to do
this is to modify the triggered coupling. Under the
modification, node rules would be formed with
two conditions in the condition part. One condi-
tion would be the same as before, being satisfied
by a message designating the state (category) of
the corresponding node. The other condition
would be satisfied by the message of some more

J.H. Holland//Concerning the emergence of tag-mediated lookahead in classifier systems 199

general classifier active at the same time. That is,
the second condition would (often) couple the
node rule to high level, "epoch-marking" rules.

Fig. 9 sketches the use of rules to implement
this kind of epoch hierarchy. Support (see sections
2.3.2 and 4.1.5 of ref. [12]) enables rules (and
anticipations) belonging to the coarser epochs to
influence the more detailed actions at deeper levels
of the hierarchy. In other words, the "desirability"
of a given epoch, as measured by the strength of
the corresponding rule and the virtual strength
supplied by lookahead at that level, adds support
(as defined in section 2.3.2 of ref. [12]) to various
branches at lower levels, influencing lookahead
and decisions at that level. The resulting structure

can be interpreted as a quasi-homomorphic image
(see section 2.1 and appendices 2A and 2B of ref.
[12]) of the environmental dynamics.

(2) For rules dealing with coarse equivalence
classes, as in the upper levels of an epoch hierar-
chy, a given response may at different times lead
to states in different categories. That is, the model
at that level is ambiguous as to outcomes because
it inadequately distinguishes external states. As a
result, the triggering operators generate more than
one rule for a given category-response pair (S, r).
Under such conditions, it is important that proba-
bilities be assigned to each transition rule that
leads from S and predicts a different outcome
under response r. This probability can be treated

[The nodes below (0 and •) are labelled with the corresponding marker
message; The edges are labelled with the corresponding transition rule.]

..,0 (vO)("search")({day, hungry, prey}) higher-level
(epoch) ~ . !##,O)#({day, hungry, no prey})/(#11){"search")({day, hungry, prey})

(vO }("search")({day, hungry, no prey})

lower-level ~ ' (vO)("¢tr.')({day, hungry, prey, ctr'd. })
/ (##O)#({day, hungry, prey, off-ctr. })/(#11)("ctr.")

~/(vO)("ctr.") ({day, hungry, prey, off-ctr.}) ({day, hungry, prey, ctr'd.})

support ~ "search"

Fig. 9. Sketch of a support-based classifier implementation of an epoch hierarchy.

200 J.H. Holland/Concerning the emergence of tag-mediated lookahead in classifier systems

as a frequency count that is updated each time the
response r is overtly executed. The frequency count
is increased for the rule R predicting the state
category S' that actually follows the response, and
it is decreased for all other rules associated with
the pair (S, r). This can all be normalized to a
fraction between 0 and 1 by treating the count as
an average: Let P(R, t) be the normalized fre-
quency associated with rule R at time t, and let
d(S', t) = I just in case S' occurs at time t. Then

P (R , t + 1) = [1 - (1 / n)] P (R , t) + d(S ' , t) /n

provides a reasonable updating formula when a
constant n >> 1 is used. For example, if P(R, T)
= 0.5 and n = 4, and the corresponding d(S', t) =
1 at T, T + 3, and T + 4, then P(R, T + 4) = 0.70,
a reasonable approximation to the 0.75 experi-
enced in the last 4 steps. If S" corresponds to the
category S', and R' is the transition rule from (S, r)
to S", then P(R' , T + 4) = 0.30, as is appropriate.

Note that, when a prediction is verified, the
corresponding rule is also strengthened. Consider,
then, two pairs of rules:

(i) { (#) (#)(no p r e y) / (#) (" twiddle")(no prey);
(#) (#) (n o p r e y) / (#) (" twiddle")(prey))

(ii) ((#) (#) (n o p r ey) / (#) (" run") (no prey);
(#) (#) (n o prey)/(~e)("run")(prey)) .

Under either "twiddle" or " run" the result of a
search at any instant may be either "no sighting
of prey", or "prey comes into view". Past proba-
bilities will determine the relative frequency with
which the second rule in each pair wins, which is
tantamount to determining the expected length of
a "search" before prey is encountered. This, in
turn, under the virtual bucket brigade and compe-
tition (see (3) below), determines the probability
that " twiddle" will be employed over "run" .

(3) The list of satisfied rules becomes a sample
space, once the associated probabilities of winning
are available. This observation provides a useful
way for determining the number of rules that will
be allowed to win the competition at any given
time: The list of satisfied rules is sampled repeat-
edly until some rule is selected for a second time,

at which point the sampling process terminates.
The rules so selected post their messages. This
process has the advantage that the list will be
short if there are a few high-probability rules (the
system has well-established means of acting upon
the situation), and long otherwise (allowing exten-
sive alternatives, to be resolved in terms of mutual
exclusions at the output interface).

