Theory and Methodology

The growth of *m*-constraint random knapsacks

Kenneth E. SCHILLING

Department of Mathematics, University of Michigan – Flint, Flint, MI 48503, USA

Abstract: The author computes the asymptotic value of a particular m-constraint, n-variable 0-1 random integer programming problem as n increases, m remaining fixed. This solves a problem of Frieze and Clarke (1984).

1. Introduction

Consider the m-constraint 'random knapsack' problem

$$V_{n} = \max X_{1}\delta_{1} + X_{2}\delta_{2} + \dots + X_{n}\delta_{n}$$
subject to
$$W_{11}\delta_{1} + W_{12}\delta_{2} + \dots + W_{1n}\delta_{n} \leq 1,$$

$$W_{21}\delta_{1} + W_{22}\delta_{2} + \dots + W_{2n}\delta_{n} \leq 1,$$

$$\vdots$$

$$\vdots$$

$$W_{m1}\delta_{1} + W_{m2}\delta_{2} + \dots + W_{mn}\delta_{n} \leq 1,$$

$$\delta_{i} \in \{0, 1\},$$

$$(1.1)$$

where the random variables X_j and W_{ij} , $i=1,2,\ldots,m,\ j=1,2,\ldots,n$, are mutually independent, and all uniformly distributed on the interval (0,1). In a paper in this Journal, Frieze and Clarke (1984) raised the question of computing the asymptotic value of the random variables V_n , for fixed m, as $n \to \infty$; that is, finding a sequence (x_n) of numbers such that

$$P(x_n(1-o(1)) \le V_n \le x_n(1+o(1))) \to 1 \text{ as } n \to \infty.$$
 (1.2)

(As usual, o(1) denotes a sequence which tends to 0 as $n \to \infty$.)

In this paper we solve this problem. To be precise, let $V_n \sim x_n$ be an abbreviation for (1.2). We shall prove

Theorem 1. $V_n \sim (m+1) (n/(m+2)!)^{1/(m+1)}$.

2. Proof of Theorem 1

Let m be a fixed positive integer, and let V_n be defined by (1.1).

Received June 1988; Revised December 1988

0377-2217/90/\$3.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

Lemma 2. Suppose $t_i > 0$ for i = 1, 2, ..., m. For j = 1, 2, ..., n, let I_j be the indicator of the event $\{X_j \ge t_1 W_{1j} + t_2 W_{2j} + \cdots + t_m W_{mj}\}$. If $W_{i1}I_1 + W_{i2}I_2 + \cdots + W_{in}I_n \ge 1$ for i = 1, 2, ..., m, then $X_1I_1 + X_2I_2 + \cdots + X_nI_n \ge V_n$.

Proof. Let $(\delta_1, ..., \delta_n)$ be an optimal solution to (1.1), that is $\sum_{j=1}^n W_{ij} \delta_j \le 1$ for i = 1, ..., m, and $\sum_{j=1}^n X_j \delta_j = V_n$. In the sums below, let k range over all $j \in \{1, ..., n\}$ such that it is not the case that $I_j = \delta_j = 1$. Then

$$\sum_{k} X_{k} I_{k} \geqslant \sum_{k} \sum_{i=1}^{m} t_{i} W_{ik} I_{k} \quad \text{by definition of } I_{k}$$

$$\geqslant \sum_{k} \sum_{i=1}^{m} t_{i} W_{ik} \delta_{k} \quad \text{since, for all } i, \sum_{j} W_{ij} I_{j} \geqslant 1 \geqslant \sum_{j} W_{ij} \delta_{j},$$

$$\text{so } \sum_{k} W_{ik} I_{k} \geqslant \sum_{k} W_{ik} \delta_{k}$$

$$\geqslant \sum_{k} X_{k} \delta_{k} \quad \text{since, whenever } \delta_{k} = 1, \ I_{k} = 0,$$

$$\text{so } X_{k} < \sum_{i} t_{i} W_{ik}.$$

Now, adding in $X_jI_j=X_j\delta_j$ for j such that $I_j=\delta_j=1$, we have $\sum_{j=1}^n X_jI_j\geqslant \sum_{j=1}^n X_j\delta_j=V_n$, which completes the proof. \square

We now proceed with the proof of Theorem 1. For i = 1, 2, ..., m, let

$$\hat{W}_{i;n}(t_1, t_2, \dots, t_m) = \sum_{j=1}^n W_{ij} \cdot 1_{\{X_j \ge t_1 W_{1j} + t_2 W_{2j} + \dots + t_m W_{mj}\}},$$

and let

$$\hat{X}_n(t_1, t_2, \dots, t_m) = \sum_{j=1}^n X_j \cdot 1_{\{X_j \ge t_1 W_{1j} + t_2 W_{2j} + \dots + t_m W_{mj}\}}.$$

A computation shows that, if $t_i > 1$ for i = 1, ..., m, then

$$E(\hat{W}_{i;n}(t_1, t_2, ..., t_m)) = n E(W_{i1} \cdot 1_{\{X_1 \ge t_1 W_{11} + t_2 W_{21} + \dots + t_m W_{m1}\}})$$

$$= n/((m+2)! t_i \cdot t_1 t_2 \cdot \dots \cdot t_m), \qquad (2.1)$$

and

$$\operatorname{Var}(\hat{W}_{i;n}(t_{1}, t_{2}, ..., t_{m})) \leq n \ E(W_{i1}^{2} \cdot 1_{\{X_{1} \geq t_{1}W_{11} + t_{2}W_{21} + ... + t_{m}W_{m1}\}})$$

$$\leq \frac{n}{t_{i}} \cdot E(W_{i1} \cdot 1_{\{X_{1} \geq t_{1}W_{11} + t_{2}W_{1} + ... + t_{m}W_{m1}\}})$$

