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A discussion of the need for a definition of sin20 is presented. The use of  a minimal subtraction scheme is advocated. 

This note is intended to clarify some issues concerning the definition of  sin 0 (the electroweak mixing angle) 
as it appears that not only there is some confusion, but worse, that this confusion leads to a wrong interpretation 
of  the data. 

Consider some theory, supposedly described by a lagrangian depending on certain parameters. Suppose for 
simplicity there is only one parameter called x:. ~ = . ~ ( x ) .  In the tree approximation there is no ambiguity and 
theoretical predictions from this lagrangian can be compared with the experiment. One data point is needed to 
fix x, after that any other comparison is a test o f  the theory. Of  course, ideally one would like to combine all data 
and express the result as a probability, that all the data are consistent with one free parameter, but we will not 
dwell on that. 

Now suppose that one wants to go beyond the tree approximation. Then radiative corrections must be calcu- 
lated. The relation between the parameter x and the experimental data becomes much more complicated. None- 
theless it remains precisely true: one measurement is needed to fix the free parameter x, the rest is a test. Of  
course the value o f x  as determined using only the tree approximation will be different from the value deter- 
mined taking into account radiative corrections. As it happens this difference is usually infinitely large because 
the radiative corrections contain infinities. Such infinities must be well defined and understood, but nowadays 
everybody uses the same regularization scheme, i.e. dimensional regularization, and there is as yet no real prob- 
lem there. In still higher order there is the problem of  how to define 7 5, and indeed, strictly speaking renormal- 
izability of  the standard model is not yet proven. Again, that is not the issue here, but it must be mentioned 
because it is a potential source for scheme diversification. 

Because o f  the awkward situation that the correc ted  x and the tree x are so different one introduces the notion 
o f  a counter term. Thus in the lagrangian one writes x(  1 + ~x) instead o f  x, and ~x is chosen in some well defined 
manner such that now x remains in the neighbourhood of  the tree x. It is, however, purely a matter of  conve- 
nience; the only thing that ever emerges in the confrontation with the data is x(  1 +~x) .  In order to have mean- 
ingful communicat ion it is necessary, when talking about x, to specify what ~x is used. Stating one's conventions 
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on this matter is what is usually termed the subtraction scheme or renormalization scheme. Two essentially 
different approaches may be distinguished: 

(a. 1 ) prescribe precisely what x is, 
(a.2) prescribe precisely what 6x is. 
Again, only the combinat ion x(  1 + r x )  appears in the confrontation with the data, and we are discussing here 

a matter of  convention. As a matter o f  terminology we will call quantities such as 6x counter terms. 
In the older days of  QED method (a. 1 ) was the preferred. The convention was to prescribe x, and to use for 

that some very well defined experimental quantity. The quantity 6x is then obtained from the data including 
radiative corrections. A case in point is the electron mass. The quantity m ( 1 + 6m) was called the bare mass and 
m itself the experimental mass. This method also reflected some vague intuition about the physical meaning of  
the bare mass: if the interactions could be switched off  that is what one would see. Also, the mass of  the electron 
is very well known, and the scheme is well understood. Convention (a. 1 ) has the advantage of  not being depen- 
dent on the choice of  regularization scheme but it offers a problem when there is no clear precisely known 
experimental quantity that can play the role o f  defining x. Such is the case o f  QCD with respect to the coupling 
constant g of  that theory. That g, at least as seen experimentally, is a function of  the scale, and, moreover, not 
easy to measure due to confinement. Consequently theorists, after considerable wrangling and all kinds of  con- 
fusion, have more or less settled on method (a.2). The quantity 6x is prescribed and x is determined from some 
experiment depending on x. There are two schemes, MS and MS. The 6x defined by these schemes differ from 
each other by some finite amount.  The MS scheme appears at this time to be the winner. 

In the case o f  the eleclroweak theory the approach (a. 1 ) has been advocated by Sirlin [ 1 ] and the full imple- 
mentation can be found in ref. [ 3 ]. Other authors previously [4 ] and also more recently [ 5 ], have used method 
(a.2). The Sirlin scheme or on shell scheme has received considerable acceptance, although not everyone is 
talking about the same thing. Let us consider that in some detail. 

