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Abstract: Rate of convergence for density estimators based on Haar series are derived under very mild condition: the unknown 

density has to be of bounded variation. These estimators are histograms on dyadic intervals. 
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1. Introduction 

Given n observations of a random variable X, say X,, . . _ , X,, we estimate the underlying density f. Our 
density estimator is an orthogonal series estimator based on the system of Haar functions. Due to the 
special nature of Haar functions this estimator is a histogram on certain dyadic intervals. Hence this is an 
approach to analyzing histograms. We derive rate of convergence results for the integrated mean absolute 
error. The main result (Theorem 3) is based on a lemma by Devroye and GyGrfi (1985) which decomposes 
the error into a deterministic part and a large deviation part. The deterministic part is estimated with a 

result by Ciesielski (1966) regarding the rate of convergence of Haar polynomials. Our density is assumed 
to belong to a particular Lipschitz class Lip( a, 1) of functions. Lip( a, 1) is defined as the class of functions 
whose integral modulus of continuity wP( 6) is of the order S*. Under less restrictive assumptions we obtain 
the same rate as Abou-Jaoude (1977) for the equal cell width histogram. Our result holds if f is of 
bounded variation. The Haar series method can also be applied in the L, case where our results are 
comparable to those of Freedman and Diaconis (1981). The Haar series estimator is attractive because it 
approximates the equal cell width histogram fairly well and its cell points are recursively refined. This safes 
computations when updating the estimator after additional observations are obtained. 

First we put together some results from abstract harmonic analysis regarding Haar-Fourier polynomi- 
als and their rate of convergence. Then we derive rate of convergence (L,) for densities which belong to 
Lip( (Y, 1). Since Haar series density estimators are particular histograms we compare our results with other 
histogram in the literature. 

The orthogonal series estimator was first suggested by Cencov (1962). Given a complete orthonormal 
system {X,(t), v=l,2 ,... } h d t e ensity f can be approximated by Fourier polynomials: 

H,(f; t) = C a,x,(t) -f(t) a.e. as r + 00, 
v=l 

where the Fourier coefficients are given by 

a, = o*fOxv(t) dt = Ex, / 
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Given a sample X1,. . . , X,, drawn from f, a, is estimated without bias by 

Hence we estimate f(t) by 

where K,(t, s) = C:=,X,(t) .X,(S). The upper summation limit r = r(n) is a smoothing factor for the 
estimator. 

2. Haar-Fourier series in L,(O, 11 for 1 <p c 00 

In this section we examine the approximation of Lp functions (1 <p < 00) by their Haar-Fourier series. 
Let {X,(t)} be the orthonormalized system of Haar functions on the interval [0, 11. They are defined as 
follows: Xi(t) = 1 on [0, 11, and for n = 2” + k (k = 1,. . . ,2”, m = 0, 1,. . .), 

I@ for t E ((2k - 2)/2”+‘, (2k - 1)/2”+l), 

X~I(~) =X’,“‘(t) = -J2m for t E ((2k - 1)/2m+‘, (2k)/2m+‘), 

0 otherwise. 

It is essential to note that the system of Haar functions {X,(t)} not only forms a orthonormal system, 
but that the Haar-Fourier expansion converges almost everywhere for all f~ L,[O, 11, p a 1. This can be 
seen as a consequence of the martingale convergence theorem (see, for example, Garsia, 1970, p. 72). 

The notation of the L, modulus of continuity plays an important role in the results we obtain. 

Definition 1. (i) The L, modulus of continuity of a function f~ L,[a, b], a, b E R, a c b, 1 dp < co, is 
given by 

w,@; f) = sup j(b-“if(s+h) -f(s)\’ ds)“‘. 
O<h<6 a 

(ii) For a! > 0, p > 1 let Lip(cr, p) = { fE L, I Q,(& f> = O(6”)). 

For f6 L,[O, 11, 1 <p < co, the Haar-Fourier polynomial of f is given by H,(f; t) = C;,,a,X,(t) 
where X, is the pth Haar function and LI, is the vth Haar-Fourier coefficient, Q, = /o’f(s)X,(s) ds. Then 

ff,(f; t) = i (/1f(4x,(4 ds)xv(r) = ff(s) i xv(s)xv(f) ds =$fW-As, t) ds, 
v=l 0 v=l 

where the Haar kernel K,(s, t) = Kk’)(s, t) = C:=,X,(s)x,(t) can be represented as (see Haar, 1910, for 
details), 

1 

z‘$Q(S, t) = t, - t;_1 
if S, t in same subinterval ( fi_l, ti), i = 1,. . . , n, 

0, otherwise, 
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where 

i 
- for i=0,...,2k, 

t, = 
2m+l 

i- 

i-k 

2” 
for i=2k+l,...,n. 

For the Haar expansion we have then 

H,(f; t) =H!$‘(f; t) =jolf(s)K$(s, t) ds 

= [&fyds fortE(t,_,, ti),i=l ,..., n, 

\o for t = t,. 