$$\left(\operatorname{since} X_{1} \leq 1 \text{ and } X_{1} \geq t_{i}W_{i} \text{ imply } W_{i} \leq 1/t_{i}\right)$$

$$= n/((m+2)! \ t_{i}^{2} \cdot t_{1}t_{2} \cdot ... t_{m}). \tag{2.2}$$

Now let

$$\tau_n = (n/((m+2)! (1+\varepsilon_n)))^{1/(m+1)} \quad \text{and} \quad \nu_n = (n/((m+2)! (1-\varepsilon_n)))^{1/(m+1)}, \tag{2.3}$$

where $\varepsilon_n = n^{-1/(2m+3)}$. We shall write $\hat{W}_{i,n}(t)$ to abbreviate $\hat{W}_{i,n}(t, t, ..., t)$. For i = 1, 2, ..., m, we have

$$\begin{split} P\big(\hat{W}_{i;n}(\tau_n) < 1\big) &= P\big(\hat{W}_{i;n}(\tau_n) - E\big(\hat{W}_{i;n}(\tau_n)\big) < 1 - E\big(\hat{W}_{i;n}(\tau_n)\big)\big) \\ &= P\big(\hat{W}_{i;n}(\tau_n) - E\big(\hat{W}_{i;n}(\tau_n)\big) < -n^{-1/(2m+3)}\big) \qquad \text{(by (2.1) and (2.3))} \\ &\leq \text{Var}\big(\hat{W}_{i;n}(\tau_n)\big) \cdot n^{2/(2m+3)} \quad \text{(by Chebyshev's inequality)}. \end{split}$$

It follows from (2.2) and (2.3) that this last expression converges to 0 as $n \to \infty$; thus, for i = 1, 2, ..., m, $P(\hat{W}_{i:n}(\tau_n) \ge 1) \to 1$ as $n \to \infty$. Applying Lemma 2, we may infer

$$P(\hat{X}_n(\tau_n) \geqslant V_n) \to 1 \quad \text{as } n \to \infty.$$
 (2.4)

An argument similar to that just completed shows that $P(\hat{W}_{i;n}(v_n) \leq 1) \to 1$ as $n \to \infty$. But whenever $\hat{W}_{i;n}(v_n) \leq 1$ for i = 1, ..., m, by definition of \hat{W} the assignment

$$\delta_j = 1_{\{X_j \ge \nu_n W_{1j} + \nu_n W_{2j} + \cdots + \nu_n W_{mj}\}}, \quad j = 1, 2, \ldots, n,$$

is feasible for problem (1.1); thus we have

$$P(\hat{X}_n(v_n) \le V_n) \to 1 \quad \text{as } n \to \infty,$$
 (2.5)

so, from (2.4) and (2.5)

$$P(\hat{X}_n(\tau_n) \geqslant V_n \geqslant \hat{X}_n(v_n)) \to 1 \quad \text{as } n \to \infty.$$
 (2.6)

A computation shows that if $t_i > 1$ for i = 1, ..., m, then

$$E(\hat{X}_n(t_1, t_2, \dots, t_m)) = n \cdot E(X_1 \cdot 1_{\{X_1 \ge t_1 W_{11} + t_2 W_{21} + \dots + t_m W_{m1}\}}).$$

$$= n/((m+2)m! \ t_1 \cdot t_2 \cdot \dots \cdot t_m), \tag{2.7}$$

and

$$\operatorname{Var}(\hat{X}_{n}(t_{1}, t_{2}, \dots, t_{m})) \leq n \cdot E(X_{1}^{2} \cdot 1_{\{X_{1} \geq t_{1}W_{11} + t_{2}W_{21} + \dots + t_{m}W_{m1}\}})$$

$$\leq n \cdot E(X_{1} \cdot 1_{\{X_{1} \geq t_{1}W_{11} + t_{2}W_{21} + \dots + t_{m}W_{m1}\}})$$

$$= E(\hat{X}_{n}(t_{1}, t_{2}, \dots, t_{m}))$$

$$= n/((m+2)m! \ t_{1} \cdot t_{2} \cdot \dots \cdot t_{m}). \tag{2.8}$$

From (2.3), (2.7) and (2.8), we have

$$E(\hat{X}_n(\tau_n)/\alpha_n) = (1+\varepsilon_n)^{1/(m+1)} \to 1 \quad \text{and}$$

$$\operatorname{Var}(\hat{X}_n(\tau_n)/\alpha_n) \le ((1+\varepsilon_n)/\alpha_n)^{1/(m+1)} \to 0 \quad \text{as } n \to \infty,$$

where $\alpha_n = (m+1)(n/(m+2)!)^{1/(m+1)}$.

Therefore, by Chebyshev's inequality,

$$\hat{X}_n(\tau_n) \sim \alpha_n. \tag{2.9}$$

By an identical argument we also have

$$\hat{X}_n(v_n) \sim \alpha_n,\tag{2.10}$$

and from (2.6), (2.9), and (2.10), we conclude that $V_n \sim \alpha_n$, which completes the proof of our theorem.

Acknowledgement

The result in Theorem 1 was announced in Mamer and Schilling (preprint). I wish to acknowledge John Mamer's help and encouragement in this work.

References

Frieze, A.M., and Clarke, M.R.B. (1984), "Approximation algorithms for the *m*-dimensional 0-1 knapsack problem: Worst case and probabilistic analysis", *European Journal of Operational Research* 15, 100-109.

Mamer, J.W., and Schilling, K., "On the growth of random knapsacks", Preprint.

Meante, Rinnooy Kan, Stougie and Vercellis, "A probabilistic analysis of the multiknapsack value function", Preprint.