The main problem in the use of  method (a. 1 ) for the electroweak theory is really the same as in the case of  
QCD. What to take for x? It is in fact not even clear for the vector boson masses, because the vector bosons are 
unstable and their mass is not well defined. Of  course, one can define the mass of  an unstable particle to be the 
value at the peak, or the location o f  the zero of  the real part o f  the propagator (which is not the same) or 
whatever. In other words, one can foresee the advent of  the Sirl in-XXX scheme, where XXX is one o f  a class of  
scientists defining what the mass o f  an unstable particle is. The difficulty concerning the coupling constant in 
QCD surfaces here in the form of  a difficulty concerning sin 0. Following the concepts of  method (a. 1 ) Sirlin 
prescribes the value of  sin 0 as some function of  the experimental W and Z ° masses. I f  everyone would agree on 
some number here all would be fine. A problem arises if one insists that this number  is strictly related to the 
experimentally measured vector boson masses. 

The existing confusion in the present literature arises from the fact that physicists have come to express their 
data in terms of  a prediction for sin 0. Thus, a typical (but not all! ) experimental paper would report a measure- 
ment of  sin 0 following the Sirlin definition. How must that be understood? What really happens is that some 
experiment reports a result; that result, including radiative corrections, can be expressed in terms of  a prediction 
for the vector boson masses. That ratio is then reported and called cos 0 according to Sirlin. 

Of  course, there is nothing wrong in reporting the data in this form. It is, however, a different thing. Defining 
the subtraction scheme is not the same as making a prediction. In fact, this is an artificially convoluted situation. 
The input for the calculation of  the result is the result itselfl To be more specific the tree level sin 0 o f  the minimal 
standard model is expressible through at least two different ratios: 
- the ratio between the SU (2) and the U ( 1 ) couplings in the covariant derivative o f  the Higgs doublet, 
- the mass ratio Mw/Mz.  

In the definition o f  the on shell scheme one assumes that there is a 0w with the relation sin20w = 1 -M~v/M2z 
valid to all" orders while M 2 sin 20w = ztc~/x/~ G u is modified by radiative corrections. The sin 20 which appears 
in the previous relation should actually be identified with the ratio eZ/g 2, which is not in a one-to-one corre- 
spondence with sin20w when varying the top quark mass or the Higgs boson mass. Predictions for the W mass 
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and sin20w are therefore obtained assuming, in a way, sin20w as input; however, in principle the vector boson 
masses and the mixing angle are unrelated quantities. 

There is another problem here. In doing this work, i.e. predicting the vector boson masses from the experi- 
ment, a certain amount of theoretical input is needed. Consider for example, some low energy neutrino-electron 
scattering experiment. In order to predict the vector boson masses the radiative corrections to these masses must 
be calculated. This involves the calculation of vector boson self-energy diagrams, containing quark loops. First 
there is an important and as yet unknown contribution from the top quark; as a consequence one must assume 
a value for the top mass before the experimental result can be quoted. Another problem relates to the contribu- 
tions of the light quarks. There are large higher order QCD effects, amounting to the fact that one cannot use 
the perturbative approach with some values for the quark masses. Consider typically the one loop corrected 
photon propagator which receives a correction factor (a /4n)HF(p2) .  For a fermion of mass mr and charge Qf, 
if [p21 >> m 2, we have 

_p2 

where No= 1 for leptons and 3 for quarks. First there are large QCD corrections to this free field theory expres- 
sion, secondly the quark masses are not unambiguously defined and we encounter a large logarithm leading to a 
sizeable theoretical error. Dispersion methods can be used instead, but these in general need as input the total 
decay rate of off-mass-shell vector bosons into hadrons. Insofar as the vector current part of these decay rates is 
concerned and insofar as one knows all about isospin (to infer the value of the charged currents from the neutral 
ones) one may use the existing measured total decay rates of a photon into hadrons offmass-shell (i.e. the total 
rate ofe+e - annihilation into hadrons) [6]. However, very little is known about the axial current part [ 12]. 
Some gallant guessing is the usual practice. 

Now it is of course unavoidable that combination of low and high energy data involves the above described 
theoretical work. The bad part about the above practise is that thc experimental result as reported involves these 
theoretical speculations, often without really specifying them. As a consequence reported data may become 
useless if some day the theoretical ideas change. Data should be also reported in a form as much as possible 
independent of theoretical speculations or prejudice. Thus low energy data should be expressed in terms of some 
convenient parameter not sensitive to these extrapolations to high energy. 

