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Abstract: The properties of ‘“Li are studied in detail in the cluster-orbital shell model assuming the 

structure of ‘Li+n+n. The interactions acting between the constituent particles are carefully 

determined consistently with available data. Large and flexible bases for the valence neutrons are 

represented as a superposition of gaussian functions. The anomalously Iarge radius of “Li is nicely 

reproduced. The density dist~butions calculated clarify the picture of the neutron halo. The binding 

energy is, however, calculated to be l-l.4 MeV short. A possible resolution of this point is discussed 

from the viewpoint of the di-neutron clustering. The quadrupole moment of “Li is predicted to 

be almost the same as that of ‘Li. 

1. Introduction 

The recent development in the experimental technique of using radioactive nuclear 

beams has brought a new possibility of studying properties of nuclei far from 

stability. The measurement of the so-called interaction cross section ‘), for example, 

has led to the extraction of the sizes of p-shell nuclei and shown that all the neutron 

drip line nuclei have anomalously large radii. The nucleus “Li, among others, has 

attracted most attention as a typical example of the light drip line nuclei. The 

characteristic features of “Li include: (i) The two-neutron separation energy of “Li 

is only 200 keV. Note that if “Li is considered as a system of 9Li+ n+n no pair of 

the constituent particles forms a particle-stable state. (ii) The matter root mean 

square radius of “Li determined experimentally is 3.16kO.11 fm [ref. I)], which is 

much larger than the empirical value of V$ r,,A1'3 x2.1 fm. (iii) The transverse 

momentum distribution *) of the nucleons obtained from the inclusive reaction 

“Li + C + 9Li + anything is interpreted as consisting of two gaussian components. 

The narrow momentum distribution seems to suggest the motion of the two valence 

nucleons in a wide spatial region. These correlated properties of “Li all seem to 

support the existence of the so-called neutron halo 3). 

l Work supported in part by the Grant-in Aid for Scientific Research of the Ministry of Education, 

Science and Culture, 1988-1989, Japan and the US National Science Foundation. 
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Although an attempt to understand some of the anomalous properties of “Li has 

been undertaken in shell-model “) and Hartree-Fock approaches 5*6), no consistent 

study has been done for understanding the structure of “Li. Focusing ourselves on 

the properties (i) and (ii) mentioned above we work out in this paper a model which 

we call the cluster-orbital shell model 7Z8) in order to understand the structure of 

“Li. The cluster-orbital shell model is proposed to deal with a system of several 

valence nucleons coupled to a core. It has several advantageous points: Single- 

particle orbits can be determined consistently with underlying potentials between 

the core and the valence nucleon, the effect of continuum spectrum for the single- 

particle state can be taken into account and no spurious center-of-mass motion is 

included no matter how highly the valence nucleons are excited. These merits of 

the model encourage us to apply it especially to the study of neutron-rich nuclei. 

The He isotopes have in fact been investigated with considerable success 7Y8). 

We take up a model for “Li that two valence neutrons move around the nucleus 

9Li. The assumption of the 9Li core may be justified from the systematics of the 

binding energy per particle and the matter root mean square radii of Li isotopes 

that show a rather smooth behavior up to 9Li but a big change between 9Li and “Li 

as a function of neutron number. In calculations which follow we describe 9Li with 

the harmonic-oscillator shell-model wave function of the lowest configuration. The 

extent to which this description is reasonable is confirmed by calculating the ground 

state properties of 9Li. The Ohw wave function predicts the 9Li magnetic moment 

as 3.79 nuclear magneton compared with the observed value of 3.44 n.m. [refs. ‘,‘“)]. 

The matter root mean square radius of 9Li is given by 4 b, where b = G is 

the size parameter of the harmonic-oscillator functions. The experimental value of 

2.32 f 0.02 fm [ref. ‘)] leads to b = 1.69 fm. With this choice of b the 9Li quadrupole 

moment, given by -b*, becomes -2.86 fm’, which is close to the experimental value 

of -2.53 f 0 09 fm2 [ref. ‘“)I. All of these comparisons thus indicate that the Ohw 

simple configuration of 9Li is a reasonable approximation to its ground-state wave 

function provided that b is chosen as 1.69 fm. 

