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In this paper, the existence of effectively computable bounds on the solutions to 
the diophantine equation 

ap” + bqr = c + dp’q” (*I 

is shown. In this equation p, q are taken to be fixed relatively prime positive 
integers and a, b, c, d positive integers. The methods involve the application of 
linear forms in both real and p-ad& logarithms. Also, a result on an inequality 
involving S-integers is used. All constants involved can be explicitly computed in 
terms of the parameters a, b, c, d, p, q, conceivably allowing one to list all solutions 
to (*) for any set of parameters. It is also indicated how the bounds in a particular 
case can be reduced to allow the practical solution of the equation. Finally, the 
methods are demonstrated by the solving of the equations 2” + 3Y = 1 + 2’3” and 
5 .2” + 7 jy = 11 + 2’3”. 0 IWO Academic Press, Inc. 

1. INTR~OUCTI~N 

Brenner and Foster remarked in [l] that the equation 1 + (pq)” = 
pb + q’ (p, q fixed primes) did not lend itself to being solved by their 
elementary congruential methods. This would indicate that more advanced 
methods are necessary to solve this equation. The purpose of this paper is 
not only to demonstrate a method for effectively solving the equation of 
Brenner and Foster, but also to solve a more general equation. Specifically, 
we show that there exist effectively computable upper bounds on the 
exponents x, y, z, w  of the title equation when p, q are fixed relatively prime 
positive integers and a, b, c, dare positive integers. The equation of Brenner 
and Foster arises when a, b, c, d equal 1 and z = w. By effectively solving 
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the equation, we mean a method is given by which all solutions could be 
determined. 

The methods used to obtain the upper bounds on x, y, z, w  are a com- 
bination of linear forms in logarithms, archimedean estimates, and some 
inequalities involving S-integers (used to show the effective computability 
of solutions that are below assumed lower bounds on certain cases involv- 
ing the logarithmic arguments.) In Section 2, using these methods we are 
able to demonstrate the existence of effectively computable upper bounds 
and to show how these bounds can be explicitly computed. We do this by 
combining some archimedean estimates with bounds derived by the 
application of some results from linear forms in p-adic logarithms. We 
make a distinction between cases where a or b equals c and when they do 
not. If equality holds, then by using congruential arguments we can arrive 
at much better bounds. By virtue of the generality of the lemmas used in 
determining the upper bounds in the case a or b not equal to L’, the 
resulting constants are very large. This makes the explicit determination of 
solutions impractical. Hence, in Section 4 we indicate methods by which 
these bounds can be reduced for specific cases by the application of a 
reduction algorithm dependent upon the computation of p-adic logarithms 
to hundreds of places. In Section 5 we combine these methods to solve the 
equations 2” + 3! = 1 + 2’3w and 5 ‘2.’ + 7 .3” = 11 + 2’3”‘. 

2. THE EQUATION ap” + bq?’ = c + dp’q” 

From the following theorem, it follows that the equation 

ap” + bqJ’ = c + dp’q” 

has only finitely many non-trivial solutions (x, y, z, w). 

(1) 

MAIN THEOREM ON S-UNIT EQUATIONS (Evertse [2, Corollary 1, 
p. 2251). Let c, d be constants with c > 0, 0 < d < 1. Let S be a finite set of 
prime numbers. Let n be an integer. There are only finitely many n-tuples of 

rational integers x = (X0, X, , . . . . X,,) composed of primes taken from S such 
that 

x,+x,+ ..’ +x,=0; 

xi, + Xl, + ... +x,,zo 

for each proper non-empty subset {i,, i, , . . . . i, } of { 0, 1, 2, . . . . n} ; 

gcd(X,, X, , . . . . X,) = 1; 

ii Ixkl n IXkl,<c-max(Xi)d. 
k=O PES 
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However, by the nature of the theorem, this result is existential rather 
than effective. To achieve our effective result, we consider two different 
cases for Eq. (1). In Part A of this section we assume a or b # c. In Part B 
we show how to adapt the methods of Part A to a case where equality 
holds. 