(4) In order that competition and limitation of
the size of the message list not cause "marked"
nodes to be deactivated, the system could be sup-
plied with a special message list for messages from
nodes. Note that a special list is only necessary if
the node rules are weak. Otherwise the method in
(3) provides for an expanding message list with
occasional losses-something closer to human
lookahead with its difficulty of retaining a con-
scious picture of all the branches in a "bushy"
structure.

9. Commentary

The emergent structure discussed in this paper
is an architecture that provides for parallel looka-
head under distributed control. Though we have,
by now, accumulated considerable experience with
learning procedures and emergent structures in
"s tandard" classifier systems (see ref. [15]), we
have no experience with classifier systems exhibit-
ing lookahead. For this reason, the new system is
organized to exploit structures that are known to
emerge under the learning algorithms (the bucket
brigade algorithm and triggered genetic algo-
rithms) of the standard systems. It is interesting
that a small change in the standard sys t em-ad-
dition of a virtual strength register coordinated
with an additional use of the bucket brigade algo-
rithm in virtual mode-p rov ides a sophisticated
way for future anticipations to influence current
action. In effect, the decisions are based on the
"expected" value of the cone of future possibilities
associated with each perceived action possibility.
It should be emphasized that these ideas have yet
to be tested in a complete sys tem- we have expe-
rience only with fragments.

J.H. Holland//Concerning the emergence of tag-mediated Iookahead in classifier systems 201

Acknowledgements

M a n y of the ideas presented here have been

hammered out over the past couple of years in

meet ings of the BACH group at the Univers i ty of

Michigan. Dr. Rick Riolo is current ly prepar ing a

s imula t ion to test his own version of these ideas in

the context of latent learning. The research re-

por ted has been supported, in part, by the Na-

t ional Science Founda t ion under grant IRI-

8904203 and its predecessors, and a substant ia l

par t of the work was done dur ing visits to the

Santa Fe Inst i tute.

References

[1] A.L. Samuel, Some studies in machine learning using the
game of checkers, IBM J. Res. Dev. 3 (1959) 210-229.

[2] J.H. Holland, A mathematical framework for studying
• learning in classifier systems, Physica D 22 (1986) 307-317.

[3] J.E. Laird, P.S. Rosenbloom and A. Newell, Chunking in
Soar: The anatomy of a general learning mechanism,
Machine Learning 1 (1986) 11-46.

[4] D.E. Rumelhart and J.L. McClelland, eds., Parallel Dis-
tributed Processing. (MIT Press, Cambridge, MA, 1986).

[5] G. Edelman, Neural Darwinism: The Theory of Neuronal
Group Selection (Basic Books, New York, 1987).

[6] D.O. Hebb, The Organization of Behavior (Wiley, New
York, 1949).

[7] Z.W. Pylyshyn, Computation and Cognition (MIT Press,
Cambridge, MA, 1986).

[8] N. Rochester, J.H. Holland, L.H. Haibt and W.L. Duda,
Tests on a cell assembly theory of the action of the brain,
using a large digital computer, IRE Trans. Information
Theory IT2 (1956) 80-93.

[9] W.S. McCulloch and W. Pitts, A logical calculus of the
ideas immanent in nervous activity, Bull. Math. Biophys.
5 (1943) 115-133.

[10] D.R. Hofstadter, Gfdel, Escher, Bach: An Eternal Golden
Braid (Basic Books, New York, 1979).

[11] D.R. Hofstadter, Metamagical Themas: Questing For The
Essence of Mind and Pattern (Basic Books, New York,
1985).

[12] J.H. Holland, K.J. Holyoak, R.E. Nisbett and P.R. Tha-
gard, Induction: Processes of Inference, Learning, and
Discovery (MIT Press, Cambridge, MA, 1986).

[13] S.E. Fahlman, NETL: A System for Representing and
Using Real-World Knowledge (MIT Press, Cambridge,
MA, 1979).

{14] S. Forrest, Implementing semantic network structures us-
ing the classifier system, in: Proceedings of an Inter-
national Conference on Genetic Algorithms and Their
Applications (Erlbaum, London, 1985).

[15] L.B. Booker, D.E. Goldberg and J.H. Holland, Classifier
systems and genetic algorithms, Artificial Intelligence 40
(1989) 235-282.