The contents of the paper are as follows. The cluster-orbital shell model for the 

9Li + n + n system is briefly introduced in sect. 2.1. Sects. 2.2 and 2.3 are concerned 

with the investigation of the pair wise constituent particle systems of 9Li+n and 

n + n, respectively. Results of calculations for energy, size, and density distribution 

are given in sect. 3. Summary and discussion is given in sect. 4. 

2. The model 

2.1. THE CLUSTER-ORBITAL SHELL MODEL FOR THE SYSTEM OF ‘Li+n+n 

The detail of the cluster-orbital shell model is explained in ref. *). The following 

is mainly for clarifying the notations needed in the later sections. The basic hamil- 



48 Y. Tosaka, Y. Suzuki / Struciure of “Li 

tonian in our model is given by 

H=Hc+ i hiS-D,z+ 
i=l 

&p ‘P2, 

with 

(1) 

The H, is the core hamiltonian of 9Li. The U is the interaction potential between 
9Li and the valence neutron and consists of central and spin-orbit components. Its 
detailed form will be discussed in sect. 2.2. The Q denotes the interaction potential 
between the two valence neutrons and includes central, spin-orbit and tensor 
components. The pj = -iha/ag, is the momentum conjugate to the radius vector 
coordinate gj from the center-of-mass of the 9Li core to the jth valence neutron, 

~j=~[q-~(r3+r4+~~~+r11)] (j=1,2). (3) 

The last term of eq. (1) is needed because the coordinate system chosen is given by 
a non-orthogonal transformation from the original coordinate system ri. 

The total wave function of the system is specified by the angular momenta of the 
two valence neutrons relative to the core, j, and j,, and their resultant angular 
momentum J. The spin and parity of the “Li ground state is s- [ref. ‘“)I so that the 
ground-state wave function is given in terms of a superposition of various orbital 
functions 

l_i*j*, J, 9; iM)= [E$jIC1) x tijz(2)l.I x h~2(9Li)13~2~ 9 (4) 

where if13,2 t9Li) denotes the properly antisymmetrized, normalized internal wave 
function of 9Li with spin and parity $- and & the wave function of the valence 
neutron. See ref. “) for the proper normalization of the total wave function. 

As the ‘Li+n system has no bound state, the radial part of $j should be flexible 
enough to be able to describe extended spatial motion. We assume that it can be 
approximated with a finite sum of gaussian functions ,~(a, 5) over a parameter a, 
where 

Here b is the length scale parameter chosen as 1.69 fm in accordance with the size 
parameter of the 9Li wave function. The basic single-particle orbit that the valence 
neutron occupies is thus given by 

la&m) =Xt(a, Of Y,(4) x Xl/2ljm . (6) 

Note that orbits of this type are not orthogonai to each other with respect to a, but 
this does not cause any trouble in numerical calculations. 
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The minimum requirement of the Pauli principle is taken into account in eq. (4) 

by imposing that the valence neutron orbit should be orthogonal to the orbits of 

the core neutrons, namely Ia = 1 I = 0 $r) and Ia = 1 I= 1 $n). The elimination of 

these states from the valence orbit can easily be done by acting with the projection 

operator P on the state of eq. (6), where 

P= 1-C ~lO$n)(lO$n~-C Jll$n)(ll~m~. 
m m 

(7) 

It is understood that this elimination is done in the following. The antisymmetry of 

the two valence neutrons is also easily taken into account but the explicit inclusion 

of antisymmetrization between the core and valence nucleons is neglected. This is 

expected to be a good approximation “) especially when the valence orbits spread 

over a wide region. 

The experimental energy of “Li relative to the threshold of 9Li + n + n is -200 keV, 

which is expressed with the expectation value (h, + h,+ v,J = -200 keV when the 

term (l/lOm)p, - pz is neglected. The matrix element of hi is estimated as (hi)? 

810 keV from the binding energy data of “Li and 9Li. The interaction matrix element 

of v,* should therefore be about -1.8 MeV, in order to be consistent with all the 

experimental binding energies of 9-“Li. On the other hand, the two-neutron system 

has no bound state but a virtual state at about 70 keV. If the relative kinetic energy 

of the two neutrons is denoted by f12, we must satisfy the relation ( t,2 + o12) 3 70 keV. 