A. From now on we can assume without loss of generality that 
p < q. We first derive some archimedean estimates on max(z, w) in terms of 
max(x, Y). 

LEMMA 1. Max(z, w) 3 Cl max(x, y) + C2 where C1 and C, are effec- 
tively computable constants depending on p, q, a, b, c, and d. 

Proof: If d> c, then 
2(d/c)(pq)“““‘A w, 2 (d/c) p’q”’ + 13 (l/c) max(ap”, bqY) 

> (l/c) min(a, b) P~~‘(~*J’). 

If d < c, then 

2(pq)max(‘.w) 2 (d/c) pzqW + 1 > (l/c) min(a, 6) pmax(xsy). 

Let 

and 

Cl = log(P)llog(Pq) 

C2 = (l/log(pq)) min(log(min(a, b)/2d), log(min(a, b)/2c)), 

then 

max(z, w) > Cr max(x, y) + CZ. 

LEMMA 2. Max(x, y) 2 C3 max(z, w) + C, where C3 and C, are effec- 
tively computable constants. 

Proof: It is easily seen from (1) that 

2 max(a, 6) q max(x, Y) 2 c + dpmaxkw) 2 dpmax(z,w). 

Let 

c, = log(p)llog(q) and G = (log(d) - h(2 mada, b))Mog(q), 

then 

max(x, y) > C, max(2, w) + C,. 



DIOPHANTINE EQUATION 197 

We will also need the following result from linear forms of p-adic 
logarithms. 

LEMMA 3 (van der Poorten [4, Theorem 11). Let ul, CQ, . . . . c(, be non- 
zero algebraic integers belonging to afield K of degree D. Let ai denote the 
height of ai and Ai3ai be a number such that log(log(di)) >O. 

Let p be a prime ideal of K lying above the rational prime p, and f, be 
the residue class degree of p. Let eP be the ramification index of p, and 
define gP = (l/2 + e,/(p - 1)). Let b,, b,, . . . . b, be rational integers with 
B>,max(IbJ), b,fO (mod p) Let 

N=log(A,)log(A,)~~~log(A,~,), G, = p’pQ( pf, - 1). 

If c(~lc$...a~-l #O, then 

ordJc@Cr$ . . . E: - 1)~(16(n+1)D)12~“+‘)GpNlog(N)log(A,)log(B). 

It is easily seen that 

mint% z) < ord,,(bqY - c) = ord,,((b/c) qY - 1) + ord,,(c) 

for some prime p1 dividing p. Applying Lemma 3 with n = 2, B = y, we see 
that 

min(x, z) < C, log(y) + G, (2) 

where C, is an effectively computable constant and C6 = ordp,(c). Similarly, 

min(y, w) i C, log(x) + C8. 13) 

We now consider the following four cases. 

Case 1. x<z, y< w. It follows that x< C, log(y)+ C, and y< 
C, log(x) + C8. Combining these two inequalities we find 

x < cs log( CT log(x) + C,) + C6 and Y~cIlog(c,log(Y)+c,)+c,~ 

Hence, xbCg and y<ClO, and it follows that z and w  are also bounded. 

Case 2. z <x, w d y. 

(i) If z 2 w, then combining z < C, log(y) + C, with the inequality 
found in Lemma 1 yields 

C, max(x, y) + C2 <z < C, log(max(x, y)) + C,. 

Hence max(x, y) < C,, and it follows from Lemma 2 that z and w  are also 
bounded. 
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(ii) If w  > z, then 

C, max(x, y) + C2 < w  d C, log(max(x, y)) + C8. 

This results in bounds for the exponents, max(x, y) < C,, and z < w  < C,,. 

For the last two cases we will need the following results. 

LEMMA 4 (Waldschmidt [ 7, Main Result]). Let a1, az, . . . . a, be 
rational numbers, and b,, bz, . . . . b,, be rational integers with B= max( lb,l). 
Put 

Vj=max(l, log(aJ) (i= 1,2, . . . . n), a = v, v, . . . v, 

C 14 = 29”+39n2”Q log(eV,- i), Cl5 = C14 lo&V,). 