It is, at least to these authors, abundantly clear that one should not use a scheme of type (a. 1 ), but rather one 
to type (a.2). How can one sensibly use a convoluted scheme where the method depends on the result? If  one 
insists on using scheme (a. 1 ) then at least one should agree on the value of sin 0 to be used in the scheme as 
opposed to a value of sin 0 as defined by the ratio of the vector boson masses. Indeed the main issue in comparing 
theoretical predictions with experimental measurements is not to define sin 0 as sin 0w or a variant of it, but 
rather to obtain the building blocks which render the calculation feasible. Therefore we must prescribe counter 
terms for the parameter of the lagrangian, including 6 sin 0. This can be done and the rest is pure convention, 
namely once the value of sin 0 to be used in the scheme, say sin 0~s, is given one can introduce a plethora of 
different combinations of physical quantities to be termed sin20xv and decide to express the data in terms of 
one of them. In the following some of these experimental quantities will be considered and interpreted in terms 
of effective mixing angles. 

How would things be if method (a.2) is used, like in QCD? There would be a sin 0~rs, whose value as deduced 
from low energy experiments would not involve sensitivity to the top quark mass or the quark contributions to 
the vector boson propagators. There would still be such contributions, but much reduced. For example there 
would be no dependence proportional to the square of mr. Moreover, the p-parameter [well defined only in 
scheme (a.2) ] is depending on mt ~, but is sensitive to the strong interactions of the light quarks only insofar as 
they violate isospin. This is because the tree relation p=  1 is essentially a consequence ofisospin invariance also 
in the Higgs sector after symmetry breaking. Only isospin breaking effects such as mt~-mb will affect the p- 
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parameter. Thus theoretical uncertainties concerning quark induced self-energy effects are considerably re- 
duced. To see in practice how this works we first consider a quantity of  interest in discussing fermionic contri- 
butions to vector boson self-energies, namely a particular combination of  two-point functions [ 7 ] 

Bf(p  z, m, rn ) = 2B21 (p2, m, m ) - B o ( P  z, m, m )  . 

This combination will appear in most self-energy diagrams. Let S o = H o p 2 + X o  be the i - j  transition without 
explicit overall factors containing coupling constants and sin 0. For what we need in this note it is enough to 
consider 

Srz~(p 2 ) = S f r ( p  2 ) - sin20 p Z H ~ ( p 2  ) = 2NcrQf( 13f - 2Qf sin20)B~(p 2, mf, m f ) p  2 , 

where 13f denotes the third component  o f  isospin. In particular, using A = - 2 / (  n - 4 ) + 7 -  In n, we obtain 

1 p2 
Ip21 <<m 2 , Bf(p 2, m, m ) =  - l ( A - l n  m 2 ) +  15 m 2 '  

IP21 >>m 2 , Bf(p 2, m, m ) ~  - ~ [ A - l n ( - p Z - i e  ) ] - ~ -  ~in s i n ( - p  z) , 

s _~ 
s>>m z , R e B f ( - s , m , m ) l ~ i s ~ 1 3 1 n - ~ £  . 

Let us consider the amplitude for v u e - ~ v ~ e - .  In real life many different contributions should be considered 
but to illustrate the previous points it is enough to limit the calculation by considering the quark contribution to 
the Z°-Z ° and Z°-~ , transitions. In this case we obtain 

( 2 
A (v~e-  ~ v ~ e -  ) = (2r04i \FC~Co / )'~( 1 +75)®~,U(a+b75 ) ,  

where ~ ® y ' ~ = 9 , ? ' ~ v ~ ? ~ e ,  etc ... and 

a = ( 4 s Z o _ l  g 2 s ~ S z , ( p 2 ) )  4n2 pZ Az(p z) b =  - A z ( p  2) d£  ~ (pZ) = p 2 +  M2 g2 ' ' cg 16nZcg Szz(P/ )  ' 

with sg = sin20, M i s  the W bare mass and Szv, Szz are the corresponding transitions. Then the total cross section 
cr~ can be computed and the data point R = a~, /a~  used, 