It is therefore crucial for our model to investigate whether or not the conditions 

(hi)3 810 keV, (o,Js - 1.8 MeV, and (t,z+ u&~70 keV are all met simultaneously. 

2.2. ‘Li+n SYSTEM 

The central part UC of the potential U acting between 9Li and the valence neutron 

is assumed to be given by the folding potential. When the two-nucleon central 

potential is expressed as 

V (8) 

with spin and exchange operators P, and Pi, the resulting folding 

potential has the form 

G,a,J (5) E ([[ Y,,(i) X Xl/21jrx ~3~2(9Wl~~I 

(9) 
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where A = Zpb*, a stands for a set of the indices (1, j) and 

f,~,,,J(x)=Sti&. ~W+~B-~IY?-M+{~W+~B-~H-~M) 
C 

18-A 15h2 

2(4A +9)+(4h +9)* X2 )I 

18-h 15h2 

2(4A+9)+(4~+9)2x2 

+(-l)J+‘w 
3~0 A* 

(4h +9)* 

(21+ 1)(21’+ 1)(2j+ 1)(2j’+ 1) “2(101,0,20) 

(2J+ 1) 1 
x U(&tjj’; 2f) U(Jj’& 2J)X2 

(21-t 1)(21’-!-1) I’* 

(2J+ 1) 1 (f01’0~20}x2 c (-l)‘+” 
II’ 

x U(r+Jf; jr) U(I’+Jt; j’l’) U(U’I1’; 25) i 

1 

i 

4 1 

2 1 . (10) 
I I’ 2 

1 
Here the Rf3) Racah or U-coefficients and 9j coefficients are given in unitary form. 

Note that 5 is 4 times the physical distance between 9Li and the valence neutron, 

Eq. (9) has been obtained with the use of the Bargmann transform technique ‘I). 

The spin-orbit part U’” of the potential U would be generated in a similar way 

from two-nucleon spin-orbit potential. But its calculation turns out to be quite 

tedious. We assume that U’” is diagonal with respect to the index a and its form 

is propo~~onal to the gradient of the 9Li density p(f), that is U”(.$>K 

(I* s)(l/~)(d/d~~~(~). The use of the density averaged over the z-component of 

the 9Li spin leads to the form 

Ut,,,,(i$)= U,$[j(j+l)-I(I+l)-$1 l- [ $(f)2] exp [ -i(f)‘]. (11) 

Considering that the spacing between the spin-orbit partners (j = I*+> of neutron- 

rich nuclei is expected to be smaller than that of stable nuclei, we set U, to 1.5 MeV, 

which gives the 0p3,20p,,2 splitting of 3.8 MeV in 9Li. 

As the spin-orbit potential is fixed we next tune the central potential to reproduce 

the ground state energy of “Li, 810 keV from 9Li + n. We use the Hasegawa-Nagata 

(HN) no. 1 potential ‘*) as the two-nucleon central potential of eq. (8). We have 
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tested various spins of the “Li ground state and found that the state with l+ becomes 

lowest in energy and the state with 2* is almost degenerate with the ground state. 

This is in agreement with the shell model calculation of ref. 13). We note that if we 

increase the strength of the spin-orbit potential by a factor of 2 the state with 

2- comes down close to the ground state. The possibibty that the ground state of 

“‘Li is 2- was discussed in ref. 14), but for this to occur we need a very strong 

spin-orbit potential. The pllz, psi2 and fs12 orbits only are possible for the valence 

neutron to make 1 * from the coupling of “Li with $-. Expressing the relative motion 

function between ‘Li and the neutron as a superposition of states of the type of eq. 

(6) we have minimized the relative motion hamiltonian, -( R2/2m)8’/d{*+ UC+ Ufsl 

for two cases: (1) pljr orbit only, (2) P,/~, p3,,? and fsIz orbits are included. The 

adopted values of a are given in a geometric series as 

o = 0.24 x fOo+)i9 (i=1,2,..., 10) for pr/t , 

a = 0.24~ 10(i-1)/4 (i = 1,2, . . . ,5) for p3/2 and fs12 . 

