Two subfamilies of murine retrotransposon ETn sequences

(Recombinant DNA; repetitive DNA; immunoglobulin switch regions; nucleotide sequences)

Briton E. Shell*, John T. Collins, Laura A. Elenich, Paul F. Szurek** and Wesley A. Dunnick

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620 (U.S.A.)

Received by A.M. Skalka: 31 July 1989
Revised: 6 October 1989
Accepted: 10 October 1989

SUMMARY

Early transposon (ETn) elements are 5.7-kb retrotransposons found in the murine genome. We have sequenced large portions of two ETn elements that have apparently transposed within the DNA of a murine myeloma cell line, P3.26Bu4. One of the transposed ETn elements has 5' and 3' long terminal repeats (LTRs) that are exact duplicates of each other and has a 6-bp target site duplication. These results suggest that this element, which inserted into an immunoglobulin γ1 switch region, moved by a retrotransposition process. Our nucleotide sequences confirm that individual ETn elements are very similar to one another and lack open reading frames. However, the ETn sequences reported here and those previously described differ significantly near their 5' LTRs, including 200 bp of weak similarity and 240 bp of complete disparity. Southern hybridization analysis suggests that both subfamilies of ETn sequences are represented many times in the mouse genome. The possibility that the disparate sequences have a role in transposition by ETn elements is discussed.

INTRODUCTION

Retrotransposons are genetic elements usually characterized by the presence of long terminal repeats (LTRs) of 300–500 bp at their ends, by moderately high copy number in genomic DNA, and by evidence of movement within their respective 'host' genomes (Finnegan, 1985). At least one retrotransposon, yeast Ty, is known to transpose through an RNA intermediate that is packaged into a retrovirus-like particle (Boeke et al., 1985; Garfinkel et al., 1985). Early transposon (ETn) is one of a number of murine elements thought to be retrotransposons. Cloned ETn elements are 5.6 kb in length and are flanked by direct repeats of 330 bp (Brulet et al., 1983; Sonigo et al., 1987). Within the BALB/c genome the ETn family has about 200 members, at least some of which are transcribed in early embryogenesis (Brulet et al., 1983; 1985). We have shown that ETn transcripts are also present in tumors of immunoglobulin-producing cells, and that ETn elements are capable of being inserted at new loci within the genome of one such cell (Shell et al., 1987).

Sonigo et al. (1987) have used both Southern hybridization and nt sequence data to suggest that ETn is a very homogeneous family of elements. Notably, two ETn elements cloned at random from BALB/c mouse genomic DNA by these investigators are nearly identical in sequence and contain no significant ORFs. We have reported the
interruption by two ETn elements of immunoglobulin heavy chain switch regions in the BALB/c myeloma P3.26Bu4 (Shell et al., 1987). To learn whether these apparently mobile elements differ structurally from the randomly selected ETn elements described by Sonigo and coworkers, we determined the major portion of their nt sequences. We report here a significant difference between the two pairs of sequences, and demonstrate that the BALB/c genome includes numerous representatives of both kinds of ETn elements.

EXPERIMENTAL AND DISCUSSION

(a) Nucleotide sequences of ETn elements

We had previously isolated a molecular clone, γM85, that represented the 5' end of an insertion of ETn sequences into the immunoglobulin γ1 switch region of the cell line P3.26Bu4 (Shell et al., 1987). To determine if this insertion had the characteristics of a retrotransposition event, we isolated a second molecular clone, γM22, that represents the 3' end of this disruption of the γ1 switch region (Fig. 1). To eliminate the possibility of artificial rearrangements during the propagation of γM22, we compared the size of the insert in this molecular clone to the size of the corresponding fragment in genomic DNA. The 2.2-kb insert in γM22 and the corresponding EcoRI fragment in P3.26Bu4 DNA comigrate (Fig. 1B, lanes 1 and 2), suggesting that γM22 is representative of the genomic DNA. We determined the nt sequence of all of the ETn portion of γM22 and of adjacent γ1 switch sequences. Sequence comparison of γM85, γM22, and a germline ETn element (MG1) sequenced by Sonigo et al. (1987) demonstrates that together γM85 and γM22 represent insertion of an entire ETn element into the γ1 switch region (data not shown). γM85 includes flanking γ1 switch sequences, the 5' LTR from the ETn element, and about 4500 additional bp internal to the ETn element. γM22 includes an additional 300 bp of internal ETn sequences, the 3' LTR and flanking γ1 switch sequences. The 3' LTR present in γM22 and the 5' LTR present in γM85 are identical over their 330 bp lengths (Fig. 2). Six bp of the target γ1 switch sequence (Mowatt and Dunnick, 1968) are duplicated (underlined in Fig. 2) at the site of ETn insertion, and no γ1 switch sequences are missing.

We had previously isolated a molecular clone, γM72, that represented the 5' end of the insertion of ETn sequences near a γ2a gene in P3.26Bu4 (Shell et al., 1987). Because the loss of an EcoRI site during the derivation of this molecular clone complicated its analysis, we have recloned from P3.26Bu4 genomic DNA the 7.2-kb EcoRI fragment representing this insertion. The new clone, γM73, accurately represents the genomic fragment in P3.26Bu4 DNA.