R =  ~ - ~ . ~ ,  + 1 a 
¢%.+G~+l' ¢~"=b' 

where we assume the approximation of  zero momentum transfer. Subtracting the terms involving A and intro- 
ducing a mass scale~ we define the counter term for sin 0 and fix our sin .0r~s to first order in ~. At this point we 
mention that Dyson resummation [ 31 will be not considered here, but its inclusion is straightforward also in a 
scheme of  type (a.2). the whole renormalization procedure amounts to throwing infinities away. If  one subtracts 
the terms involving A the MS redefinition o f  the parameters is obtained (including sin 0), but we could as well 
assign any finite value to A and check for a A independence of  the physical quantities. From the t -b  doublet we 
get 

sin20~rs=~g + 2(1 -~So) l n 8 - I  + ( 1  -~So)4-2 In , g ~ = ~ ( l - ~ )  . 

A recent measurement [ 8 ] gives g~ =0.233 + 0.012 + 0.008. As expected there are no terms quadratic in the 
quark masses. At this point we are ready to make predictions. By comparing different energy scales one can even 
introduce an effective p2 dependent weak mixing angle, deduced from low energy data 
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sin2Ove(pZ)=g2_ ~ Re p2 p2 [pa=o/Iso=.~o 

for fermionic contributions we have Szv=p2Hzv. F o r p 2 > 0  and m2>>p2>>m2, f=u,  d, s, c, b, the term in the 
bracket behaves like 

( ) < ~~$o ) ~ r~, N~fQf(I3r-2Qf~g) In ~-~ rn~ 

and again no quadratic term in the masses shows up. For this reason it would seem most appropriate if the 
results of  low energy experiments were to be expressed, within the MS scheme, in terms of sin 0~s and the p- 
parameter. Actually some do, notably low energy neutrino-electron scattering experiments [8 ]. Values for the 
vector boson masses deduced from those data will involve different uncertainties and can be deduced separately. 

What about high energy experiments, such as the measurements of  the Z ° mass, and the asymmetries in lepton 
or quark decay of the Z°? In actual fact a sin 0~s deduced from an asymmetry experiment would not involve 
theoretical extrapolation as mentioned above. For example, there would again be no contribution proportional 
to the top quark mass squared. To a very high degree one can directly confront the high and low energy data 
here without undue theoretical uncertainty; Since we limit our considerations to fermionic contributions in the 
vector boson self-energies, the amplitude for e+e-  --,l'f ( f #  e ) becomes on-resonance and up to terms which drop 
in the asymmetries 

A (]'f) cc (aTu®~U+bTU~5®yU-c~U®~,UT'+d~u~5®TU~S) 

with 

a =  (1 - -4s~)( I3f-2Qrs~)  + ( 4 Q f s ~ - 1 3 f -  ½Qf)X, b=I3f-'2Qfs~- ½QfX, c = I 3 r ( 1 - 4 s ~ - X ) ,  d=I3f  , 

X=  ot S z , ( - s )  
s 

The corresponding forward-backward and left-right asymmetries are 

3 ad + bc ac + bd 
A F B = 2 a Z + b 2 + c 2 + d 2 ,  A L R = 2 a Z + b 2 + c 2 + d  2. 

Photon exchange and photon-Z ° interference are always suppressed; they enter the on-resonance asymmetries 
with the imaginary part of  the Z ° self-energy, which is obviously independent from unknown heavy particles. Of  
course imaginary parts are always present in X but for our purposes we will drop them because their contribu- 
tions are of  higher order. First we take f=~t for simplicity and introduce ~vn(s)= ]AFB(s). Instead of using 
directly sin 0 we work with v(O) = 4s~ - 1 and define f as a solution of 

~Mn(M 2) (1 4-02 ) 2=202, 

then it is easy to obtain v(O~s) related to the forward-backward asymmetry at the Z ° peak 

v(0~s) = 0 -  -~Re S z ' ( - M ~ )  Ms g°z=~(v+ l )  
;~ M~ ' ' 

S z v ( - M ~ )  
- - 2  ~ Ncfar(13f - 2Or.fg ) Br( - M ~, mf, mr) . M 2 f 

The asymptotic behavior of Br given above proves the assertion, namely no m, 2 dependence. Similarly we put 
~LR (S) = ½ALR(S) and require gto be a solution of 
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~LR(M~) (1 +02) = --~.  

