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A statistical investigation of the effects of disorder on the dynamics of one-dimensional 
nearly periodic structures is presented. The problem of vibration propagation from a local 
source of excitation is considered. While for the ordered infinite system there exists a 
frequency passband for which the vibration propagates without attenuation, the introduc- 
tion of disorder results in an exponential decay of the amplitude for all excitation 
frequencies. Analytical expressions for the localization factors (the exponential decay 
constants) are obtained in the two limiting cases of weak and strong internal coupling, 
and the degree of localization is shown to depend upon the disorder to coupling ratio 
and the excitation frequency. Both modal and wave propagation descriptions are used. 
The perturbation results are verified by Monte Carlo simulations. The phenomena of weak 
and strong localization are evidenced. While the former affects little the dynamics of most 
engineering structures, the latter is shown to be of significant importance in structural 
dynamics. 

1. INTRODUCTION 

Mode localization in structures has received significant attention in the structural dynamics 
community lately (see references [l-11] or the review paper by Ibrahim [ 121). This 
phenomenon occurs in repetitive structures, the periodicity of which is broken by small 
irregularities arising from unavoidable manufacturing and material tolerances. Under 
conditions of weak internal coupling for the structure of interest, such small disorder has 
drastic effects on its dynamical properties, by localizing the vibration modes to a small 
geometric region of the structure and confining the vibrational energy close to the source 
of excitation. In an average sense the decay of the vibration amplitude is exponential, 
the decay constant being referred to as the localization factor. 

Localization may occur in a number of engineering structures such as blade assemblies 
[ 1,2], multi-span structures [3,4], and some large space structures [S, 61. The consequen- 
ces of localization can be either damaging-as localized vibrations lead to larger ampli- 
tudes-or beneficial, as a means of passive control of vibration propagation. For practical 
purposes, localization is similar to damping as it manifests itself by a spatial decay of 
the vibration amplitude along the structure, even though for localized vibrations the 
energy is conjined near the source of excitation, while for damping it is dissipated as it 
propagates. Thus, to an experimentalist unaware of disorder effects, localization could 
be easily mistaken for, and result in an overestimation of, damping. 

Research on localization in structural dynamics has been mostly limited to deterministic 
analyses of the spatially localized free modes of disordered one-dimensional structures 
[2,3,6-81. This is because analytical and even numerical (Monte Carlo) statistical investi- 
gations are difficult to conduct for the mode shapes. However, a consistent statistical 
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treatment of localization can be formulated by studying the transmission of forced 
vibration from a local source of excitation. This is motivated by the argument that at a 
given frequency the localized mode shapes feature the same (exponential) spatial decay 
as the forced vibration patterns do [ 131. To the knowledge of the author, two probabilistic 
investigations of localization have been carried out to date in structural dynamics, both 
approaching the problem from a forced excitation viewpoint. First, Hodges and Wood- 
house [4] applied the work of Herbert and Jones [ 141 to calculate, by statistical perturba- 
tion methods, localization factors for a (finite) stretched string with irregularly spaced 
masses attached to it. However, they did not perform a systematic study of the dependence 
of the localization factor on the excitation frequency or the system parameters. Their 
research, though, exhibited the occurrence of two types of localization-weak and strong- 
depending on the magnitude of internal coupling in the structure, but they did not 
elaborate. Second, in a recent study, Kissel [ 10, 1 l] chose a wave propagation description 
to calculate localization factors for several infinite one-dimensional structures. Modeling 
the structures by random transfer matrices, he followed the approach originally proposed 
by Matsuda and Ishii [13] and Ishii [15], who were first to apply Furstenberg’s theorem 
on the limiting behavior of products of random matrices. He systematically studied the 
dependence of the localization factor inside the passbands on the system parameters and 
the wave frequency in the limiting case of weak disorder. However, the structural models 
he chose (such as the spring-mass chain) did not allow him to vary the relative magnitudes 
of the internal coupling and the disorder, thereby restricting his findings mostly to weak 
localization, which does not affect the dynamics of most engineering structures 
significantly. 

In addition, we must mention the detailed study of the resistance of one-dimensional 
chains of atoms by Kirkman and Pendry [ 161. For a mathematical model nearly equivalent 
to ours, they derived expressions for the localization factor in the cases of weak and 
strong disorder through the use of a wave formulation. We also recommend the following 
works to the reader interested in localization: the comprehensive study of continuously 
disordered one-dimensional systems by Scott [ 171 and the in-depth review of localization 
and its relationship to diffusive transport theories such as statistical energy analysis by 
Hodges and Woodhouse [18]. 

This paper is concerned with the localization phenomenon for a generic model of 
one-dimensional nominally periodic structures; namely, the undamped chain of single- 
DOF oscillators shown in Figure 1. This system is chosen because, contrary to a spring- 
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Figure 1. Two equivalent representations of an assembly of coupled oscillators. 
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mass model, it allows one to vary the relative orders of magnitude of coupling and 
disorder, and thus it exhibits both weak and strong localization. To highlight the effects 
of disorder, we do not include damping in the model (although we recognize that all 
structures are damped and the uncertainty in damping is often large). A statistical treatment 
of the structural irregularities is chosen. 

In the first part of the paper the techniques used to calculate the localization factors 
for a structure under forced excitation are reviewed. In the second part, the ordered 
structure is studied, and the concepts of frequency passband and stopband are illustrated 
by calculating the corresponding exponential amplitude decays. Statistical perturbation 
methods are utilized in the third part of the paper to derive analytical expressions for 
the localization factors of disordered systems in the two limiting cases of weak and strong 
coupling. In the fourth part, analytical results are compared to Monte Carlo simulations, 
and the validity of the two asymptotic results is discussed. The contributions of the present 
study are threefold. First, results of general significance to the theory of localization in 
engineering structures are presented. Although some of these results have appeared 
previously in the solid state physics literature, they are derived here in a structural 
dynamics context, and the practical implications for structures are strongly emphasized. 
The second contribution is the in-depth examination of the frequency dependence of 
localization effects in the weak and strong regimes. Finally, the distinction between weak 
and strong localization effects, which often seems to be confused in the literature on 
localization in structures, is clarified. In particular, the importance of strong localization 
in engineering structures is evidenced relative to that of weak localization. 