Small values of a are included to give a good description of the relative motion 

wave functions up to about 10 fm. Multi~Iyi~g by 1.034 the strength of the medium- 

range part of the HN potential reproduces the empirical energy of Xl0 keV, namely 

802 keV in case (1) and 798 keV in case (2). Fig. 1 shows the diagonal parts of the 

potentials of UC, U”‘, and UC+ U’“+ h21(1-i-l)/2m52 for the case pII (I= l,j=i, 

J = 1). Also shown are the wave functions obtained in cases (1) and (2). The UC 

has a longer tail than the Woods-Saxon potential with the empirical parameters. 

The total effective potential has a very broad peak with a height of about 1 MeV at 

5 fm. The amplitude of the corresponding relative wave function is peaked inside 

the potential peak but is spread over a large distance, 

2.3. THE n+n SYSTEM 

We take into account central, spin-orbit and tensor potentials as the two-nucleon 

potential acting between the valence neutrons. The central potential is taken from 

the HN no. 1 potential with a slight modification of its strength described below. 

The strengths and ranges of the spin-orbit (G3RS) and tensor parts are given in 

ref. r2). 

The strength of the central potential is determined so as to reproduce the virtual 

state energy of the singlet S di-neutron system at about 70 keV. We have calculated 

the energy by expanding the relative wave function with gaussian functions 

exp [-$(rfa)*]. The adopted values of a are in unit of fm 
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Fig. 1. The ‘Li-n potentials and their relative wave functions. The solid, dashed and dotted curves of 

the lower half figure denote the diagonal potentials of UC, U”, and UC+ U”+ h’l(f+ l)/Zrr& in case 

of I = 1, j = 4, f = I, respectively. The solid and dashed curves of the upper half figure denote the wave 

functions obtained in cases (1) and (2) described in the text. The relative distance r is related to 6 of 

eq. (3) by r=@t. 

Multiplying by 0.91 the strength of the medium-range part of the HN no. 1 potential 
yields 76 keV for the virtual state energy. For the sake of comparison we also use 
the Volkov no. 2 potential 15) which has no repubion at short distance. This potential 
must be weakened by 21.5% to reproduce the virtual state energy when the Majorana 
exchange mixture is set to 0.62. Fig. 2 shows the wave function and central potential 
for each case. Although the two potentials are different in shape, the wave functions 
obtained are quite similar except for the region of short distance of less than 2 fm. 
It should be noted that small values of a are needed to describe such short distance 
behavior as obtained in the case of the HN potential. The expectation value of the 
central potential is about -1.7 MeV, which is very close to the vaIue required in 
sect. 2.1. 
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Fig. 2. The central part of the nn potential and the nn relative wave function. The solid and dashed 

curves of the lower half figure denote the HN no. 1 and Volkov no. 2 potentials which are adjusted to 

locate the virtual state at about 70 keV. The solid and dashed curves of the upper half figure denote the 

corresponding relative wave functions in the singlet S-channel. 

3. Results of the calculation 

3.1. ENERGY 

The evaluation of the hamiltonian matrix elements is straightforward. Denoting 

the basis state as la,l,j, a,l,j,, J, 3; SM) from eqs. (4) and (61, we obtain 

(ail:j: a;l;j;,J’,t; $MIHla,Z,j, a&j,, J,$;$t4) 

= ~,,‘~j,j;~l,,~8jzj~s12r;(a:~,la~~,)(a~~~la~~*)E(9Li) 
+I U(j,j,+$; JI)U(j;ji;+; J’I) 

I 

x[(-1) j’+j2-J+j’+j’-J’Sj,j;S12r:(a;/2la2l2)(U~I;lh,~jj,,,j,,,lU~l~) 

+~j~~~1,1~(a~~,la,~*)(a~z~lhl~j~,l,i,,Ila212)1 
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where E(9Li) = (IC13,2m(9Li)lH,(~~,,,(9Li)) is replaced with the observed energy of 

the 9Li ground state, and h,,,,,,(&) is defined by 

Since the radial part of eq. (5) has a simple form, the matrix elements for two-nucleon 

interactions of gaussian radial dependence are reduced to the evaluation of integrals 

which can be analytically done. 