ZfA = bl log(a,) + ... + b, log(a,) then 

IAl >exp(-(C,,log(B)+C,,)). 

Note. The statement of this lemma has been simplified to when the ai 
and the bi are rational. The original result is stated for the case when the 
aj and the bj are algebraic (see [7]). 

LEMMA 5. Let S be a set of a finite number of primes, and let T be the 
set of all positive integers composed of these primes. Let 0 < 6 < 1 be a fixed 
real number and a, j3 fixed positive integers, then the inequality 

0 < ax - PY < (BY Y, X,YET 

has only finitely many solutions, all of which can be effectively computed. 

Proof The proof of this lemma follows the same lines as that found in 
Theorem 5.1 of [S]. Obviously py > (l/2) ax else 

PY < ax - BY < (BY)‘. 

But this implies By < 1 which is impossible. Let n = log(ax//?y). Then 

0 < IAl < (ax/py) - 1 c (py)‘-l. 

If X= max(ord,(xy)) as p runs through all the elements of S, then 

oc IAl <pp-+a,*, 

where P is the product of all the elements of S. Applying Lemma 4 we see 
that X is bounded and hence so are x, y. 
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Case 3. x 6 z, w  6 y. Combining these inequalities it follows from (2) 
and (3) that w<C,log(C,log(y)+C,)+C,. Now, from (1) we see that 

If c>ap”, then x<Ci6, whence w  and y are bounded and it follows from 
Lemma 2 that z is bounded. If cd @, then it follows from Lemma 5 that 
for any fixed 6, 0 < 6 < 1, the inequality 

(bq4’-“)d~dp=-bqr-~‘gap” 

holds for all x, y, z, w  except for the finitely many determined by Lemma 5. 
This inequality implies 

(bq’- ~Jh’(~5~O~(Y)+ %-c8)6 <apc5’“P’Y)+ c6. 

Hence, y < CL,, and x, z, w  are also bounded. 

Case 4. z G x, y < w. From (2) and (3) it is easily seen that 
z 6 C, log(C, log(x) + C,) + C6. Thus, just as in Case 3, if c > bq”’ we have 
bounds on the exponents, and if c < bqy we have the inequality 

(up” - C51’=g(C7bdl-)+ cS)+ CC,)6 < bqc7b3(.d + c8. 

Hence, x < Cis, and y, z, w  are also bounded. 

B. In Part A we assumed a or b # c. If a/c or b/c = 1 then we can 
actually determine constants which are much better than CS or C,. To do 
this we make use of the following lemma. 

LEMMA 6. Let p be a prime number, a an integer a > 1, a = 1 (modp), 
and n = ord,(a - 1). Then p is the smallest positive number m such that 
d’s 1 (mod p”+‘). Moreover, ap f 1 (mod p”+*). 

Proof By hypothesis, a = kp” + I (p j k). Then 

u”‘zmkp”+ 1 (mod p” + I). 

However, mkp” + 1~ 1 (mod p”+‘) only if mk E 0 (mod p). Obviously 
m = p is the smallest positive solution. Also, 

@=kp”+‘+ lfl (mod p”+*). 

Let p = p;’ . . . p: and q = qf . . . q/// be the prime factorizations of p and q. 
From (1) we see that if u/c = 1 
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Let m, n be integers such that 

qm s 1 (mod p’;) and qmfl (modp;+‘). 

It follows from applying Lemma 6 repeatedly that 

min(x,z) - n 
YamPI , 

and thus 

mink z) G (logh))-’ log(y) - (log(mYlog(Pl)) + n. 

Similarly, if b/c = 1 we have 

qyin(Y,w) 1 p” _ 1 

and hence 

(5) 

min(y, w) G log(qd)-’ log(x) - (logWllog(ql)) + n’. (6) 

Now it is possible for (1) to be solved as in Part A by substituting (5) and 
(6) for those inequalities involving C5 and CT. 