This means HA”(f) equals f averaged over the dyadic intervals (ti_ ,, t,). The following theorem due to 

Ciesielski (1966, p. 309) gives us an estimate for the Haar-Fourier approximation in terms of the L, 

modulus of continuity. 

Theorem 1. LetfE L,[O, 11, 1 <p < co. Then for n > 1, 

Ilf-H,(f)llP~6w,(;; f)3 

i.e. for f E Lip(cy, p) the Haar-Fourier approximation is of the order O(n-“). q 

The next proposition follows immediately from the definition of Lip(a, p), 

Proposition 1. (i) Zf a1 < (Ye, then Lip(cy,, p) c Lip(a,, p). 

(ii) Zf 1 QP, < pz, then Lip(cr, p2) C Lip(cu, p,) for all a > 0. 

(iii) Zf f E Lip(cy, p) for some a > 1, then f = const. a.e. IJ 

For us the most interesting case is for (Y = 1, p = 1. 

Theorem 2. Zf f is a function of bounded variation, then f E Lip(1, 1). 

Proof. If f is of bounded variation on [0, 11, we can represent f as a difference of two nondecreasing 
functions: f(t) = fi(t) - f2(t). Noting that ~~(6; f) < ~~(8; f,) + q(S; fi) we see that it is sufficient to 
show that f E Lip(1, 1) for nondecreasing f(t). But if f is nondecreasing, then for h > 0 the function 
f(t + h) -f(t) is nonnegative on [0, 11. Therefore 

/‘/f(t+h)-f(t)jdt=j-f(t) dt-j-l-hf(t) dt=/l f(t) dt-Jr(t) dt<Mh, 
0 h 0 l-h 0 

where M is an upper bound on f. Therefore 

~~(6; f)< sup Mh=M6=O(S). q 
O<h<6 
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3. Haar series density estimation 

The following lemma is from Devroye and Gyiirfi (1985, p. 292). It decomposes the mean integrated 
absolute error into a term determined by the approximation error of the Haar-Fourier series and a large 

deviation term. 

Lemma 1. _?A i be the Huar series estimate off with r = r(n) terms. Then 

E&(t) -f(t)] dt+C(f)-fl/, + +-L’/m dt. 0 

To obtain a bound for the L, error we estimate both terms on the right hand side of this lemma. The 

expression II Y(f) -f II 1 is estimated by Ciesielski’s (1966) theorem. We estimate the large deviation 

term by the following lemma. 

Lemma 2. 

Proof. Let r = 2” + k, 1 =S k G 2”. Then 

EK,Z(t, X,) =@!(I, s)f(s) ds= 
(1, _:,_,,; Ps ds 

for t E (f,-l, 1,). Now t, - t,_, 2 2-(“‘+l) > (2r)-‘. Hence 

2r 
EK,2(& x,) G - ti_ ti_, [,+I ds, TV (tl--l) tilt 

and 

Jo’/- dt= i /’ /w drqJi;;~~~~~,J~~~~/(s)dSdi 
i=l ‘,-I I 1 

=Kr+qpGz 

i=l f,-, 

using j,f~,f(s) ds =f(ti)(ti - t,_l) + o(1) as r + 00 we obtain 

Now we can derive some rate of convergence results for our density estimator. 

ds+o(l) . [3 
1 

Theorem 3. Zf f E Lip( a, 1) for some (Y > 0 then an L, optimal choice for the smoothing factor is 
r = r(n) - n1/(2a+l) and the L, error is bounded by 

EL’jA(t) -f(t)/ dtg 0(n--a’(2a+‘)). 

114 



Volume 9, Number 2 STATISTICS & PROBABILITY LETTERS February 1990 

If f is a function of bounded variation, then 

E&i(‘) -f(t)1 dt < O(n-“3). 

Proof. Follows immediately from Lemma 1, Lemma 2, Theorem 1 and Theorem 2. 0 

So far we obtained statements regarding the order of the rate of convergence, but no upper bound 
coefficient. This is due to the general nature of the class Lip( a, p). By definition of Lip( Ly, p) there is no 
upper bound coefficient involved in determining if f E Lip(cw, p) or not. To be able to derive an upper 
bound coefficient we have to restrict the class of densities further. If f is twice differentiable, f ’ E L, and 
f” bounded, then we can estimate the modulus of continuity: 

= sup I’-“if(t+h)-f(t)1 dt< sup /l-hlf’(t).hl dt+O(h*) 
O<h<l/r 0 O<h<l/r 0 

<il/f’(t)l dt/r+O(r-*). 

We obtain the following. 

Theorem 4. Assume that f is twice differentiable, f ’ E L, and f ” is bounded. If we choose 

then 

E$lk(t)-f(t)/ dt<3(3/011f’(t)l dt]li3.(~‘l/(,) dtj2’3~np’/3+o(np’/3). 