Fig. 3 shows the energy of “Li relative to 9Li as a function of a for the configuration 

of seniority 0, [(alj)‘, 0, $; $M) or (a&):=, in short. It is seen that the (ap&:=, state 

makes the energy lowest and is thus expected to be a dominant component in the 

“Li ground state. The energy of the (~p,,,)~,~ configuration is rather flat for a < 0.6. 

This suggests that the valence neutron orbit spreads out to a large distance. The 

energies of the other configurations become rapidly high with increasing a. 

We have successively extended the energy calculation to include larger bases in 

the following way: 

(I) (Pl&=O. 

(2) (pi&o, (sr,z):=o, (d&=0, (d&=0. 

(3) (P&=o, (s,,&=o, (d&=0, (dA=O, (p&=o, (f&=,, (fs,z):=o. 

(4) (p&:=o, (s,,z):=o, (d&=0, (d&:=0, (p&=o, (f,,J:=o, (f&=o, 

k9,&=0, k7,2L. 

(Me’/) 

30- 

20- 

IO- 

0 I I I 

1.0 2.0 
a 

Fig. 3. The energy of “Li from 9Li+n+n as a function of the parameter a for the two-neutron 

configurations with seniority zero. 
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The discrete set of a included are chosen as follows: 

a =: 0.24 x lO(i-i)/9 (i=1,2 ,..., 10) forp,,2r 

a =: 0.24 X (?)(;-I)/4 (i = 1,2,. . . ,5) for s,/~, 

a = 0.24 x 6.25’i-‘“3 (i = 1,2,. . . ,4) otherwise. 
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Thus the number of the basis wave functions is ix 10 x 11= 5.5 in case (1) and 140 

in case (4). Table 1 lists the calculated energy for cases (l)-(4). Also shown are the 

contribution of each term of the hamiltonian. It is impressive that the energy gain 

due to the quite extensive configuration mixing is only 0.23 MeV. The calculated 

energy of case (4) is still higher than the observed one by about 1.4 MeV. We see 

that the configuration mixing increases the two-neutron interaction matrix elements 

but does not play a very effective role in reaching the required value of about 

-1.8 MeV. The ground state wave function is dominated by the (p,,z):=O configura- 

tion. To estimate the importance of states other than (j):=, we have compared two 

cases (2) and (29, where case (2)’ includes the following states 

(2’) (P,,&,, (~,&=o, @5&o, (d&k, (P,,ZPW)J=Z, (p,,&J~=z, 

(s,,&J,=z, (s,,&d=z- 
The result is also shown in table 1 and confirms that there is essentially no difference 

between cases (2) and (2’). The binding energies of the Li isotopes calculated in 

the (0+2)hw shell-mode1 space “) show that there is a good agreement between 

theory and experiment up to “Li but the “Li energy is predicted to be higher than 

the observed one by about 1.7 MeV. 

The HN potential acting between the two valence neutrons has a repulsive part 

at a short distance and thus requires small amplitudes in the short distance behavior 

of the relative wave function of the two neutrons in order to gain energy. This 

damping may not be fully taken into account in the present model because our 

basis states are given on the basis of the independent particle picture. This discussion 

is plausible when we compare (u,~) = -0.84 MeV of case (4) to the value obtained 

in case of the pure n + n system, -1.7 MeV (see sect. 2.3). To see this point further 

TABLE 1 

The energy of “Li from ‘Li+n+ n and the contribution of each term of the 
hamiltonian in units of MeV. The experimental energy is -0.20 MeV. The HN 

no. 1 potential is used as the central part acting between the two valence neutrons. 
See the text for cases (1) to (4) and case (2’) 

Case E (4 + W lb) (T&i PI . PJ 

(1) 1.44 1.77 -0.33 0.0 

(2) 1.30 1.97 -0.59 -0.08 

(3) 1.24 2.12 -0.77 -0. I1 

(4) 1.21 2.17 -0.84 -0.12 

(2)’ 1.29 1.97 -0.59 -0.09 
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we have repeated the calculation using the Volkov potential which has no repulsion 

at short distance. The results of the calculation are shown in table 2. As expected 

increasing the configuration mixing lowers the energy compared to the HN potential 

and gains more two-neutron interaction energy. However, the energy is still deficient 

by about 1 MeV. The percentage of the (s~,~)~+ configuration grows to about 5% 

but the (p1,2)2 configuration still occupies about 90% of the norm of the wave 

function. 