C. From the results derived in Parts A and B, we can conclude 

THEOREM 1. Let p, q be relatively prime positive integers. Let a, b, c, d be 
positive integers prime to p and q. Then there exists an effectively computable 
constant C19 such that the solutions to 

ap” + bq y = c + dp’q” 

with x, y, z, w positive integers satisfy max(x, y, z, w) G C,,. Moreover, for 
given a, 6, c, d, p, and q, C,, can be explicitly computed. 

3. AN AUXILIARY LEMMA 

Since all of the lemmas used to obtain our bounds provide explicitly 
computed constants, the computation of the bounds on x, y, z, w  is 
relatively straightforward. This is made particularly easy by the application 
of the following lemma. 

LEMMA 7 (Petho and de Weger [3]). Let a > 0, h > 0, b > (e2/h)h, and 
let x satisfy x < a + b(log(x))“. Then, 

x < 2h(a”* + b’lh log(hhb))h. 
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4. REDUCTION OF BOUNDS 

The key to the reduction of the bounds in the general case (a and b # c) 
is as follows. Let p be a rational prime and Sz, be the algabraic closure of 
Q,. Let /I, 8 E 52, such that fl/tI E Qp, and x E Z, x > 0. Put [ = /I/0. Consider 

ord,( < - x) 2 cl + c2 . x, (7) 

where c, and c2 are small constants. The following lemma can be applied. 

LEMMA 8. Let [ =C ui pi be the p-adic expansion of [. Let X, be a 
positive constant. Let Y be the smallest index such that p’> X, and u, # 0. 
Then (7) has no solutions with 

(r-c,)/c,<x<X,. 

Proof (de Weger). Let x < X, satisfy (7). Suppose ord,(i - x) >/ Y + 1. 
Then 

x=Fuipi (modp’+‘). 

By x 3 0, it follows that 

x3u,pr>pr>x,, 

which contradicts x< Xi. Hence ord,([ - x) d r, and the result follows 
immediately. 

Remark 1. If ord,(i - 1) < l/(p - l), then ord,(< - 1) # ord,(log,[). In 
our upcoming application of Lemma 8 to the reduction of upper bounds 
we assume solutions are such that x and y B 1. The cases for x or y = 0 
must be solved independently using different methods. Our experience 
shows us that this is not very difficult. 

We apply Lemma 8 to the cases considered in Part A of Section 2 as 
follows. 

Case 1. Since max(x, y) < max(w, z), Lemma 2 can be written as 

max(x, v) B C, max(x, y) + C,. 

(i) If x > y, then, since x < ord,,((b/c) q” - l), it follows that 

C,. Y + C4 - C6 d ord,,((b/c) qy-‘) = ord,,(log,,(blc) +.v .logPl(q)), 

which is equivalent to 

C, . y + C4 - C, d ord,,(i - y), 
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where [ = - log,,(b/c)/log,,(q). Lemma 8 can be applied to this inequality 
to reduce existing upper bounds on y, from which we can derive reduced 
bounds on x, w, z. 

(ii) If y>x, then 

and so 

C3. x + C4 - C8 6 ord,,(logql(u/c) +x -log,,(p)) 

C3 .x + C, - C, < ord,,({ - x), 

where c = - log,l(u/c)/log,,(p). Applying Lemma 8 to this inequality 
reduces previously computed upper bounds on x. In practice, successive 
application of Lemma 8 reduces the upper bound on solutions until the 
upper bound is very close to the largest solution. 

Case 2. Applying Lemma 1 to the cases z > w  and w  > z we find 

C, -x + C, - C8 < ord,,(log,,(b/c) + x -log,,(q)) 

G. Y + Cd - G G ord,,(log,,(&) + Y .log,,(~)), 

respectively. In each subcase, Lemma 8 can be applied to the ensuing 
inequalities to reduce existing bounds. 

Case 3. (i) If x > w, then it follows from the arguments in Section 1 
that 

(bq’-“)S <up” 

and hence 

x 2 (.Y. 6 log(q) + s log(b) - hd~)MWP) + c.3 hi!(q)). 