Proof. With the above estimate of o,(l/r; f) and Lemma 1, 2 and Theorem 1 we have 

Ei’lA(t)-f(t)/ dt<6i’lf’(t)i dt/r+ $ 
J (1 

‘m dt + o(l) 
0 

The first two terms are minimized. if we choose 

r=r(n) = (6fii’lf’(t)[ dtlJ,‘m dt)2’3.n1j3, 

and we obtain the stated result. 0 

A similar approach is possible for the estimation of the mean integrated squared error: First decompose 
the L, error into a deterministic and a large deviation term (see Devroye and Gyorfi, 1985, p. 292). Then 
estimate the deterministic term by Ciesielski (1966) theorem and the large deviation term analogous to 
Lemma 2. From Proposition 1 the most interesting case is when f is assumed to belong to Lip(1, 2) which 
is true if f is absolutely continuous and f’ E L, (see Edwards, 1979, p. 136). Then the L, error is of the 
order 0( n-2/3 ) and an upper bound coefficient can be obtained analogously to Theorem 4. 
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4. Comparison with histograms 

Since Haar series density estimators are histograms on dyadic intervals it is a natural question to ask how 
this estimator compares to other histograms. Our histograms are almost equal cell width. Our estimator fi 
is a histogram whose first k cells are of width 2-(m+1) where the smoothing factor is represented as 
r = 2” + k, 1 < k < 2”, m = 0, 1,. . . . The remaining cells are of width 2-“. Rate of convergence results for 
equal cell width histograms were obtained in the L, case by Abou-Jaoude (1977) and in the L, case by 
Freedman and Diaconis (1981). 

In the L, case we obtained the same rate of convergence as Abou-Jaoude, but our assumptions on f are 
less restrictive: we assume f to be of bounded variation while Abou-Jaoude assumes f to be absolutely 
continuous with a bounded and continuous derivative f ‘. In Abou-Jaoude’s result the upper bound 
coefficient has exactly the same functional dependence on f as in our Theorem 4. However, our upper 

bound coefficient is not quite as good: a simple comparison shows that our upper bound coefficient is 
2. (3”)“3 = 4.22 times the coefficient of Abou-Jaoude. As explanation of this loss we recall that our 
histogram is not exactly Abou-Jaoude’s equal cell width histogram. Furthermore, our result depends 
essentially on two inequalities (Ciesielski’s theorem and Devroye-Gyorfi’s lemma), none of which is 

necessarily sharp. 
While an improvement on the coefficient is still possible, the rate cannot be improved upon. Even if we 

consider smoother densities, the rate of Haar series estimators equals the rate of any histograms which is 

O(n ). 
-l/3 

5. Final remarks 

(1) The choice of the sample space as the interval [0, l] seems to be quite restrictive. But for the L, 
error this is no restriction at all, since the L, error is invariant under continuous and strictly monotone 

transformations of the coordinate axes (see Devroye and Gyorfi, 1985, p. 2f, for details). 
(2) Rearrangement of the sum i(t) = Cunvxv( t) creates histograms of unequal cell width. Applying the 

Kronmal-Tarter method (Tarter and Kronmal, 1970) of term selection for orthogonal series estimators 

leads to a locally adaptive histogram. 
(3) The results given here generalize to multivariate densities in a straight forward way, once an 

appropriate multivariate version of the modulus of continuity and the corresponding Lipschitz class 
Liptd)( a, p) is defined (see Engel, 1988, for details). The applicability of Haar series density estimation for 
nonparametric regression problems is subject of a forthcoming investigation by the author. 

Acknowledgements 

This work is part of the author’s Ph.D. Thesis at the University of Southern California, written under the 
supervision of Professor Louis Gordon, whose guidance and suggestions are gratefully acknowledged and 
appreciated. A comment by an anonymous referee helped to improve Theorem 4. 

References 

Abou-Jaoude, S. (1977), La convergence L, et L, de certains 
estimateurs d’une densite de probabilite, ThZse a 1’Univ. de 
Paris VI (Paris). 

Cencov, N.N. (1962) Evaluation of an unknown distribution 
density from observations, Soviet Math. 3, 1559-1562. 

Ciesielski, Z. (1966), Properties of the orthonormal Franklin 
system, II, Studia Math. 27, 289-323. 

Devroye, L. and L. Gyiirfi, Nonparametric Density Estimation: 

The L, View (Wiley, New York). 

116 



Volume 9, Number 2 STATISTICS & PROBABILITY LETTERS February 1990 

Edwards, R.E. (1979, Fourier Series, Vol I (Springer, New 

York). 

Engel, J. (1988), Density estimation with Haar series, Ph.D. 

Thesis, Univ. of Southern California (Los Angeles, CA). 

Freedman, D. and P. Diaconis (1981), On the histogram as a 

density estimator: L, theory, Z. Wahrsch. Verw. Gebiete 
57, 453-476. 

Garsia, A. (1970) Topics in Almost Euetywhere Convergence 
(Markham, Chicago, IL). 

Haar, A. (1910), Zur Theorie der orthogonales Funcktionen- 

systeme, Math. Ann. 69, 331-371. 

Tarter, M. and R. Kronmal (1970). On multivariate density 

estimates based on orthogonal expansions, Ann. Statist. 41, 

718-722. 

117 