2. METHODOLOGIES 

2.1. EQUATIONS OF MOTION 

The undamped assembly of N, coupled, single-DOF oscillators shown in Figure 1 is 
considered. The corresponding cyclic assembly has been used as a one-component mode 
representation of a continuously shrouded blade assembly [2]. Fixed-fixed boundary 
conditions are considered, even though the results are believed to hold for any non- 
dissipative end condition. The system is excited at its left end by a simple harmonic force 
of frequency, w, and the transmission of sready stare vibrations along the assembly is of 
interest. The equations of harmonic motion are 

--w2mui = -k,.(2u, - ui-, - u,+ ,) - kiui + FS; , i=l,..., N, (1) 

where ui is the displacement amplitude of the ith oscillator, with u,, = uN+, = 0, k, the ith 
oscillator’s stiffness, k, the coupling stiffness, F the harmonic force amplitude, and 8,’ 
the Kronecker symbol. For a periodic chain, ki = k, where k is the nominal oscillator’s 
stiffness. For the disordered structure the kis are taken to be identically and uniformly 
distributed independent random variables with mean k. A uniform disorder distribution 
is chosen primarily because it leads to simpler calculations, even though the methods of 
analysis and some of the results of the paper hold for any type of distribution. 

Only disorder in the stiffnesses of the oscillators is considered, even though a fully 
disordered system would have random masses and coupling stiffnesses as well. However, 
the effects of random oscillators’ masses and stiffnesses are believed to be essentially the 
same, as both affect the oscillators’ natural frequencies. Also, random coupling stiffnesses, 
since they do not affect the oscillators’ frequencies, lead only to the weak localization 
studied by Kissel [ll]. Therefore, restricting the randomness to oscillators’ stiffnesses 
captures all the important localization effects in a relatively simple analysis. 
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The equations of motion are made dimensionless by introducing w,, =m, the 
nominal oscillator’s frequency, W = w/w ,,, the dimensionless excitation frequency, Af; = 
( ki - k)/k, the dimensionless disorder for the ith oscillator, and R = kc/k, the square of 
the ratio of the coupling frequency to the nominal oscillator’s frequency, or the dimension- 
less coupling, yielding 

a1 F 

(-w’[Z]+[A]) 

Ii i*) 

‘f2 = 0 , (2a) 

UN 0 

where F = F/k, [I] is the identity matrix, and [A] is an N x N tridiagonal matrix given 
by 

@b) 

2.2. MODAL FORMULATION 

To study vibration propagation, the amplitude at the right end is calculated when the 
system is driven at the left end. The approach has been originally proposed by Herbert 
and Jones [14] and then used by Hodges and Woodhouse [4]. From equation (2), the 
response amplitude of the Nth oscillator is 

u,/F=(-w’[Z]+[A])~~,,1,= [cofactor matrix],,,,,/det (-G’[Z]+[A]). (3) 

which holds only if W is not a natural frequency of the assembly. Remarkably, it follows 
from the tridiagonality of [A] that the corresponding minor determinant is simply 
(-R) N-‘, and thus 

UN/F= RN-‘/det (-G’[Z]+[A]). (4) 

The above determinant is evaluated by modal analysis. The natural modes of the (ordered 
or disordered) system are determined by the eigenvalue problem 

(-dVl+ [Ah = 0, r=l,..., N, (9 

where &jr and u, are the rth frequency and eigenvector. The modal matrix [VI, the 
columns of which are the orthonormal eigenvectors, verifies [ U]‘[ U] = [Z] and 
[ UITIA][ U] = [diag (wf)], where T denotes a transpose. This yields 

det(-G2[Z]+[A])=det([U]T(-ti2[Z]+[A])[U])= fi (G;--6’). (6) 

The expression for the (spatial) exponential decay of the amplitude is obtained by writing 
the modulus of the Nth amplitude as ~uN/PI =exp (-YNN), where YN is the rate of 
decay for a given chain of length N. This yields, upon combining equations (4) and (6), 

(7) 

This expression is exact for a finite chain with boundary conditions and does not 
necessarily imply that there is an actual exponential decay of the amplitude. Of interest 
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in the case of exponential decay is the limiting behavior of yN as the length of the 
StrUCtUre, N, goes to infinity. If yN admits a limit y = limN+., yN, then )UN/ FI - eXp (- YN) 
for N large. The vibration amplitude decays exponentially with N at the rate y, referred 
to as the exponential decay constant (the real part of the propagation constant [ 19]), and 
the amplitude is governed by an exponential envelope.? From equation (7), one has 

(8) 

an expression valid for both ordered and disordered systems. For disordered chains y is 
not obtained by taking an average over several realizations, but by letting the size of the 
system become infinite. In the limiting cases for which analytical expressions of y will 
be obtained, it will be shown that taking the limit of yN as N +OO is equivalent to 
averaging YN over all disordered systems, indicating that yN is a self-averaging random 
variable [ 111. 

2..3. WAVE PROPAGATION FORMULATION 

Exponential decay constants can also be calculated by a traveling wave formulation. 
The system of Figure 1 is considered, but no boundary conditions are prescribed, which 
is equivalent to assuming that the assembly is injnire. The ith site consists of the ith 
oscillator and of the coupling spring at its right (see Figure 2), while the state vector at 
the ith site is defined by [u;, uj-,I’. A two by two displacement transfer matrix is defined 
that relates the states at adjacent sites 

[ 

l+AJ+2R-6’ 

[‘;I] =[T] [Uyl,], where [T] = y -,’ . 1 (9) Thus the state at site N + 1 is related to that at site 1 by 

For an ordered chain all transfer matrices are identical, given by 

ill) 

For a disordered system the [ T]s are random transfer matrices, and [TO], the transfer 
matrix for the ordered system, is their average matrix. 

