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Let P be a probability measure on Iw”” ‘, and R = I:=,, P*” the associated renewal measure. A 

two term asymptotic expansion for R is derived under moment and smoothness conditions. The 

smoothness conditions imposed allow P to be arithmetic is some coordinates and absolutely 

continuous in the other coordinates. 
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1. Introduction 

Let P be a probability measure on R’“+‘, and R = C.I=,, P”” the associated renewal 

measure, where the * denotes convolution. The main results of this paper concern 

approximations for the multivariate renewal measure R. In one dimension (m = 0), 

the renewal theorem shows that far from the origin R may be approximated by 

Lebesgue measure over the mean of P (or a suitable multiple of counting measure 

in the arithmetic case). Extensions of this result to higher dimensions have been 

pursued by Bickel and Yahav (1965), Doney (1966), Stam (1968, 1969, 1971), 

Carlsson (1982) and Hijglund (1988). The basic limit theory in the multivariate case 

is more interesting: now R is approximated by the product of Lebesgue measure 

over the length of the mean of P in the direction of drift with a normal measure in 

the orthogonal direction. 

Asymptotic expansions for renewal measures in the plane are given by Keener 

(1988), and expansions for multivariate renewal measures are given by Carlsson 

and Wainger (1982). The results here extend the results of Keener (1988) to higher 

dimensions. Although the method of proof used here is similar, there are important 

technical differences discussed in the concluding remarks section. For simplicity, 

one less term is included in the expansions presented here. The results of Carlsson 
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and Wainger (1982) approximate R(s+ B) as the projection of s in the direction 

of the mean of P approaches infinity, where B is an arbitrary parallelepiped. By 

contrast, the results here are designed to approximate the renewal measure of larger 

sets (see Corollary 2 below). Using linearity of R, their result has sufficient uniformity 

to approximate certain large sets (such as those that are disjoint unions of parallel- 

epipeds), but the class of sets allowed cannot be as large as that considered in 

Corollary 2. Also, the lattice case is not covered by their result, and the moment 

conditions assumed here are less stringent. 

This research is largely motivated by applications to boundary crossing problems 

arising in sequential analysis-this is pursued in Keener (1987, 1989). Suppose 

{S,l}n_zO is a random walk with S, - P,andt=~,,=inf{n~O:v~S,,>a}wherevisa 

fixed vector. If u. S, 2 0 a.s., then a simple calculation shows that the distribution 

of S, can be expressed as an integral against the renewal measure R. This integral 

can be approximated using Theorem 1 or 3 below, and this leads to an expansion 

for the distribution of S, as a + 00. To relax the restriction 2). S, > 0 and to approximate 

the joint distribution of t and S,, ladder variables are introduced. In this extension, 

the renewal measure of interest has P the joint distribution of t,, and S,,,. Hence it 

is crucial in these applications that we allow one coordinate of the random walk to 

have an arithmetic distribution, while the other coordinates are continuous. To 

describe the smoothness condition used for the nonarithmetic coordinates, call a 

random vector y arithmetic on Ztn if P(Ygz”‘)=l but P(YEB)<~ for B any 

proper subgroup of Z”. In renewal theory, a random vector X E R is called strongly 

nonlattice if lim inf,,,,, 11 - E e’“” I> 0, which is equivalent to Cramer’s condition, 

lim sup,,,+,lE e ip’xI < 1. For the mixed case, a random vector X E R’ is strongl_y 

nonlattice with Y if Y is arithmetic on Z”’ and 

lim inf inf 
/PI-= 

11 _ jtj ev-.x+iq. yI > 0. 
qtr -Tr*Tr]” 

This condition plays the same role here that Cramer’s condition plays for expansions 

in the central limit theorem. An easy consequence of this condition is 

inf Il-Ee ip.X tic,-YI > 0 

RfX{-71.71]‘1’-N(, 

for any neighborhood No of the origin. This in turn implies that 

sup Il+Ee ‘p.x+ly’ yl (2. 
R’xr-?T,Ti]“‘-N<, 

Let (X, Y)--P with XER and YER”‘. Also, let v = EX, y = EY/ v, 2 = 

cov( Y - yX) and Z = z-“‘( Y - yX). The following conditions are assumed in the 

sequel: 

(Al) Y = (Y,, Y2) where Y, E I&!“{, Y2 is arithmetic on Z”‘z (so m, + m2 = m) and 

(X, Y,) is strongly nonlattice with Yz. 

