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The growth of m-constraint random knapsacks

Kenneth E. SCHILLING
Department of Mathematics, University of Michigan — Flint, Flint, MI 48503, USA

Abstract: The author computes the asymptotic value of a particular m-constraint, n-variable 0-1 random
integer programming problem as n increases, m remaining fixed. This solves a problem of Frieze and
Clarke (1984).

1. Introduction

Consider the m-constraint ‘random knapsack’ problem

V,=max X;8, + X,8,+ --- + X8, (1.1)
subject to W8, + W, 0, + --- + W8, <1,
W,6,+ W8, + --- + W, 8 <1,

W +W o+ - +W, 6<1,
8, € {0, 1},

where the random variables Xj and W, s l= 1,2,...,m, j=1,2,..., n, are mutually independent, and ali
uniformly distributed on the interval (0, 1). In a paper in this Journal, Frieze and Clarke (1984) raised the
question of computing the asymptotic value of the random variables V,, for fixed m, as n — oo; that is,
finding a sequence (x,) of numbers such that

P(x,(1-0o(1) <V, <x,(1+0(1)))>1 asn— oco. (1.2)
(As usual, o(1) denotes a sequence which tends to 0 as n — c0.)

In this paper we solve this problem. To be precise, let V, ~ x, be an abbreviation for (1.2). We shall
prove

Theorem 1. V, ~ (m + 1) (n/(m + 2)1)}/0"* D,

2. Proof of Theorem 1

Let m be a fixed positive integer, and let ¥, be defined by (1.1).
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Lemma 2. Suppose 1,>0 for i=1,2,....m. For j=1,2,....n, let I, be the indicator of the event
{(X, 2t W,+6,W,+ -+, W 3 If W, + Wl + - +W, 1,21 fori=1,2,...,m, then X,I, +
XL+ -+ X =2V,

Proof. Let (§,,...,6,) be an optimal solution to (1.1), that is E;’-=1W,j6j<1 for i=1,...,m, and

25_1X;8,=V,. In the sums below, let k range over all j&€ {1,...,n} such that it is not the case that
I,=8,=1. Then
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t;,W, I, by definition of I,
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1 W8, since, forall i,) W, . 1,>1> Y W, 8,
J

i J
J
s0 YW, I, > Y W,8,
k &

> Y X8, since, whenever §, =1, I, =0,
K

so X, <Y tW,.
i

Now, adding in X,J,=X§, for j such that I;,=§,=1, we have L ,X;[,>Y]_,X,§,=V,, which
completes the proof. O

We now proceed with the proof of Theorem 1. For i=1, 2,..., m, let
n
VVi;n(tl’ Lsenns tm) = Z VV:] 1{/\’!211u/]j+12W2]+ W)
j=1

and let

Xn(tla t2""’tm) = Z ‘X/ 1(,\’131,W,/+12W21+ W h

Jj=1
A computation shows that, if 1,>1 for i=1,..., m, then

E(Vf/i;n(tl’ Loy tm)) =n E(VV,l “Lox 5w+ oWy + +z,,,w,,,l))

=n/((m+2)¢t,-0,0, - 1,,), (2.1)
and
Var(u/;;n(tl’ Iseees tm)) shn E(erl2 1(X,>r1W”+tZW2,+ +1,,,wm1))
n
< 1. 'E(VVil ) 1(x,>z,wn+12w1+ +r,,,W,,,,))
(since X, <1 and X, > t,W, imply W, < 1/¢,)
=n/((m+2)1e2-0t, - 1,,). (2.2)
Now let

,=(n/((m+2)! 1+ s")))l/(’"H) and v,=(n/((m+2)!(1- e,,)))l/('ﬁl), (2.3)
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where ¢, =n"'"/?"*3) We shall write Vf/,.;,,(t) to abbreviate W,.._,,(t, t,...,t). For i=1,2,..., m, we have

P(W,,(7,) <1) = P(W,,(7,) — E(W,,(7,)) <1-E(W,,(1,)))
= P(W, (1) = E(W,,(7,)) < =n" V") (by (2.1) and (2.3))

< Var(W, (7)) -n¥@"*3  (by Chebyshev’s inequality).

It follows from (2.2) and (2.3) that this last expression converges to 0 as n — oo; thus, for i=1,2,..., m,
P(W,.,(1,)=21)—1 as n = oo. Applying Lemma 2, we may infer
P(X(1,)>V,)>1 asn— . (2.4)

n n

An argument similar to that just completed shows that P(Vf/,-: Av,)<1)—>1 as n — . But whenever
W, (v,)<1fori=1,..., m, by definition of W the assignment

8] = 1{Xj>v,,W1]+U"WZI+ W, ) J=12,....n,
is feasible for problem (1.1); thus we have

P(X,(v,)<V,)—>1 asn- oo, (2.5)
so, from (2.4) and (2.5)

P(X(t)=V,2X,(v,))>1 asn— . (2.6)

A computation shows that if 7,>1 for i=1,..., m, then

E(X,(ty, o t,)) =1 E(X L om comns o sy )-
=n/(m+2)m\t,-t,---1,), (2.7)
and
Var( X, (t, 3,00 1,)) <1 E( X2 1 x aws s s e )
<n-E(X- Lix, s owy Wy, + - +1mw,",))
=E(X, (1, t3,...,1,,))
=n/((m+2)mle,-t,---t,). (2.8)
From (2.3), (2.7) and (2.8), we have
E(X,(7)/a,)=00+¢)"""" 51 and
Var(X,(r,)/a,) <((1+¢,)/a,)

where a, = (m + 1)(n/(m + /m+D,
Therefore, by Chebyshev’s inequality,

VD L0 as n - oo

~

X, (1) ~a,. (2.9)
By an identical argument we also have

X,(v,) ~a,, (2.10)

and from (2.6), (2.9), and (2.10), we conclude that ¥, ~ a,, which completes the proof of our theorem. O
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