Fig. 1. ETn molecular clones and genomic sequences. A: Structure of molecular clones. ETn sequences are symbolized by thick lines, with LTRs shown as open boxes; other DNA sequences are noted by thinner lines. E (EcoRI), X (XbaI), and H (HindIII). HindIII sites were not mapped in RMg2. The extent of nt sequences determined is noted by thin lines beneath each clone. Panels B: Comparison of genomic DNA and molecular clones by Southern hybridization. P3.26Bu4 (abbreviated as P3), γM22, and γM73 DNA were digested with EcoRI. Samples (20 μg of genomic DNA and 200 pg of cloned D4A4s) were fractionated on 0.8% agarose gels and blotted onto nitrocellulose, and the resulting filters were hybridized with the γ1 switch probe, pγ1/EHI0.0 (lanes 1–2) or the γ2a switch probe, pSγ2a-1 (lanes 3–4). The large (11-kb) fragment in lane 1 is another version of the expressed γ1 switch region (Shell et al., 1987); the smaller fragment in lane 4 is the germline Sγ2a region. Lanes 1–2 and 3–4 are from independent experiments.

The derivations of the molecular clones γM85 and γM73 clones have been described (Shell et al., 1987). To isolate γM22, 10–20 kb fragments from a partial EcoRI digest of P3.26Bu4 DNA were ligated into λCh35 (Loenen and Blattner, 1983). γM22 was selected as a clone that hybridized to the γ1 switch probe pγ1/EHI10.0 (lanes 1–2) or the γ2a switch probe, pSγ2a-1 (lanes 3–4). The large (11-kb) fragment in lane 1 is another version of the expressed γ1 switch region (Shell et al., 1987); the smaller fragment in lane 4 is the germline Sγ2a region. Lanes 1–2 and 3–4 are from independent experiments.

The probe used in this selection was a 2.8 kb HindIII-EcoRI fragment from the 3' end of γM85.
Fig. 2. Partial nt sequences of various ETa elements. Fragments derived by cleavage of γM85, γM73, γM22, γM73 or RMg2 were subcloned into M13mpl8 or M13mpl9 and sequenced by the dideoxy chain termination method (Sanger et al., 1980). Sequences have been deposited with the EMBL database; γM85 5' LTR, ETa sequences in γM72, ETn sequences in γM72 and RMg2 5' LTR (accession number X15598). The sequences of γM72, γM73, RMg2 (this study) and MG1 (Sonigo et al., 1987) are compared to the sequence of the LTR and ETn flanking sequences in γM85. Dashes indicate identity to the γM85 sequence, whereas substitutions are indicated as the appropriate nt abbreviation. Each of the sequences is contiguous; gaps are introduced in the sequences to maximize similarity. Notation (end) specifies the extent of determined sequences of RMg2. The nt 601–660 are compared to the part of the γ2a gene where ETα insertion occurred (determined by sequencing a portion of pSγ2α-1). The sequence of γM73 was determined and is identical to that of γM72 at nt 601–720. A few restriction sites are noted by boldface type. The location of two probes (HaH3 and Ha5) used in Fig. 3 are noted. The 6-bp target sequence duplication is underlined.
(Fig. 1B, lanes 3 and 4), and nt sequences at the junction of the γ2a gene and the ETn element in both γM72 and γM73 are identical. These sequences reveal that the entire 5’ LTR and about 300 additional nt of ETn sequence are missing from the inserted ETn element (Fig. 2, nt 601–660). It is impossible to determine whether these sequences (and perhaps γ2a sequences as well) were lost before or after the insertion of ETn near the γ2a gene.

More than 95% of the ETn sequences present in γM72 and 70% of the ETn sequences present in γM85 were determined. Both of these clones end near EcoRI sites within their ETn portions, and therefore each is missing 700 bp of 3’ ETn sequences. The sequences of these two clones confirm that they represent movement of distinct members of the ETn family; the two sequences mismatch at 4.5% of their nt. The major structural difference between our cloned ETn elements and those described previously is near their 5’ ends. The 5’ LTRs of γM85 and a previously described ETn element (MG1; Brulet et al., 1983; Sonigo et al., 1987) are nearly identical in sequence in their 5’ portions. Similarity is less apparent in the 3’ part of the 5’ LTRs, and becomes insignificant 100 bp 3’ of the end of 5’ LTRs (Fig. 2, nt residue 425). The next 90 bp of MG1 sequence show complete disparity with the next 240 bp of γM85 sequence (Fig. 2, nt residues 426–666). An ETn element cloned from germline DNA (RMg2) is nearly identical in sequence throughout its 5’ portion to the γM85 element, and therefore differs from the MG1 element in this region of disparity. Because the ETn sequences in γM72 begin 630 nt downstream of those in γM85, only a small portion of the region of disparity is available for comparison. However, in the short portion of this region that it retains, γM72 is identical in sequence to γM85 and RMg2 (Fig. 2, nt 632–666). Beyond the region of disparity (which ends at nt 674 in Fig. 2), and extending 4.2 kb to the 3’ ends of γM85 and γM72, our cloned ETn elements are very similar to MG1 (γM85 and MG1 are identical at 94.5% of compared nt; γM72 and MG1 at 92.5%; data not shown). By determining all of the ETn sequences present in γM22, we established that this similarity extends to the 3’ end of the ETn element interrupting Syl (not shown).