It follows that v(Or~s), related to the left-right asymmetry at the Z ° peak, is once more given by the same for- 
mula, with a different 0. Again there is no contribution proportional to mt 2. Notice that sinZ0rws, being related 
to physical quantities, is real by construction. Fixed sin20srs at one data point we predict, for instance, ~LR in 
the neighbourhood of M~, where, however, the photon channel should also be included: 

~LR (S)= ~LR(M.~)+ a 0--1 (Szy ( - s ) S z r  (_ ~ ) ] I 
rr ( 05-+ 1 ) 2 Re Mz f [,o =,o" 

The bracket behaves like l n ( M ~ / s )  for s, M 2 >> rn~ and goes to zero in the limit s, M2z << m~. Now it becomes 
a pure convention to define a sinZOLR(S) 

l --4 sin 20LR (S) 
eLR(S)  = 

1 + [ 1 - 4  sin20LR(S) ]2 

and report the data as a measure of  sin20LR. 
The Z ° mass and the W mass are another story. Confronting low energy data and the asymmetry measure- 

ments with a vector boson mass value will always involve the contributions mentioned above. For illustration 
we consider a situation where c~, GF and Mz, as the location of the zero of the propagator, are given. Let 
So=Hijp2+So be the i - j  transition without explicit overall factors containing coupling constants or sin 0. A 
solution for sinZ0xvs is given in this case, up to first order corrections, by 

sin20ra-s =gg 1 + ~ Re eg/ /F+ ~ -- M2gg ms,,o=eo ' 

where Hv and SF arc ultraviolet finite combinations 

HF = H r t ( - M ~ )  - H r t ( 0 ) ,  Sr  =Z'ww(0) - $ 3 3 ( - M ~ )  + $ 3 , ( - M ~ ) ,  

where S3v = Szv + g2 p 2Hr " $33 = Szz + 2go 2 Szr + g4 p 2H.,, r and the lowcst 0 rder sin 0 is 

l(l  
Besides large logarithms to be eventually resummed we have a quadratic dependence from the unknown mr, 
since from the explicit expression we derive Z'F ~ - - I  mt 2- Here there are no left over contributions simply be- 
cause everything is expressible in terms of self-energy diagrams. Having defined counter terms we can predict 
measurable quantities, as for instance the W mass. I f  required sin20ras can be computed to higher orders in ot 
by including multi-loop reducible diagrams. Similarly, as pointed out above, we may choose cx, GF and ~¢ as 
data points and predict the Z ° mass. By considering the one-loop corrected Z ° propagator and using the MS 
definition of g, M and sin 0 we find M-~ as a solution of 

2Gv f f2 , , ,~2  / I A r 2  - -  1 + GF Re{XF(-M~)  + g ~ M ~ H F ( - M  2) + -z -2 2 oo, .o , , , z--  - -  ( C o - S o ) . ~ I z [ H 3 v ( - . ~ I ~ ) - H 3 y ( O )  ]} 
~ot 2~ 2 

and ~ = 1 - 4,¢ g. In this formula we used the fact that for fermion insertions S3y =p2H3r. Similar formulas obtain 
when we use ~FB or ~LR at the peak. Terms quadratic in m 2 will always be there. From the on-resonance left- 
right asymmetry we obtain 

2GF -2 -2 2 GF S o C o M z + l +  R e [ Z F ( - M ~ )  -2-2 2 - +SoCoMzl - Iv ( - -M~)  ] = 0  ~O~ ~ 2  
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g~ = 2~LR - 1 +x/1  --4¢2R ~LR = ½ALR(M2z) 
8¢LR 

From an experimental point of  view there is really no difficulty in reporting the data around the resonance; 
one just produces a picture of  the Z ° line-shape with experimental error bars and that is it. Then one can leave 
it to the theorists to have a field day defining what the mass really is. Interesting quantities, such as the top quark 
mass can then be worked out including the ambiguities involved. And of  course, one can still talk about sin 0-- 
Sirlin, but now understood as deduced from the expcrimentally measured vector boson masses defined in some 
way. For hadron collider experiments, where the precision of  the measurements is not likely to get to the level 
o f  theoretical ambiguity, it would seem to be a practical way of  reporting data. 

Assuming then the use of  method (a.2) one must still specify which particular scheme to use, i.e. MS or MS 
or whatever. It would seem natural to follow the consensus with respect to QCD, i.e. to use the MS scheme. 
Someday there will be an interplay between these two segments of  the standard model, and it seems advanta- 
geous to use similar schemes. 

