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1. Introduction 

There is a substantial literature on the Central Limit Theorem for sums of dependent random variables, 
especially martingales and stationary sequences; several sets of sufficient conditions are known for the 
convergence in distribution of normed sums. See, for example, Hall and Heyde (1980, Chapters 3 and 5) 
the review paper by Peligrad (1986) and the references given there. There is much less work on local 
versions of the Central Limit Theorem for dependent sequences, however. Lalley (1986) notes the paucity 
of such work and proves a local theorem for Gibb’s states. 

The purpose of this note is to show that techniques developed by Klassen (1984), Boos (1985) and 
Sweeting (1986) may be used to establish local versions of the Central Limit Theorem for sums of 
dependent random variables, when a global theorem is known and conditional distributions are suffi- 
ciently smooth. The approach is suggested by the work of Jeganathan (1987). 

2. Preliminaries 

If u E Iw” and f is a Bore1 measurable function from Iw ” into Iw, then f is said to be almost differentiable 
in the direction u iff there is a measurable function Of, from [w” into Iw for which 

f(x+cu)-f(x)= +ju’Uf,(x+‘u)dt (1) 

for a.e. x E [w” (Lebesgue) for each c > 0. Here (1) includes the condition that the integral exists as a 
Lebesgue integral. It follows directly from Lemma 2, below, that the function Of,, is essentially unique. 

If f is continuously differentiable, then (1) holds for all x and u with Dfi,(x) = u. of(x), where VJ 
denotes the gradient of f and . denotes the dot product in Iw”; but (1) does not require continuous 
differentiability. Almost differentiability is used by Stein (1981). 
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The following properties of almost differentiability are needed. The first of these is just the formula for 
integration by parts. The next two follow from routine applications of Fubini’s theorem. The last then 

follows easily, since a derivative vanishes at a minimum. 

Lemma 1. 
0 

Lemma 2. 

Iff and g are almost differentiable in the direction u E R”, then so is fg, and D( fg), = fog, + gDF,,. 

If f is almost differentiable in the direction u, and iff and Df, are integrable, then 

lim 
jl 

f(x+ tu) -f(x) 
-Of,(x) dx=O. 0 

2-o R” t 

Lemma 3. Suppose that f is almost differentiable in the direction u and that f and Df, are integrable. Let 

f(+.. ,x,_1) = j_lf(x1,..., x,-1> xn) dxn 

for a.e. (x1 ,..., x,_, ) E R”-‘. Then f is almost differentiable in the direction u = (u,, . . . , u,_ 1), and 

D&,,...,x,-I)= m Dfu(xv..,x,-1, x,)dx, 
j 

a.e. 0 
--co 

Lemma 4. If f > 0 and f is almost differentiable in the direction u E II%“, then {x E R”: f(x) = 0 and 

Df,,(x) f 0} is a Lebesgue null set. 0 

3. Equivariant random variables 

Now let X,, . . . , X, denote jointly distributed random variables, defined on some probability space 

(a, zZ,P); write X=(X, ,..., X,,) for the random vector; and suppose that X has a density f (with 

respect to n-dimensional Lebesgue measure). Let 4 : IT&“’ - [w be a Bore1 measurable, translation equiv- 
ariant function; that is, 

$(xl+b ,..., x,+b)=$(x ,,..., x,)+cb 

for all x=(x,,..., xn) and - cc < b < 00 for some 0 < c < co, called the multiplier. Finally, let Y denote a 

random variable of the form 

Y=+(X) =4(X,,..., Xn> 

and let 

H(y)=P{Y<y}, --co<Y~oo, 

denote its distribution function. 