(A2) v>O and O<z<co. 

(A3) EIZ(‘+‘<co and EIXl’3t”‘2<~ for some SE[O, 1). 
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The cases m, = 0 and m2 = 0 are allowed. When rn2 = 0, the interpretation for (Al) 

is that (X, Y) is strongly nonlattice, and when m, = 0, the interpretation is that X 

is strongly nonlattice with Y. 

Let A 1 be Lebesgue measure on aB Itrnl, AZ counting measure on Zm2 and A = A, x A>. 

Define the polynomials M, and M2 as 

M,(q) = EXq.2 and M,(q) =$(q.Z)‘. 

The polynomial g is 

g(q) = -M,(q)lv+ M,(q)-q’M,(q)l(2v), 

and the associated multidimensional Hermite polynomial H, is defined by 

HR( 2) ep9V2 = g(-a/&) em”Zl?. 

The measure i approximating R has A-density given by 

F(x,y)=l epl^z’2 {I+&(i)}, 
V 4q(2Trx/ V)m’2 

where z^ = 1 m”2(Y - rx)/m and 111 is the determinant of 1. Define the oscillation 

function w, (. ; E) as 

q(x,y; &)=suP{lf(x,Y)-f(x,,Y,)l: (x--G+(Y-Yl)2~E21. 

Let .Fa be the set of all positive Bore1 measurable functions f: Et"'+' + [0, l] such 

that f(x, y) = 0 whenever x +Z [a, a + 11. 

Theorem 1. For some 77 > 0, 

+0(l) 
I 

q(.; KVa) di 

as a + Co, uniformly for f E So. 

With f an indicator function, Theorem 1 can be applied to give approximations 

for the renewal measure of sets with well behaved boundaries. One such result is 

the following corollary. Let (8B), denote all points within E of the boundary of B. 

Corollary 2. If B is a bounded Bore1 set in [w” and ifthe Lebesgue measure of (aB), 

approaches zero at an algebraic rate as F JO, then 

R([a,a+1]~~[B+ya])=~([a,a+1]~~[B+ya])+o{a”~””’} 

asa-03. 0 

The main weakness of Theorem 1 is that the answer is typically vacuous unless 

f vanishes as lyl -+ ~0. In the setting of Corollary 2, this precludes approximations 

when B is an unbounded set. This deficiency is removed in Theorem 3 at the expense 

of a slightly larger error rate. Since both theorems give global approximations, they 
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are uninteresting for those f~ @a where j f dl? = o{u(~‘~~“*}, which can happen if 

f+ 0 too quickly as )y - ya/ + ~0. For many applications, the main concern is accurate 

approximation for sequences of functions f=fo with form (or approximate form) 

g(x - a, (y - ~a)/&), where g E So. Then lfn dl? has a positive limit (unless g = 0) 

and the approximations here have small relative error. 

Theorem 3. For some 77 > 0, 

IfdR = l/ddtU(I) [ m,(.; em?)“) dR+o(a’-‘~“/2(log a)“‘/‘) 

as a + co, Unz~ormlyforfE 9‘,. 

2. Proofs of Theorem 1 and Theorem 3 

The proof of Theorem 1 is similar in many respects to proofs for expansions in the 

central limit theorem. The spirit of the argument is as follows. Suppose H is a 

probability measure dominated by A. Then H * R i h and it is possible to find the 

density of H * R under regularity conditions for H by Fourier inversion. From the 

inversion formula it is possible to derive an asymptotic expansion for dH * R/dh 

and integrals against this density. This expansion is applied with H almost a point 

mass at the origin to obtain the expansion for R. 