3.2. RADIUS AND DENSITY DISTRIBUTION 

The matter mean square radius of “Li is related to that of 9Li according to the 

formula 

Similarly it is possible to relate the proton and neutron mean square radii of “Li 

to those of 9Li as follows 

To arrive at eq. (14) we omit the cross terms, linear in both $ji and the internal 

coordinates of 9Li. We replace the proton and neutron radii of 9Li with the values 

deduced from the analysis of the interaction cross section ‘), i.e., RF,.,(‘Li) = 2.18 ZIZ 

0.02 fm, RE,,.t9Li) = 2.39 f 0.02 fm. It is also easy to evaluate the expectation values 

of the mean square distance between the valence neutron and the 9Li core, L&.,,,, 

and the mean square distance between the two valence neutrons, dF.,.s.. Table 3 

lists the values of these quantities calculated by using the wave functions obtained 

with the HN potential in cases (l)-(4). The calculated value of the matter radius 

Ry&(“Li) is in excellent agreement with the experimental value. Our result is quite 

TABW. 2 

The energy of “Li from 9Li +n+n and the contributjon of each term of the 

hamiltonian in units of MeV in case of the Volkov no. 2 potential. See the caption 

of tabfe 1 

Case E (h, + M (u,*) kkiP’P2) 

(1) 1.35 1.78 -0.43 0.0 
(2) 1.09 2.19 -0.98 -0.11 
(3) 0‘93 2.60 -1.49 -0.19 
(4) 0.87 2.79 -1.70 -0.21 
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TABLE 3 

Root mean square radii of “Li in units of fm. See the text for their definitions 
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R:m s. D d r.m.s. r.m.s 

Present case: (1) 3.28 2.32 3.58 6.21 8.78 

(2) 3.21 2.33 3.49 6.01 8.01 

(3) 3.20 2.33 3.47 5.97 1.19 

(4) 3.19 2.33 3.46 5.97 7.73 

Ref. 4, 2.81 2.50 2.92 

Ref. ‘) (SKV) 2.61 2.24 2.74 

Ref. “) 2.846 2.153 3.066 

Ref. ‘) (exp.) 3.16+0.11 (2.88*0.11)“) (3.21 kO.17) “) 

“) The experimental values of the proton and neutron radii of “Li are subject to question (I. Tanihata, 

private communication). 

satisfactory compared to the values of refs. 4-6). Although there is a difference 

between theory and experiment for the proton and neutron radii, we note that the 

experimental values are deduced by assuming simple harmonic-oscillator wave 

functions in the common well and do not properly reflect the situation where the 

two valence neutrons spread out to a far distance. It is dangerous to deduce both 

the proton and neutron radii from the interaction cross sections only. The values 

of DT.m.S. and d,,,,,. indicate that the configuration mixing tends to decrease both 

distances to form a compact system. The value of R~,,,.(“Li) in case (4) with the 

Volkov no. 2 potential is 3.11 fm. 

0.002 r 1 

6 8 IO 12 

rtfm) 

r(f m) 

Fig. 4. The density distributions of “Li. As the configuration mixing does not yield a sizable difference, 

the distribution for the (~,,~):_a configuration (case (1)) is drawn. The nucleon density distribution of 

9Li is shown by the dotted curve for the sake of comparison. The tail parts of the distributions enlarged 

by 100 are shown in the right figure, where the neutron density coincides with the nucleon density. 
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0.002 

0 

rtfm) 

Fig. 5. The density distribution of the relative wave functions between the two valence neutrons. See 

the text for cases (l)-(4). 

Fig. 4 displays the density distributions of “Li averaged over the z-component 

of the “Li spin. Both the proton and neutron distributions are also shown separately. 