Proposition 1. If f is almost differentiable in the direction 1 := (1,. . . , 1) and if Df, is integrable, then H has 

density 

h(y) = $&(X) dP, -ci<y<cQ, 

where 

l(x)=~I{f(x)>O). XER”. (2) 
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Proof. That E 1 I(X) 1 < co follows directly from the assumed integrability of Dfi. For any y, - cc <y -C co, 
and t > 0, 

where the second equality follows from the change of variables x, = x: + t/c for i = 1,. . . , n. Thus, in 
more compact notation, 

NY++%4 = 
t J (,:,i,),y)+[fix+ 3 -f(x)] dx 

zz 
/ ix:$ix)<y~3X)f(X) dx=/ II(X) dP, 

CYGYJ c 
(3) 

as t -+ 0 by Lemmas 2 and 4. Thus, H has a derivative at every y. It follows that H is continuous and then 
that the right side of (3) is continuous. That the derivative of H is its density follows easily. •I 

4. Normalized sums 

Let X,, k = 1, 2,. . . , denote a sequence of jointly distributed random variables, defined on a probability 
space (a, g’, P), for which E( X,) = 0 and 0 < E(Xi) < 00 for all k = 1, 2,. . . Let 

n 

S,* = $ Xk 

G, be a . X, _ , that is 

G,(x, 

xk cc k 1, . and suppose G, has a 

g,(x,,. ..,xk-I, . x) = 2(x ,,..., x,_,; x) Vx, k. 

Then 

f,(x ,,“‘, xn> = fi &(X1,...,+,; xk) 
k=l 

defines a joint density for Xi,. . . , X,. Thus, if f, is almost differentiable in the direction 1 and 
Of,,, := D(f,)l is integrable, then S,,* has density 

(4) 
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where 

L,=I,(X, ,..., x,), n>l, 

and I, is as in (2) with f replaced by f,. 

Proposition 2. If g, is almost differentiable in the direction 1 = (1,. . . , 1) (k times) for all k > 1, then f, is 

almost differentiable in the direction 1 = (1,. . _ , 1) (n times) and 

(x ,,..., X,)’ 2 (2)(x ,,..., Xk) 
k=l 

a.e. on {x: f,(x ,,..., x,) > 0} c R” for all n = 1, 2,. . . . If, in addition, 

2 .- E 
T/, .- 

i[i i 

$y (x ,,..., x,_,; x,) 2 <co Ii (5) 

for aN k 2 1, then L, , n > 1, defines a martingale for which 

Proof. The first assertion follows directly from Lemma 1, induction, and division. That 

L,= ; 
( 1 

J3Q (x ,,..., x,_,; X,) 
k-1 gk 

is integrable for all n follows directly from (5). For the martingale property, 

E{L,-&-,/X,=x,,..., x,-, =+,} =jW D&,,(x,,...,x,-,; xk) dx, 
-cc 

=&,(x I,..., +I) =0 

for a.e. x ,,..-,xk-l> by Lemma 3, since gk(x,, . . . , xk_,) = 1 for all x1,. . _, xk_ ,_ The final assertion 

follows, since martingale differences are orthogonal. 0 

Theorem 1. With the notation of the previous paragraph, suppose that 

H, : Normal(0, (Ye), 3a > 0, (6) 

and 

sup E 
” 

Then 

lim h,(s) = i$( f) 
n 

uniformly in - 00 < s < 00, where + denotes the standard normal density. 

Proof. First observe that for all s E R, t > 0 and n >, 1, 

(8) 

hn(s + t) -h,(s) = $ LL, dP, 
(s<s,:<S+t} 6 
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by Proposition 1. Since sup,(l/n)E(Li) < cc, L,,/G, n 2 1, are uniformly integrable. Moreover, since 

H,, is continuous for all n and converges to a normal distribution as n + co, it is easily seen that 
lim r_O+ supHal H,(s + t) -H,(s) = 0 for all s. So, h,, n > 1, are equicontinuous. That h,(s) converges 

to cy~‘$(cu~‘s) uniformly on compacts in - cc < s < co now follows from the main result of Boos (1985) 

and Sweeting (1986). So, it remains to show that lim, s, _ 3. sup, z i h,(s) = 0. That lim, j m sup, >, h,( -s) 
= 0 follows directly from (4) since L,/\r n , n > 1, are uniformly integrable and lim, j _ M sup, ~, P{ S,* < 

-s} = 0; and lim,,, sup, h,(s) = 0, by a similar argument. q 

Corollary 1. Zf supk ~2 < cc and (6) holds, then (8) holds. 0 

Remark 1. The quantity L, is the score function (at 6 = 0) for the statistical problem in which one observe 
Y, = X, + 8 for k = 1,. . . , n for some unknown B E R; and E( Li) is the Fisher information for this 

model. Thus, (7) requires that the Fisher information grow no faster than n. 