Combining this inequality with x < ord,,( (b/c) qy - 1) + C6, Lemma 8 can 
be applied as in the cases before to reduce upper bounds. 

(ii) If x < w, then since w  < ord,,((u/c) px - 1) + C,, we again have 
an inequality to which Lemma 8 can be applied. 

Case 4. If y 2 z, then we must have 

(up” -‘)6 < bq” 

and so 

Y 2 (x .a log(p) + 6 log(a) - ~og(~)Y(log(q) + 6 log(p)). 
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Combining this with y < ord,,((a/c) p* - 1 ), we have an inequality to which 
Lemma 8 can be applied, yielding a reduced upper bound for x from which 
reduced bounds for y, z, and w  can be derived. 

Remark 2. At this point we would like to note that all solutions to the 
inequality of Lemma 5 corresponding to those values of x, y, z, w  not 
satisfying the inequalities of Cases 3 and 4 can be readily computed by 
methods utilizing the well-known continued-fraction reduction algorithm 
(see [6, Chap. 51). 

5. THE EQUATIONS 5.2” + 7 .3y = 11 + 213n’ AND 2” + 3” = 1 + 2’3” 

In this section we use the methods of Sections 2 and 3 to solve two 
diophantine equations. 

EXAMPLE 1. We first solve the equation 

5 .2-x + 7 .3-p = 1 + 11 .2=3&c. 

From Lemmas 1,2, and 3 we find 

max(z, w) b 0.386 . max(x, y) - 0.826, 

max(x, y) Z 0.630 . max(z, w) - 2.4, 

and 

min(x, z) < 7.6 x 1O59 log(y), 

min(y, w) < 2.3 x 106’ log(x). 

To apply Lemma 8 we will need the following information 

wx*ll-l%7mg,3 

=O.lOOll 11010 01111 00101 01111 11001 10001 10100 
01110 10100 01101 10001 00001 10001 01100 11001 
01011 01000 00010 01101 00101 11010 11001 01111 
11110 00110 00100 00101 01101 01011 00011 11001 
00001 11010 10100 10001 01111 10001 11101 01100 
10111 00101 01101 looll... 

(log, 11 - log,5)/log,2 

=0.22100 21020 22101 11110 02010 10212 01112 22201 
22121 02122 11020 01222 20011 01201 11220 10100 
22221 21111 11100 20021 10112 21002 22220 20221 
12001 12212 02011 00112 02102 02101 20001 01022.... 

(8) 
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Also the only ordered pairs (x, y) satisfying 

O<2”-7.3Y<(7.3Y)1’2 (9) 

are (3,O) and (6,2). 
There are no ordered pairs satisfying 

0 < 3” - 5 .2.” < (5 .2Y)l’? 

Case 1. Applying Lemma 7 we can deduce that 

x64.21 x 1O62 and y < 6.37 x 1062. 

(i) If x > y then we see that 

0.630. y - 2.4 d ord,(log,7 - log, 11 +y . log,3). 

We apply Lemma 8 with c = (log,11 - log,7)/log23. We list the upper 
bound and the value for r for each time the lemma was applied. 

(1) Xi=6.37~10~~ r=210 

(2) X1 =338 r=9 

(3) x,=19 r=5 

(4) x1= 12 r=4 

(5) xi=11 r = 4. 

Thus all the solutions satisfy y < 11 and x < 15. The only solution satisfying 
these bounds and the given conditions is (2,2, 3, 2). 

(ii) If XC y, then 

0.630 x - 2.4 < ord,(log3 5 - log, 11 + x. log,2). 

Applying Lemma 8 with c = (log, 1 1 - log, 5)/log,2 we find x i 7 and y < 4. 
There are no solutions satisfying the given conditions and these bounds. 

Case 2. Following the arguments of Section 2 it is easily seen that 

(i) If z > w, then max(x, y) < 5.47 x 1062. From Lemma 2 we derive 
the inequality 

0.630 . y - 2.4 i ord,(log, 7 - log, 1 1 + y . log, 3). 

Applying Lemma 8 we see that w  < y < 11 and z < 16. There are no solu- 
tions satisfying these bounds and the given conditions. 