This argument needs two modifications. First, it is convenient to work with the 

symmetrized renewal measure W = R + l? where p is the distribution of -(X, Y) 

and I? = C,: -,, P*“. This helps with integrability problems approximating the 

integrand in the inversion formula near the origin. Second, to make effective use 

of (Al) (the replacement for Cramer’s condition), it is useful to convolve W with 

Px” where P,, =i(S,,+ P) and a,, is a point mass at the origin. With this device, 

contributions to the inversion integral outside a neighborhood of the origin become 

small at an exponential rate, which allows H to approach 6,, extremely quickly. The 

effect of convolving W with Pz” is similar to removing initial terms from the sum 

defining R, and the error induced by this convolution is handled by probabilistic 

arguments. 
Let +( p, q) = E e”‘x+i’f-z, the joint characteristic function of X and 2. Let g= 

IF! ’ ’ “‘I x [ wTTT, T]“‘z and S z R x Jf U2 (lJt”‘l x [-n, T]“‘J). Suppose H is a probability 
measure on iw ’ ’ “‘1 X B”‘: with characteristic function h: If I,< ICI <CO, then H < A with 

density given by the inversion formula 
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where h(p,q)=~(p-q.~~“‘y,~-“’ q) and z is related to x and y by z= 

t;-“2(y - yx). In the sequel, z will always be related in this fashion to x and y. The 

function h is called the transformed characteristicfunction of H. The following lemma 

is the inversion formula that serves as the starting point for this work, 

Lemma 4. If Js //I[ <CO then H* W< A and 

h,j, e-iP.x-i4’Z dp dq, 

where $ = %{l/(l- 4)). 

Proof. This result is similar to Lemma 2.3 of Keener (1988). For 0 < r < 1, the finite 

measure H *Cy=‘_, r”( P”” + p”“) has chara cteristic function 2&%{1/(1- I$)}, where 

4 is the characteristic function of P. By monotone convergence and the inversion 

formula, 

dH*W 
7 (x, y) = lim ’ 1 h%! [&I e-ipx-‘q-z dp dq. 

r-t1 Tr(27r)m4q s 

Since 5?(1-4)20, 

ll-iqS[=r{~ +[l-+l’+2+%(1-rh) 
1 

L/2 

2 rll - 41, 

so the integrand is dominated by 21hl/jl- 41 f or r > 5. By Taylor expansion of 4 

near the origin (see Lemma 8), II- +I -Jp2 ’ y +&I4 as (P, q)+O. BY (Al), l/11 -+I 
is bounded on S - N, for any neighborhood No of the origin. Hence (hl/ll - 41 is 

integrable over S, and the lemma follows by dominated convergence. 0 

By the same proof, if rj is replaced by f( 1 - 4))‘, the inversion integral gives the 

density for H * R. Although it may be possible to prove Theorem 1 from this inversion 

formula for H * R, our attempts have failed. The problem is that the rational 

approximation 4 for $ (presented below) has slightly better behavior than the 

corresponding rational approximation for (1 - 4))’ near the origin. For more details, 

see the comments following the proof of Lemma 5 at the end of Section 3. 

Let U,, = H *(PO*“)* W and u, = dU,,/dh. By Lemma 4, if js lh”j <co, 

where +,, = $( 1 + +), the transformed characteristic function of P,. The main contri- 

bution to this integral comes from a small neighborhood for the origin. Accordingly, 

an important technical task will be approximating $ and & near the origin. Since 
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a painful amount of delicate algebra is necessary, this derivation will be deferred 

to Section 3. The resulting approximations are 

j= I + I _~pM,++$M, &14-$iM2 

ipv+$q* (-ipv+~q’)*~- 

for +!I, 

2, = ~“Y~/4--ZnK/J~( * :npM, _:inM,) 

x,, = e~i~~vp/2, where is a that will set later M, and are 

the in q in the The following from Section 

will be to prove 1. Primes ~?/dp, and = [-p, is a 

neighborhood of origin with > 0 be chosen 

Lemma 5. 

I(xnj/)‘- (j$),I = o{n”~“~““/‘} 
N, 

The next lemma approximates u,. 