5. Stationary Markov processes 

In this section, X1, X,, . . . , denotes a strictly stationary sequence with conditional densities g,, k > 1, as 
in the previous section. Moreover, X,,, n > 1, is assumed to be a Markov chain of order m - 1, where 

2 < m < co. That is, there are versions of G,, k > 1, for which 

G&+..,+i; x)=G,(~k-m+,,...,xk~,; x) 

for all (xi, x2,. . .) E R”, x E R and k > m. 

Corollary 2. If g, are almost differentiable in the direction 1 for all k < m, ~2 < 00 for all k < m, and (6) 

holds, then so does (8). 

Proof. In this case ~2 = T,’ for all k > m, so that sup, ~2 is finite. q 

In the remainder of this section, it is assumed that the densities g,, k < m, are almost differentiable in 
all directions, and that Dg,,, is of the form Dg,,, = 2.4 . Vg, for all u for some essentially unique function 

vgk for all k G m. Let 

1 -E k- ill 
2 

5(x ,,..., ql; xk) III , l<k<m, 

where 11 . 1) denotes the Euclidean norm, and observe that 7: 6 kl, for all k = 1,. . . , m. 

Theorem 2. If L, < 00 and (6) holds, then (8) holds. 

Proof. It suffices to show that E(Li_,) < 00, since then 

E(Li)=E(Li_,)+(n- m+l)~~<E(L~_,)+(n-m+l)ml,=O(n) 

as n + co. To see this, first observe that 

fm-l(-%,...,x,)= SW ( 
g, Xl,... ; x,)f,-,(x,>...,x,-,) dx, 

-cc 

211 



Volume 9, Number 3 STATISTICS & PROBABILITY LETTERS March 1990 

for a.e. x2,. . . , x,. So, letting aj = e, . V, where e, = (0,. . . , 1,. . . ,O) denotes the ith unit vector, 

aifm_,(xZ,...,x,)= / O” a,g,,,(x,,...; x,)f,-,(x,,...,x,-,) dx, 
--oo 

J 
03 

+ g,(x,,...; X,)a,f,-,(X,,...rX,-,) dx, 
-CC 

for all i = 2,. . . , m by Lemmas 1 and 3. Here the second term is to be interpreted as zero when i = m. By 
Schwarz’ inequality, 

(aifm-,(x2~...~ x,)1< d O” &g,(x,,...,; X,1* 
j_, g,(x,,.._,; x ) fm-‘(x’YJ?n-‘) dx’ 

m 

x Jl” gm(x . x,)fm-,(x,,..vx,-1) dx, ,,“‘,, 

-cc 

aifm-,b,,...,Xm-d* 
fm-,h...?X,-I) dx, 

X \ir dx . x,,,)f,-,(x,,...,x,-,) dx, ,,...r, 
--oo 

for a.e. x2,. . ., x,. So, since the second 

conditional density, 

and fourth integrals are just fm_,(x,,_. ., x,) and g, is a 

J J 
ajfm_,(x2,...x,)’ . . . 

R”‘-’ fm-,(X2,...%) 

dx, . . . dx, 

<2 ..’ 
/ J 

4dx,,...; x,, 
W”’ g,(x,,...; x,> 

f,-,(x,,. .., x,_,) dx, . . . dx, 

+2 ... 
J J n”,gm(+.; x,) 

a,fm-,b,~...4m-,)2 dx 

f,-,(x ,,..., x,-,) M .*.dxl 

<21,+2 a.’ 
J J 

a,f,-,(+-+,-,)* dx . dx _ 
R”‘-’ fm_,(x,,...,x,_,) ’ . . m ’ 

for all i = 2,. . . , m. When i = m, the last integral is absent, so that the first is finite. Then, when i = m - 1, 
the last integral is finite, so that the first is finite too. By induction the first integral is finite for all 

i=2 >...> m, thus proving the proposition. q 

Remark 2. There are potential relationships between (6) and the condition that L, be finite. Using Boos’ 
theorem again, it may be shown that if 1, < co and X,, X2,. . . , is mixing, then X,, X2,. . . , is strongly 
(uniformly) mixing, one of a set of conditions which imply asymptotic normality. 
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