Site i Site I + I 

Figure 2. Site representation for wave formulation. 

‘t We note that damping, similarly to disorder, would result in a spatial exponential decay of the amplitude. 
However, the rate of decay yN in equation (7) is solely due to disorder. The combined effects of disorder and 
damping will be the subject of future papers. 



116 c. PIERRE 

Next wave amplitudes are introduced by a change of coordinates. Waves of frequency 
(5 are considered, the amplitudes of left and right traveling waves being denoted by L 
and R, respectively. The complex amplitudes of the waves entering (resp. leaving) the 
site i are Ri and L,+, (resp. L, and R,+,), as shown in Figure 2. The oscillators’ displacement 
amplitudes are related to the wave amplitudes by [lo, 15, 19,201 

(12) 

where j’ = -1. The first of relations (12) states that the displacement of the ith oscillator 
is the sum of the left and right traveling wave amplitudes. The complex k is the 
wavenumber, a function of frequency W. As shown in the next section, k real defines a 
frequency passband, while k of the form j, or j, + Z-, where LY is real, defines a stopband. 
Equations (9) and (12) lead to the introduction of a (mono-coupled) random waue transfer 
matrix that relates the wave amplitudes at sites i and i+ 1: 

[;::I =[Wl [;:j, where [ Wi] = [ PI-‘[ T][ P]. (13) 

Note that [PI-’ is not defined for k =0 and 7r (corresponding to the passband edges). 
It is shown in the next section that the columns of the transformation matrix [P] are the 
eigenvectors of the transfer matrix for the ordered chain, [To]. Hence for a periodic 
system [ Wi] = [ W,,], a diagonal matrix made of the eigenvalues of [To]. A general 
expression for [ W;] can be obtained for frequencies in the passband (k real) by considering 
the waves entering and leaving a site in Figure 2: 

(14) 

Here * denotes a complex conjugate, and ti and r, are the (complex) transmission and 
reflection coefficients for the ith site, such that It,l’+ Ir,J2 = 1, since for this undamped 
system energy is conserved as it propagates (or, equivalently, since det [ 1;] = det [ Wi] = 1). 

For a periodic site [ W,] is diagonal, there is no reflection (r = 0), and the eigenvalues 
of [T,,] are t and l/t. For frequencies in the passband t has modulus one; thus there is 
no attenuation of the wave. For frequencies in the stopband (wavenumber not real), the 
transmission coefficient is real. Thus in a stopband of the ordered system there is no 
reflection but since the magnitude of the transmission coefficient is not one there is 
attenuation. 

For a disordered site [ Wi] is not diagonal because [P] is the eigenvector matrix for 
the average, not the disordered, site and cannot diagonalize [T]. Therefore there is 
reflection ( ri # 0) in the disordered system. This multiple scattering over many sites results 
in localization. 

The above formalism can be used to calculate the decay constant for an incident wave 
[ 151. An infinite system is considered, such that the sites i for i = -CO, . . . , 0 are ordered, 
thesitesfor i=l,..., N are disordered, and the ones for i = N + 1,. . , co are ordered. 
In other words, an N-site disordered system embedded in an otherwise ordered infinite 
system is considered. A wave of amplitude CY is incident from ---CO. For i = -00,. . . , 0 and 
i = N + 1, . . . , CO there is no reflection because the wave transfer matrix is diagonal, and 
in a passband the wave travels unattenuated. For i = 1, . . , N, though, multiple scatterings 
occur, and only part of the incident wave’s energy is transmitted through the disordered 
segment. From equation (13), the wave amplitudes entering and leaving the disordered 
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segment are related by, in a frequency passband, 
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(15) 

where [OlL-,] = nl=, [w’,], of determinant unity, is the wave transfer matrix for the N 
disordered sites, and rN and pN the corresponding transmission and reflection coefficients. 
Since a wave of amplitude (Y is incident from the left and there is no reflection in the 
ordered segments, LNel = 0 and R, = (Y. The ratio of transmitted to incident amplitude, 
RN +,/ R, , is of interest, and can easily be shown to be equal to the transmission coefficient 
for the disordered segment, rN. It follows that the rate of exponential decay of the 
transmitted wave amplitude is 

(16) 

and the limiting value of the exponential decay constant for the infinite disordered chain 
is 

(17) 

Thus, asymptotically, the ratio of transmitted to incident amplitude (or the modulus of 
the transmission coefficient) is governed by the envelope exp (-~N)(]T~] -exp (-yN)). 
The transmitted energy decays exponentially as well. Obviously, in the passband of an 
ordered system, y = 0 since PN = 0 and ]rNl = 1; that is, there is pure energy transmission 
and no localization. 

3. A REVIEW OF THE ORDERED ASSEMBLY 

Both finite and infinite periodic chains have been investigated extensively by wave 
propagation techniques (see references [19-211 for example). Here the propagation 
constant y is computed for an infinite chain over the entire frequency spectrum by the 
modal approach as well as by the wave method. Equivalence of the results is proven. 

3.1. MODAL APPROACH 

The decay constant is given by equation (8), where W, is the rth frequency of the 
ordered chain with fixed-fixed ends, which can be shown to be [22] 

r=l,..., N. (18) 

Substituting equation (18) into equation (8) yields, with the limit of the series transformed 
into an integral, 

y=-In R+L 
I 

77 
In /1+2R(l -cos x)-6’1 dx. 

r 0 
(19) 

The spectrum becomes continuous as N + 00, the frequencies of the infinite chain lying 
densely in the band 11, 1 + 4R[. Several cases are distinguished. 

OS W2< 1 (stopband). One can show [23] 
n 

ln(a+Pcosx)dx=nln 
a+ JT--T 

(Y -p 
2 , Q ’ IPI. (20) 
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Here (Y = 1 + 2R -6’ and p = -2R. After some manipulations, one obtains 

y = cash- ’ 
1+2R-o’ 

2R ’ 
0 SW’<l, (21) 

a strictly positive value corresponding to an attenuation of the amplitude for the infinite 
ordered chain. Accordingly, the frequency range is referred to as a sropband. Note that 
y+O as W*+l. 