(b) Representation of γM85-like ETn sequences in BALB/c DNA

We used two γM85 subfragments as probes for ETn sequences in BALB/c DNA. One is a 150-bp HaelII fragment (Ha5) which is shared by our molecular clones and those of Sonigo et al., (1987). The second probe is a 140-bp HindIII-HaeIII fragment (HaH3), which is found in γM85, but not in the MG1 clone of Sonigo and his colleagues. The common probe (Ha5) should detect a 2150-bp Srl fragment representing ETn elements similar to MG1, and a 2300 bp Srl fragment representing ETn elements similar to γM85 (Fig. 3B). The same probe should detect a 1350-bp Sau3A fragment for MG1-like elements and a 1010-bp Sau3A fragment for γM85-like elements. The existence of these fragments in BALB/c genomic DNA is confirmed in the Southern hybridization experiment shown in Fig. 3A (lanes 1 and 2). As expected, these fragments are among those detected by a probe representing an entire ETn element (RMg2, lanes 5 and 6). Of the two Srl fragments described above, only the larger (2300 bp), which represents γM85-like elements, should be detectable with the γM85-specific probe HaH3. The same probe should detect a 208-bp Sau3A fragment which the common probe should not detect. The existence of these fragments is also confirmed in the Southern blot shown in Fig. 3A (lanes 3, 4 and 4a). These results suggest that many of the ETn ele-
ments in the BALB/c genome share the sequences that distinguish yM85 from MG1. Densitometric scanning of Sau3A bands detected by the common probe (Ha5; Fig. 3A, lane 2) indicates that perhaps 40 of the 200 BALB/c ETn elements are members of a yM85-like subfamily (data not shown). Given the faint hybridization of Ha5 and HaH3 to other bands in SstI and Sau3A digests, there could be additional subfamilies of ETn elements in BALB/c which are distinct from both the yM85-like and the MG1-like subfamilies.

(c) Transposition of ETn elements in P3.26Bu4 DNA

In an earlier paper we reported that two ETn elements have been inserted into the immunoglobulin heavy-chain-encoding locus in P3.26Bu4 cells (Shell et al., 1987). This report includes further evidence that one of the insertions resulted from retrotransposition. The ETn element interrupting the Sy1 region in P3.26Bu4 (represented by yM85 and yM22) is flanked by a duplication of a 6-bp target site, as are other ETn elements described by Brulet and his colleagues (Kaghad et al., 1985). In addition, the LTRs of the yM85/yM22 element are identical in sequence (Fig. 2). Both of these features are necessary consequences of the mechanism of cDNA synthesis and insertion proposed for retroviral replication (Varmus, 1982) and, thus, for retrotransposition (Boeke et al., 1985; Garfinkel et al., 1985).

Previously sequenced ETn elements, selected at random from BALB/c genomic libraries, contain no significant ORFs (Sonigo et al., 1987). The nt sequences of mobile ETn elements reported here, with the exception of a limited region of disparity (Fig. 2), are very similar to known ETn sequences, and also contain no significant ORFs. In fact, given the structural homogeneity among ETn elements observed in both Southern blots and molecular clones, it is possible that no member of the BALB/c ETn family is able to encode proteins (Sonigo et al., 1987; this paper). Without sequencing every one of the 200 elements in the murine genome, it is impossible to formally rule out that all ETn elements are unable to encode proteins. Therefore, ETn retrotransposons might be able to catalyze their own transposition. On the other hand, transposable ETn elements, if they indeed exist, might depend on other retrotransposon families to provide trans-acting transposition functions. A number of other families of murine retrotransposon-like elements have been described, any of which might have members capable of acting as helpers for ETn transposition. One particularly good candidate is the IAP (for intercisternal A-type particles) family, members of which are transcribed and transposed in plasmacytomas (Kuff and Lueders, 1989).

Many families of retrotransposons, including IAP (Shen-Ong and Cole, 1982) and Ty (Roeder and Fink, 1983), are comprised of structurally distinct subfamilies. There are at least two subfamilies of BALB/c ETn elements, whose members differ in sequences adjacent to their 5’ LTRs (Fig. 2). Both the yM85-like and MG1-like subfamilies share the sequences that clearly distinguish yM85 from MG1. Densitometric scanning of Sau3A bands detected by the common probe (Ha5; Fig. 3A, lane 2) indicates that perhaps 40 of the 200 BALB/c ETn elements are members of a yM85-like subfamily (data not shown). Given the faint hybridization of Ha5 and HaH3 to other bands in SstI and Sau3A digests, there could be additional subfamilies of ETn elements in BALB/c which are distinct from both the yM85-like and the MG1-like subfamilies.