There is, however, an additional point. In case the Higgs mass is very large there could still be a large difference 
between the tree and the one loop corrected quantities, because the radiative corrections involve not only unob- 
servable infinities, but also equally unobservable terms proportional to the Higgs mass squared. It would seem 
appropriate to include also these terms in the definition of  the counter terms [9]. A case can be made [ 10] for 
the inclusion of  certain terms proportional to the logarithm of  the Higgs mass, but for the time being that seems 
not necessary and can lead to further strife, disagreement, confusion and ambiguity. 

In the above the question o f  the physical meaning of  the various choices has not been raised. After all, it is 
mainly a question of  convention. Even so, let us consider the situation for a moment.  The mixing between Z ° 
and y is what one naturally thinks o f  when speaking about the weak mixing angle. That  angle, understood in that 
sense defines the distribution o f  the vector current between 7 and Z °. It surfaces in the fact that the EM charge 
is proportional to sin 0, and that the vector part o f  the neutral current of  fermions as coupling to the Z ° contains 
sin 0. Without mixing the Z ° couplings would be pure V - A .  In principle the values of  the vector boson masses 
are totally unrelated to this mixing. Using an appropriate Higgs system one can, for a given mixing angle, pro- 
duce any desired value for these masses. It is an accident o f  Schwinger's tr model as used by Weinberg to con- 
struct the simplest possible Higgs system that the vector boson masses are not both free, and that in fact the ratio 
o f  the masses equals cos 0. That accident is nothing else but isospin invariance. It really seems to be a first task 
o f  the experiment to establish the truth o f  that relation. It is the first real information on the Higgs system. Why 
then define sin 0 from this mass ratio? It is quite precisely like defining the fine structure constant a as 3 times 
the ratio of  the electron and muon mass. 

As a final note an answer to a point raised by Sirlin [ 1,2 ]. The statement is this: how can one talk about the 
p-parameter if one has not defined first sin 8?. The answer is this: there is no definition needed for sin 0 if ~ sin 0 
is specified. The p-parameter, being finite, is not sensitive to the details o f  the scheme used. One could even 
work, as stated before, without counter terms altogether. For completeness, the p-parameter is defined as the 
ratio of  W and Z ° masses squared divided by cos20. Both the bare and the experimentalp-parameter are finite 
and numerically very close in any scheme of  type (a.2). The main correction is presumably due to the top quark. 

Concerning this p-parameter the comparison with the data is as follows. Suppose the results of  a low energy 
experiment are interpreted using the tree approximation. That will then result in certain values o f  the vector 
boson masses as well as sin 0, and a Ptree can be established. Next, doing all necessary one loop calculations, 
eventually including resummation of  potentially large terms, one may use the data to deduce the values o f  the 
quantities sin 0, etc. in the lagrangian within, say, the MS scheme. Thep-parameter  made of  these bare quantities 
should be one (Pbar~ = 1 ) if indeed the simplest Higgs system applies. The difference between one and P t~  is the 
radiative correction to the,o-parameter. Thus z t ~ =  1 +Ap. 

Note that the radiative corrections to p rcquires specification of  the processes considered. One may for ex- 
ample use low energy neutr ino-electron scattering [ 4,9 ], or the measured values o f  the W and Z ° masses [ 5,11 ]. 
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T h e  var ia t ions  in these cor rec t ions  for d i f ferent  expe r imen t s  ( in  pa r t i cu la r  expe r imen t s  at low energy)  are  min -  

imal.  The  most  in te res t ing  par t  is the  cor rec t ion  p ropor t iona l  to the  top  mass  squared.  It is p resumably  the  

largest  as well,  and  it is the  same  for all exper iments .  It  should  be  m e n t i o n e d  that  a two loop r eno rma l i za t i on ,  

inc lud ing  bo th  reduc ib le  and i r reducib le  d iagrams,  could  in pr inc ip le  i m p r o v e  this correc t ion .  

O n e  o f  the  au thors  (M.V. )  wou ld  like to thank  Dr.  B r h m ,  Dr.  LiJsher, Dr.  B. S c h r e m p p  and  Dr.  F. Sch rempp  

for thei r  pa t i ence  in exp la in ing  present  day usage. 
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