G2> 1+4R (stopband). The expression (20) can still be used but with cr = W’- 1 - 2R 
and p = 2R, yielding 

y=2cosh-’ J W2-1 
4R ’ 

W’> 1+4R, (22) 

a positive quantity corresponding to a stopband as well. Also, y -+ 0 as W’ + 1-C 4R. 
1 s W*S 1+4R (passband). The integral cannot be evaluated as in expression (20), 

since then J(Y[ G I/3]. Th e integral needed is [23] 

I 

?T 
ln(cos6-cosxldx=-7rln2, (23) 

0 

where cos 6 = (1 + 2R - &*)/2R, less or equal to one in absolute value. Even though there 
is a singularity at x = 8 (that is, when the excitation frequency coincides with one of the 
natural frequencies of the infinite system), the integral converges. Substituting equation 
(23) into equation (19) yields 

Y =O, 1~6*~4R. (24) 

This frequency range is consequently referred to as a passband, since for the infinite chain 
the vibration propagates without attenuation. 

3.2. WAVE APPROACH 

For the ordered chain the displacement transfer matrix is [ T,,] given by equation ( 1 l), 
the eigenvalues of which are 

A _1+2R-6’ 1 
1.2 - 2R 

k&(1-&*)(1+4R-6’) 

(such that A,A2 = 1) and the eigenvectors of which are the columns of 

[R]=[l;A, l/IA* . I 

(25) 

(26) 

The wave transfer matrix, [ W,] = [ PI-‘[ To][ P], is diagonal of diagonal elements A, and 
AZ. Thus the transmission coefficient for N ordered sites is simply TV = l/A r, and the 
corresponding exponential decay constant y = In ]A, 1. 

For cl,* in the passband [ 1,1+4R], the eigenvalues of [T,,] are complex and, upon 
letting W2 = 1+4R sin* k in equation (25), become A 1,z = exp (*2jk), where 2k is the real 
wavenumber. This immediately yields y = In Jezjkl = 0. 

For W2a 1+4R, letting 6’ = 1+4R cash* k (k 2 0) in equation (25) leads to A,.* = -e*2k, 
corresponding to complex wavenumbers r - 2jk. The positive decay constant is y = 
In (-eZkl = 2k, where k = cash-’ J(G* - 1)/4R, a result identical to that obtained by the 
modal approach in equation (22). 

Finally, for G’Sl, one has A,=[(1+2R-~2)/2R]+~(1-G2)(1+4R-~2)/2R~1, 
and A2 = l/A,. The decay constant is y = In ]A, 1 which, after some algebraic manipulations, 
can be shown to be identical to the modal result (21). 
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3.3. REMARKS 

The concepts of stopband and passband are illustrated in Figure 3, which displays the 
decay constant y versus frequency for various values of coupling. The passband width 
decreases proportionally to coupling and larger values of y are obtained in the stopbands 
as R decreases, because vibration propagation becomes more difficult as the coupling 
between oscillators decreases. 

While the wave calculation leads to identical amplitude decays for all ordered sites, 
computing y by the modal method requires one to take the limit as the size of the system 
goes to infinity, because boundary conditions are considered. These boundary conditions, 
always present in engineering structures, may influence yN significantly and, for finite 
structures, the values of y given by equations (21,22,24) would not be obtained exactly. 
Numerical simulations of equation (7) revealed that for fixed-fixed ends and (5 in the 
passband (not coinciding with a natural frequency), values of y as large as lo-’ were 
obtained for a 50-DOF system. Recall that y is zero for an infinite system. Thus the 
infinite approximation of finite structures is good in the sense that the values of y in the 
stopbands are much larger than those in the passband, and that the results for a 50-DOF 
system, if plotted in Figure 3, would superpose the infinite system results almost exactly 
for the present scale. This means that the results of Figure 3 are essentially applicable to 
large periodic engineering structures with many (say more than 50) sites, such as blade 
assemblies and some truss-type structures. The infinite approximation, however, is poor 
in the sense that, when weak localization occurs, the localization factor y for the disordered 

I.0 

0.8 

0.6 

0.4 

0.0 

x. 

2.60 

0.52 

I I , I 1 I I I I 

0.00 0.52 I.04 I.58 2.08 2.60 

2.78 - 

I.85 - 

0.93 - 

0.00 0.32 0.64 O-96 I.28 1.60 

a* 

Figure 3. Exponential decay constant versus excitation frequency for ordered chains of oscillators with 
various internal couplings. (a) R = 10; (b) R = 1; (c) R =O.l; (d) R =O.Ol. 
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infinite system is often less than lo-‘. This makes such effects of disorder unimportant 
for many finite engineering structures, because boundary conditions alone result in values 
of yN of comparable magnitude for ordered systems. 

4. A STUDY OF DISORDERED CHAINS BY STOCHASTIC PERTURBATION METHODS 

The decay constant y is calculated in terms of the excitation frequency when small 
disorder is present. Since localization phenomena will be shown to occur, y is referred 
to as the localizationfactor. The Af;s are identically and uniformly distributed independent 
random variables with zero mean and standard deviation u = W/v?, where 2 W is the 
width of the uniform probability density function. 

In general, localization factors cannot be calculated in closed form, and one must resort 
to numerical Monte Carlo simulations to evaluate them. However, analytical results can 
be obtained in some limiting cases. This is achieved here through the use of perturbation 
methods. While these methods have been used to study the localization of the free modes 
[3,5,8], here they are applied to the analysis of the forced response. 

4.1. SMALL DISORDER TO COUPLING RATIO-WEAK LOCALIZATION 

Here O(a/R) < 1, where O(a) denotes the order of the argument. Since disorder is 
small, it implies that the coupling is finite or large; hence this will be referred to as the 
strong coupling case. The wave approach is chosen here because it involves simpler 
calculations than the modal formulation, which requires the non-trivial expansion of the 
logarithm of a determinant [4]. The present development does not seem to have appeared 
in the literature for a chain of coupled oscillators. Kissel [lo] has used the wave formulation 
for a sping-mass system (different from a chain of oscillators), but by an approximation 
to Furstenberg’s theorem. A procedure that perturbs directly the wave transfer matrix is 
used here. 