Compared to the nucleon density distribution of 9Li shown by the dotted curve, the 

nucleon density distribution of “Li has a slower fall-off and a long-ranged tail with 

very low density. The proton density is concentrated in the inner region while the 

neutron density spreads over to a large distance. It has recently been suggested 16) 

that this asymmetry of the proton and neutron densities seen in very neutron-rich 

nuclei leads to low-frequency dipole vibrations where the excess neutrons vibrate 

against the core. We note that the effect of the configuration mixing is hardly seen 

except for the extremely large distances in this figure. The dashed curve in the 

expanded figure is the nucleon density obtained with the wave function of case (3). 

Fig. 5 shows the configuration mixing dependence of the density distribution, 

p(Ir, - ql), of the relative wave functions between the two valence neutrons. It is 

seen that the configuration mixing plays the role of increasing this density at small 

distances. 

4. Summary and discussion 

We have studied the structure of “Li in the cluster-orbital shell model for the 

system of 9Li + n+ n. The 9Li nucleus is described with a Oho shell model wave 

function. The ‘Li-n potential and the central part of the two-neutron interaction 

are determined consistently with the available data. The valence neutrons are 

distributed among the single-particle orbits of p1j2, s,/~, d5,?, dJ,2, ~312, f7,2, f5,2, 

g9/Z and g7/2. The radial part of each orbit consists of a superposition of several 

gaussian functions and thus enables us to describe very extended radial motion. 

Our calculation is entirely free from the spurious center-of-mass motion. The main 

results are summarized as follows: 
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(i) The configuration mixing of the large bases for the valence neutrons serves 

to gain energy but the calculated energy of “Li is still l-l.4 MeV higher than the 

experimental value. 

(ii) The interaction energy between the two valence neutrons increases as the 

number of the basis functions increases. The extent to which it increases is dependent 

on the radial dependence of the two-neutron interaction at short distance. 

(iii) The (P,,~):=~ configuration is the dominant component of the ground state 

wave function. The contribution of wave functions with non-zero seniority is negli- 

gibly small. This property leads us to the expectation that both the magnetic and 

quadrupole moments of “Li are almost the same as those of 9Li. A recent 

measurement lo) of the “Li magnetic moment (3.67 n.m.) confirms this expectation. 

A measurement of the quadrupole moment will be very useful as a test of models 

of “Li. 

(iv) The experimental value of the matter root mean square radius is reproduced 

quite well by the present model. The root mean square distance between 9Li and 

the valence neutron is about 6 fm. 

(v) Compared to 9Li, the density distribution of “Li has a slower fall-off and a 

much longer tail. There is a large difference between the proton and neutron density 

distributions. The density distribution of the relative wave function between the two 

valence neutrons becomes more peaked at short distance as the configuration mixing 

increases. The results (iv) and (v) clarify what is meant by the neutron halo. 

As stated in (i), the binding mechanism of “Li is not fully accounted for by the 

present model. The result (ii) indicates the importance of taking full account of the 

correlation energy between the two valence neutrons for binding the 9Li+ n + n 

system. Let us ask the question of how well the di-neutron correlation can be 

described with the configuration mixing of the wave functions used in this paper. 

The angular dependence of the (1,)$=, wave function in the singlet-even state of the 

two neutrons is given by the Legendre polynomial P,(cos e), where 0 is the angle 

between the two coordinates t1 and g2. As P,(cos 0) is peaked at 0~ l/1, the order 

of the two-neutron distance is d = R/l, where R is the distance between 9Li and 

the center-of-mass of the two neutrons. Since R is about 5-6 fm and the maximum 

of 1 is 4 in the present calculation, the two-neutron relative wave function is spread 

at least to about 1.2 fm. Thus the present model space may not be enough to describe 

such wave functions as the short ranged repulsive force requires. If we had to take 

into account the short range correlation up to the order of 0.5 fm, the maximum 1 

needed in the calculation would be at least about 10. 

The lack of binding energy by l-l.4 MeV seems to indicate the insufficiency of 

the description of the di-neutron correlation with the present model. If this is the 

case, it may be necessary to include explicitly a configuration of the di-neutron 

cluster moving around the 9Li core as suggested in ref. “). In any case, it is desirable, 

although challenging, to use more realistic interactions such as the Paris potential 

as the interaction between the two valence neutrons. 
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