(ii) If z < w, then max(x, y) d 1.7 x 1O63 and, applying Lemma 8 as 
before, x < 7 and z < w  < 3. This case provides no solutions. 
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Case 3. We consider two subcases. 

(i) If x 3 w, then 

0.44.y-0.513<.u. 

Applying Lemma 8, we see that w  < y < 11 and x d 16. The only solution 
in these ranges is (2,4, 6, 2). 

(ii) If x < w, then x 6 1. It is easily checked that there are no solutions 
in this range. 

Case 4. As with Case 3 there are two subcases. 

(i) If y>z, then 

0.23 ’ x - 0.79 < y. 

Hence x < 11 and y < 6. The only solution in these ranges and satisfying 
the given bounds is (8, 3, 1,6). 

(ii) If y < z, then y < 11. It is easily checked that there are no solutions 
in this range satisfying the given conditions. 

Note. If x = 0, then min(y, w) $ 1: This yields the solution (0, 0, 0, 0). If 
y = 0 then min(x, z) < 2. This yields the solutions (0, 0, 0, 0), (2,0,4,0), 
( 1, 0, 1, I ), and (3,0,2,2). Also, the solutions provided by the ordered 
pairs satisfying (9) are (2,2, 3,2) and (2,4, 6, 2) corresponding to the 
ordered pairs (3,O) and (6, 2). 

THEOREM 2. The diophantine equation 

has only seven solutions in non-negative integers x, y, 2, w. These solutions 
are (x, r: 2, w) = (0, 0, 0, 01, (LO, 1, l), (2, (44, O), (2, 2, 3, 2), (2,4, 62). 
(3, 0, 2, 2) and (8, 3, 1, 6). 

EXAMPLE 2. Consider the equation 

2” + 3 ’ = 1 + 2’3 “‘. 

Following the reasoning in Part B of Section 2 we find 

min(x, z) < 1.5 log(y) + 0.12 

and 

(10) 

min( y, w) <log(x) - 0.8. 
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Obviously these inequalities are much better than those derived in the pre- 
vious example by the application of Lemma 3. These allow us to do away 
with the reduction algorithm. The equation can be solved by combining the 
methods of Part A of Section 2 with the following result. The inequality 

12”-- 37 < min(2”, 3Y))o.5 

has only the solutions (x, y) = (3,2), (5, 3), and (8,5). 

Finally, we may conclude that 

THEOREM 3. The diophantine equation 

2-r+3’= 1+2=3w 

has only ten non-trivial solutions when x, y, z, w are non-negative integers. 
These solutions are (x, y, z, w) = (0, 0, 0, 0), (1, 1,2,0), (2, 1, 1, l), 
(2, 2, 2, I), (3, 2, 4,0), (4, 1, 1,2), (4,2, 3, I), (4,4, 5, l), (6,2, 3,2), and 
(694,492). 

6. DISCUSSION 

In the previous sections we demonstrated the existence of effectively 
computable upper bounds on the solutions to (l), indicated methods for 
the practical determination of solutions in a given case, and applied these 
methods to two equations representing the general (a or b # c) and the 
special (a or b = c) cases. 

Equation (1) is, as indicated before, a generalization of one that 
appeared in Cl]. Since it was noted that this particular equation did not 
lend itself to being solved by elementary means, it was reasonable to 
assume that such advanced methods as linear forms in logarithms would be 
needed to solve it. For a survey of similar equations, some having elemen- 
tary solutions and others requiring very advanced methods, the reader is 
referred to [l, 56-J. 

The restriction of a, b, c, d to positive integers is probably unnecessary 
and equally strong results can most likely be derived using methods similar 
to those found in Section 2. Another loosening of restrictions would be to 
allow p, q and a, b, c, d to be integral elements of an arbitrary algebraic 
field. The lemmas used in this paper extend almost completely to algebraic 
fields and so it would seem that many of the same results would apply. The 
exception might be Lemma 5. This would probably have to be replaced 
with an argument on the heights of the numbers involved. 
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