A classical perturbation scheme is applied to the wave formulation. The analysis is 
restricted to frequencies in the passband of the ordered system. The random displacement 
transfer matrix in equation (9) is written as 

[Tl=[T”l+[ATl with [AT]=[AL;R 01, (27) 

where the unperturbed system is the ordered one and the perturbation is the disorder 
represented by [ATi]. For 1 < W2 < 1+4R, the matrix of eigenvectors of [To] is, from 
equation (26), 

(28) 

where k is defined by (3’ = 1 + 4R sin’ k, for 0 < k < x/2. This leads to the random wave 
transfer matrix [ Wi] = [ PI-‘[ Ti][ P], which can be written as 

[wl=[wol+[wil, (294 
where, after calculations, 

[ WJ = [ ‘%’ e-!_,jk] and (29b) 

are the unperturbed and random perturbation wave transfer matrices, respectively. Note 
that one must impose k # 0, r/2 (that is, exclude the passband edges), since otherwise 
[To] has a twofold eigenvalue and [P] is singular. 
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Next, the product of N wave transfer matrices is taken and terms up to the first order 
in a/R are retained, yielding 

[‘TV,]= fi ([W,J-~[W~])-[W,]“+ z [W,,]‘-‘[WN_,+,][W”]“-‘+O(~‘/R’). (30) 
;=N I=I 

To obtain an approximation of the localization factor only the first diagonal element of 
fwN1, 1/7N, is needed. One obtains, after some algebra, 

1 -=e ZjkN _ 

TN 

By taking the modulus of TN, y is obtained from equation (17) as 

(31) 

Note that the second order terms in equation (31) may lead to second order terms in the 
modulus as well, because this first order analysis does not capture all second order terms. 
However, it can readily be seen from equation (30) that these additional second order 
terms only involve products of the form AJAf,, for I # m. Approximating In (1 +x) by x 
in equation (32) leads to 

y=$m_& , 

where the terms O’(a*/ R*) are of the form AJ;Af, for I# m. One has 

(33) 

(34) 

because the AJs are uncorrelated and identically distributed. Hence all the terms AJAfm 
for If m do not contribute to the localization factor, justifying the fact that a first order 
perturbation analysis is sufficient. Combining equations (33) and (34) leads to 

u* 
‘=8R* sin* 2k 

O<k<;. (35) 

The localization factor is always greater than zero for disordered systems, while it is zero 
for the corresponding ordered system. Disorder results in an exponential attenuation of 
the wave amplitude as it propagates along the chain-the so-called localization, or 
confinement, phenomenon. Obviously, the degree of localization depends only on the 
disorder to coupling ratio and the excitation frequency. Note that these results are for 
undamped systems, thus the amplitude decay is created by disorder, not damping, resulting 
in a confinement, not a dissipation, of energy. 

While y has been obtained by taking a limit as IV + co, it can also be calculated by 
taking the mathematical expectation of the logarithm of the transmission coefficient. 
Equation (31) gives 

(36) 

which results in equation (35) because (AA Afm) = ~‘6;“~ where ( *) denotes an average. 
Thus y can be regarded either as the localization factor for an infinite chain or as the 
average localization factor for finite (large) chains. Also, the assumption of uniform 
disorder has not been used and equation (35) is valid for other distributions as well. 
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Next, the localization factor is written in terms of the excitation frequency by expressing 
the wave number 2k as a function of (5. A little algebra gives 

Y (C’ = aZ/2(w’ - l)( 1+4z? - oq, l<w’<1+4R, (37) 

where the superscript (c) stands for a classical perturbation result, which holds in the 
strong coupling case. The approximation y”‘) of y deteriorates as a/R increases, and 
eventually the classical perturbation method fails for finite perturbations u/R: that is, 
for weak coupling. Note that y”” also becomes large near, and goes to infinity at, the 
passband edges W2 = 1 and 1+4R. Thus one may expect the perturbation expression (37) 
to be a poor approximation of the localization factor near the stopbands. 

The variation of y(‘) throughout the passband can be examined by introducing the 
parameter (Y defined by W2 = 1 + aR, 0 < (Y < 4. Equation (37) can be rewritten as 

2 
CC) O- 1 

Y =- 
R2 2a(4-a)’ 

O<a<4. (38) 

The variation of y”‘/(a’/R’) in terms of (Y is shown in Figure 4. The localization factor 
is minimum at midband (a = 2, or G2 = 1+ 2R) and becomes large near the stopbands. 
Equation (38) clearly shows that localization depends only on the ratio of disorder to 
coupling. 
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Figure 4. Variation of the localization factor in the frequency passband for a disordered system, by the 
classical perturbation method. 

Localization factors could be computed as well for 6 in the stopbands. However, as 
will be shown by Monte Carlo simulations, disorder only slightly modifies the already 
large value of y in the stopbands, where strong attenuation occurs. 

Finally, it is important to illustrate numerically the localization effect in the strong 
coupling case. For R = 1 and u = 10% (a large disorder), the localization factor at midband 
(&‘=3) is y(‘)= 0.00125. For an “infinite” system without boundary effects, the vibration 
amplitude is governed by e-“’ IN, and 555 sites are needed for the amplitude to decay 
by a factor two. Even though this effect can be regarded as significant because it simply 
results from disorder and is not caused by damping, it is likely to be rather unimportant 
for engineering structures that rarely comprise that many substructures and for which 
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boundary and damping effects may be more significant. In real structures unintentional 
disorder rarely exceeds 3-4% and thus one may expect even smaller values of y. This 
small effect of disorder in the strong coupling case is termed weak localization. 

4.2. LARGE DISORDER TO COUPLING RATIO-STRONG LOCALIZATION 

The other limiting case, O(o/R) > 1, is considered. Since disorder is always small, it 
implies that the coupling is weak. Then the classical perturbation method fails and one 
needs to introduce a modified scheme that treats the coupling as a perturbation, while 
disorder is included in the unperturbed system to avoid degeneracy. The unperturbed 
system then consists of an assembly of uncoupled, disordered oscillators. This modified 
scheme has been shown to analyze the localized free modes of several disordered structures 
effectively [3,7,8], because strongly localized modes are essentially perturbations of 
decoupled modes. Here the method is applied to the forced vibration case. Note that the 
localization factor at midband has also been obtained by Hodges and Woodhouse [4] in 
the weak coupling case. Here it is calculated over the entire frequency spectrum. 

4.2.1. Modal approach 
The localization factor is calculated from equation (8), the natural frequencies being 

approximated by the following first order perturbation analysis. The system matrix [A] 
is decomposed as [A] = [AL”‘] + [a’“‘], where 

[Ab”‘]=[diag (l+Al;)] and (39) 

are the modified unperturbed and perturbation matrices. Perturbation theory for the 
eigenvalue problem [24] can be applied because the unperturbed eigenvalues are split 
by random disorder, and one can easily show [S] that the first order perturbed natural 
frequenciesare~~‘“‘=l+Af+2R,forr=l;~~, N. This leads to the approximation of 
the localization factor 

Y (m)=-ln R+irn_i i lnIl+Af,+2R--6’1, 
r I 

(40) 

where (m) refers to the modified perturbation scheme for weak coupling. Obviously the 
limit in equation (40) is the expected value of the logarithmic expression, and hence 

I 

+1 
ycm’ = -In R + p(Af) In Il+2R +Af-6’1 d(Af), (41) _m 

where p is the probability density function of the disorder. This is easiest to evaluate for 
a uniform distribution, even though it could be calculated numerically in other cases as 
well. One obtains 

y'"'=-In R+-!- 2w 

I 
1 w In [1+2R+Af-6’1 d(Af). (42) 

W 

Equation (42) could also be obtained by considering the average decay ylc’ for jinife 
assemblies: 

(yr’)=-In R+brE, (lnIl+Af+2R-c;i’J)=y’“‘. (43) 
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Hence equation (42) can be regarded either as the localization factor for an infinite chain 
or as the average factor for finite systems. After integration, it yields 

‘“‘c-InR-l+ 
1+2R+ W-6’ 

Y 2w 
ln(l+2R+ W-W’1 

1+2R- W-W’ - 
2w 

lnj1+2R- W-6’1. 

Since only first order coupling terms were retained in the natural frequencies, this 
expression is essentially a first order result in the coupling to disorder ratio, valid for 
frequencies in the passband and stopbands. At midband, W2 = 1+2R, equation (44) 
reduces to 

y~~~r,and=ln(~/R)+ln~-1+O(R2/a2), (45) 

which shows that the localization factor depends only upon the coupling to disorder 
ratio. This approximation of y, valid for R/ (+ first order or smaller, shows that localization 
becomes more pronounced as the (small) coupling decreases and that ytm’+ cc as R/a + 0. 
This makes sense because R/u = 0 corresponds to the modified unperturbed system 
consisting of uncoupled oscillators, for which there is total attenuation from one site to 
another. A typical value is obtained for R = 0.01 and CT = 3%, given by y,$$_, = 0.648. 
This value is several orders of magnitude larger than the typical value obtained for the 
(weak) localization factor in the strong coupling case. A quick calculation reveals that, 
in an average sense, the vibration amplitude of the fourth oscillator is ]uJFI - 0.075: 
that is, only 0*0752 = 0.56% of the vibrational energy is transmitted to the fourth oscillator! 
For the ordered system the value of y at midband is zero and 100% of the energy is 
transmitted. This drastic phenomenon created by small disorder in the weak coupling 
case is referred to as strong localization. 

4.2.2. Wave approach 

This approximation of the localization factor can also be obtained through the use of 
the wave transfer matrix. Again the basic idea is to treat the coupling as a perturbation 
by writing [T] = [ 7$:‘] + [AT’“‘], where, from equation (9)t, 

[J$“] =[ 1+AL;R-G2 j, [AT( =[; -3. (46) 

Since the unperturbed matrix is diagonal, no transformation is necessary to calculate the 
wave transfer matrix of the perturbed system, given by [ W{"'] = [ Ti]. A first order 
approximation in the perturbation parameter, R/Af;, is obtained for the wave transfer 
matrix for N sites: 

t The term 2R/ R in the first diagonal element of the transfer matrix could also be considered to belong to 
the perturbation matrix instead of the unperturbed matrix. This would result in a slightly less accurate 
approximation of the localization factor. 
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where the first diagonal element of that matrix is needed to calculate y. A little algebra 
shows that the first order perturbation terms in equation (47) do not contribute to the 
first diagonal element, so that 

and the approximation of the localization factor is, from equation (16), 

(49) 

which, upon taking the limit as N + 03 (or equivalently, taking the average for a finite 
chain), leads to 

Y (ml’= -In R+1 2w 
I 

+U 
In[l+x+2R-(5’jdx= y(““, (50) ~_ 

W 

which is identical to the approximate localization factor obtained by the modal approach 
(equations (42,44)). 

5. COMPARISON OF ANALYTICAL AND MONTE CARLO RESULTS 

This section’s purpose is twofold: to analyze the dependence of the localization factor 
upon frequency, coupling and disorder, and to verify the validity of the analytical results 
by numerical simulations. 

There are two choices for the Monte Carlo simulations. First, one can choose the modal 
formulation for ajnite system of size N with boundary conditions, and average the values 
of yN obtained by equation (7) over a number of disordered systems, yielding the estimate 
y = ( yN). Second, the wave formulation can be adopted, the transmission coefficient rN 
being computed for a jnite disordered segment but without boundary conditions by 
multiplying N transfer matrices [r] and applying the similarity transformation defined 
by [P] to the resulting matrix. The estimate of the localization factor is then the average, 
over a number of realizations of the disordered segment, of yN given by equation (16). 
The basic difference between the two techniques is that one accounts for boundary 
conditions, while the other does not. Because we are interested in engineering structures, 
the modal approach that simulates an actual finite structure with boundary conditions 
was chosen whenever possible, the limitations of this choice being discussed later. Another 
question that arises is how many realizations should be considered, and how large each 
system should be. These considerations are primarily governed by the computer cost. 
Monte Carlo simulations by the modal approach were found to be several orders of 
magnitude more expensive than those by the wave approach. This is because r eigenvalue 
problems of size N must be solved by the modal approach, where r is the number of 
realizations, while the wave approach only demands r times the multiplication of N 
matrices. To keep the computer cost reasonable, 300 realizations of systems of size 60 
were considered at most for a modal simulation. For the inexpensive wave simulation 
no such limitations were necessary, and two configurations were chosen: 1000 realizations 
for 300 disordered sites, or 6000 realizations for a single site. The rationale for choosing 
the simulation procedure is discussed below. 

The variation of the localization factor in the passband, by classical perturbation method 
(equation (37)) and Monte Carlo simulation, for R = 1 and v = 1% is displayed in Figure 
5. Note the excellent agreement between the theoretical and numerical results over the 
entire passband. Also observe that y is largest near the stopbands, but that its magnitude 
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Figure 5. Localization factor in the frequency passband, for (T = 1% and R = 1, by classical perturbation 
method (-) and Monte Carlo simulations (+). 

is very small throughout the passband, indeed orders of magnitude smaller than y for 
the tuned system in the stopbands (which precludes us from displaying y in the stopbands). 

Figures 6 and 7 are for a larger disorder to coupling ratio equal to 0.1. Figure 6 is for 
a 10% disorder and R = 1, while Figure 7 is for a 1% disorder and R = 0.1. Almost 
identical values are obtained for y, which is expected because the degree of localization 
depends only on the disorder to coupling ratio. From equation (37), y is 100 times greater 
than in Figure 5. The agreement between analytical and simulation results is also excellent, 
except near the stopbands where the perturbation result overpredicts the Monte Carlo 
result. This is explained by noting that the perturbation result becomes infinite at the 
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Figure 6. Localization factor for o‘= 10% and R = 1, by classical perturbation method (-) and Monte Carlo 
simulations (+). 
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Figure 7. Localization factor for u = 1% and R = 0.1, by classical perturbation method (-) and Monte Carlo 
simulations (+). 

passband edges, and therefore this first order approximation deteriorates as the frequency 
approaches 1 or 1+4R. A second order approximation in the variance would lead to a 
better agreement near the stopbands. Also, as the ratio of disorder to coupling increases, 
the approximation of y becomes worse for a given frequency, while as the ratio decreases, 
the approximation becomes better closer to the edges of the passband. If 0 approaches 
an edge sufficiently, though, a discrepancy always occurs between the analytical and 
Monte Carlo result. Finally, it is shown in Figures 5-7 that for such small disorder to 
coupling ratios the effect of disorder is merely to extend the stopbands a little, as y inside 
the passband is quite small. 

A wave formulation was chosen for the Monte Carlo simulations in Figures 5-7. Even 
though a modal calculation would have been preferred, it was found that the very small 
values of y inside the passband (mostly less than 0.004) could not be obtained. Cost 
considerations limited the size of the systems considered to 60, and a rapid calculation 
shows that this leads to a (maximum) amplitude decay of 22% between the two ends. It 
was found, though, that boundary conditions influenced the value of y very significantly, 
and no meaningful result could be obtained for an ensemble of 300 realizations. The 
values of y obtained by the modal simulation ranged approximately from -0.005 to 
0.005, without any definite pattern, and the variance of the localization factor was much 
larger than the mean. This is not surprising when one recalls that for a 50-DOF ordered 
system ys of magnitude 0.01 were obtained in the passband instead of zero! Therefore 
very small decays cannot be simulated with reasonable cost for finite structures. Note 
that this is not a failure of the modal approach to analyze weak localization. Rather, it 
means that the concept of weak localization is irrelevant for a number of finite structures, 
because boundary conditions influence the amplitude decay as much as, and sometimes 
more than, the disorder. Therefore, the results of Figures 5-7 are only for infinite structures 
(or at least such that N is much larger than the localization scale l/y). Based on the 
experience acquired from Monte Carlo simulations, one can estimate that a localization 
factor of O-004 would require a structure of at least 600 sites in order for the expected 
localization effect to take place in a given disordered structure. This remark shows that 
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not only the average of the localization factor is of interest, but its variance as well, for 
one is interested in the behavior of indiuiduaf disordered structures as much as in that 
of the average of an ensemble of structures. Localization effects are meaningful only if 
they occur for typical disordered systems, that is, only if the variance of y is much smaller 
than the mean. Finally, it was found that the modal approach could be used for 60-DOF 
systems only if y > 0.08. Otherwise the wave method had to be used. 

A few more words are in order concerning the wave simulation results. As noted by 
Kissel [ 111, we found that taking the average ofthe logarithm ofthe transmission coefficient 
for one disordered site led to excellent results. It should be pointed out, though, that this 
is not valid when dealing with larger localization factors ( y > 0.05) and thus, in general, 
this simplified approach should not be a substitute for complete simulations performed 
by multiplying many transfer matrices. 

The localization factor in terms of frequency for a disorder to coupling ratio of one is 
displayed in Figure 8. Here the larger values of y allow us to display its variation in the 
stopband. One observes that the agreement between the classical perturbation result and 
the simulation is still fair in the middle in the passband, but deteriorates rapidly as G 
moves toward the edges of the passband, where the perturbation results overpredict y 
significantly. In the stopbands y is very close to the decay of the ordered chain, justifying 
the fact that perturbation expressions were obtained only in the passband. The Monte 
Carlo results were obtained by the modal approach for systems of size 60, and very good 
agreement was observed with the wave simulation results performed on 1000 realizations 
of 300 matrices. Therefore, for structures made of 60 sites with 10% disorder and excited 
at midband, an average decay of 99.8% of the vibration amplitude from one end to the 
other can be expected. 

In Figure 9 is shown the localization factor in a weak coupling case, for a disorder to 
coupling ratio equal to three. Note that the Monte Carlo results compare rather well with 
the modified perturbation results, considering that the disorder to coupling ratio is not 
large. As expected, the classical perturbation analysis gives very large values of y and 
yields erroneous results. Also, the localization factor for the disordered system varies 
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Figure 9. Localization factor in frequency passband and stopbands, for u = 3% and R = 0.01, by modified 
perturbation method (-), Monte Carlo simulations (+), and classical perturbation method (- - -). The decay 
constant for the tuned system is shown (- - -). 

little over the passband, and in the stopbands y is close to the tuned system’s decay. 
Interestingly enough, in the stopband the decay for the disordered system is smaller than 
that for the tuned system, hence disorder decreases slightly the attenuation in the stopband! 
In the passband, however, the zero value of y for the tuned system becomes nearly 0.7 
when small disorder is introduced, corresponding to a severe attenuation of the amplitude 
in this weak coupling case. It should be noted that the Monte Carlo results were obtained 
by simulating the modal formulation and agreed very well with the wave simulation 
results obtained by multiplying transfer matrices. The approach suggested by Kissel [ 1 l] 
to average over only one disordered site led to severe underestimates of y, and it was 
concluded that it should not be used for large decays. 

Figure 10 is for a larger disorder to coupling ratio equal to ten. Excellent agreement 
between the Monte Carlo and modified perturbation results (44) is observed. The classical 
perturbation results are so large that they could not be shown. If the plot were extended 
to include more of the stopbands it would show that the localization factor for tuned 
and mistuned systems approach each other as the distance to the passband increases. 
Note that the very large value of the localization factor, nearly equal to 1.9, leads to a 
drastic decay over a few oscillators-the so-called strong localization. Also, y is almost 
constant over the frequency range shown, a very different behavior from that observed 
for weak localization, where the localization factor is largest in the vicinity of the 
stopbands. In fact, Figure 10 shows that the introduction of disorder practically eliminates 
the passband. Again, Monte Carlo results were obtained by simulating systems with 
boundary conditions. 

Finally, in Figure 11 is shown a typical variation of the localization factor in terms of 
the disorder to coupling ratio, for a midband excitation. Monte Carlo simulation and 
classical and modified perturbation results are shown. As u/R increases from zero to 
approximately one, the simulation and classical perturbation results are in excellent 
agreement, corresponding to the phenomenon of weak localization. This agreement 
deteriorates as the disorder to coupling ratio further increases, and while the classical 
perturbation results diverge from the numerical solution, the latter approaches the 
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Figure 11. Localization factor versus disorder to coupling ratio, at midband frequency G2 = 1 + 2R, by Monte 
Carlo simulations (-), classical perturbation method (- - -), and modified perturbation method (- - -). 

1 

modified perturbation results. For a/R > 6 very good agreement is observed between the 
Monte Carlo and the modified perturbation results, corresponding to strong localization. 
The agreement would improve as the disorder to coupling ratio further increases. The 
region where neither perturbation scheme gives accurate results (approximately 1.5 < 
a/R -C 3) corresponds to the transition between weak and strong localization, for which 
significant effects of disorder begin to occur. These intermediate cases require a numerical 
simulation of the effects of disorder. Finally, note that the Monte Carlo results are a little 
jagged because of cost limitations in the simulations. Smoother results could be obtained, 
but the resulting additional expense was not deemed worthwhile. 
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6. ON WEAK AND STRONG LOCALIZATION 

Weak localization occurs in systems with strong (finite) internal coupling and weak 
disorder, for which the amplitude decay per site is very small. Even though of considerable 
academic interest, weak localization is probably of little concern to the structural dynamic- 
ist, based on the three following arguments. First, even for an “infinite” structure without 
boundaries, the decay per site is very small. For example, a localization factor of O-005 
corresponds to a localization length of 200 sites, and 140 substructures are needed for 
the wave amplitude to decay by a factor two. Typically, the localization effect is significant 
for chains consisting of several hundreds or thousand of sites, making it relevant to 
systems such as atom chains and lattices studied in physics. Second, Monte Carlo 
simulations have shown that boundary conditions can affect the very small values of the 
localization factors significantly, and in many cases obscure any noticeable effect of 
disorder. This happens when the size of the structure is not much larger than the 
localization length. Third, it is believed that the light damping that exists in all structures 
provides spatial amplitude decays that are at least comparable in magnitude to those 
created by disorder. This will be discussed in a future paper. In engineering, the typical 
number of component systems making up a periodic structure is much smaller than in 
solid state physics (say less than one hundred), therefore making weak localization of 
little interest. A notable exception, however, could be truss-type structures that may 
consist of many components. 

Strong localization, on the other hand, occurs in weakly coupled, weakly disordered 
systems, and is a drastic phenomenon: for a strongly localized vibration only a few 
oscillators (say less than ten) participate in the motion of the structure. This phenomenon 
is doubtlessly the most relevant to engineering structures. Indeed, past research on 
localization in structures has mainly focused on strong localization effects [2,3, 5-81, 
while most work in physics has been concerned with weak localization. This important 
distinction seems to be unclear in the structural dynamics literature, as it is rarely stated 
clearly which type of localization-weak or strong-is being studied. 

7. CONCLUSIONS 

The effects of disorder on vibration propagation in chains of coupled oscillators have 
been studied by a probabilistic approach. The phenomena of weak and strong localization 
have been shown to occur for strong and weak coupling between oscillators, respectively. 
Asymptotic expressions have been derived for the localization factors in these two limiting 
cases and have been confirmed by Monte Carlo simulations. While weak localization 
phenomena are probably of little concern to the structural dynamicist, small disorder has 
been shown to cause a drastic spatial attenuation of the vibration amplitude in the weak 
coupling case. 
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