Lemma 6. For some CY > 0, 

u,, = i+ 0( 1) 
I I 

e-‘“’ ]hJ+sup]l-h] +o{x’~‘~fi~m)‘2) 
s NC, I 

as x + cc and n + a3 with n/x + c E (0, l/v), uniformly in H. 

Proof. Since 

it is sufficient to show that 

+ I ix& - iiT& e -ip(r-nu/2)-iy-z dp dq. (1) 
N, 
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The second integral is exponentially small. The third integral after an integration 

by parts equals 

-i 

x-fnv 
((xn$)’ _ (f$)‘} e-ip(xPnl,/2)ki~z dp dq 

i 
+p 

-$w 

The 

dp ;,,I$ e -ip(.r-nv/2)-iqz 

The advantage of introducing % is that e-ip’\-~““2) decreases at an exponential rate 

in the tails of the contour but le mm’nKp’l < 1 on %, so integrability is never an issue. 

Resealing p and q, 

where 

t 
1 

A,= + z 
-ipv+$q2 ipv+$q2’ 

$pM,+$M2 ipM,-$M, 
A,=-~A,,(pM,+iM,)- . 

(-1pv++q2)2- (ipv+$q’)’ 

and A2 is a rational function. The contribution to Z from the integral against A2 is 

O(n P’mm’2). Since n~e-2KpZ’“-1~~2K~p~2 on %?, dominated convergence gives 

Z = O( n’-“/‘) + n-“/z 
I I 

dq dp{&+ Add? 
R”’ ‘6 

Xexp{-aq2-ip(x/n-iv)-iq.z/&}. 

At this stage the integration over p is easily accomplished by completing the contour 

and using residue theory. The relevant identities are 

f(P) 
-ipv +$q2 

exp{-iq”-ip(x/n-iv)}dp=$f ($)exp{--$] 

and 

exp{-aq2-ip(x/n -+v)} dp 
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$q”) 

or (ipv+$q’)’ vanish because the integrand has no singularities in the lower half 

plane. Integrating over p, 

where i= z/m. To evaluate the integral over q, start with the identity 

(2) 

Using the differential operator g(-a/a;) on (2), 

1 
H,(z^) em”” = (27F),,,,2 g(iq) e 

-$/2-l‘,.- dq, 

Hence 

which proves the lemma. cl 

Proof of Theorem 1. Let H”’ be a probability measure with the following properties: 

H’” is degenerate in the last m2 coordinates, i.e., H”)(R’+ml x (0)“~) = 1; the support 

of H”’ is a subset of the unit ball; and Is Ih”‘l <a. The measure H”’ will be H”’ 

scaled by e, i.e., HcF’( B) = H' “(B/E) for any Bore1 set B. Note that H” ) has support 

contained in the E-ball and this implies the smoothing bound 

II 
f{d( W*P$“)-d(H”‘* W*P,*” )]I sj- w,(.; e)d(H’t)* W*P$“). 

(3) 

Now let e = E, = emqa and n = nrr where n/a + c E (0, l/ V) as a + 00. Since the 

transformed characteristic function of H”’ is h”‘(p, q) = h”‘(ep, Fq), if n >O is 

sufficiently small, 

e -<1<1 (h”‘l+sup(l_h”‘~ =o{a’ ‘-fi-w*} I s NC, 

as a+oo. Let U!,“= H”‘*(Pt”)* W and u’,“=dUi’,“/dh. Then by Lemma 6, 

uy’= ;+o{a’ I d--fnw} 
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as a + CO, uniformly for x E [a, a + 11. Hence 

I 
fd(H”‘+ W*P,*“) = 

I 
fr^dh +o{a (F--6--m)/2] ,-fdh 

as a + 00, uniformly for f~ 5a. Also, 

J w,(.; E) d(ff (F)* W*p;“)= J wf( .; ,)[;+.{,(~‘~~-“)‘2}] d,j 

145 

(4) 

as a + 00, uniformly forfE so. Using (3) and (4) the proof will be completed showing 

that integrals against R are close to integrals against W* PO*“. Using Brillinger’s 

(1962) rate for convergence in the weak law of large numbers, since the x-marginal 

of P,, has mean f~ and a finite moment of order +(3 + 6), 

P,*“{(-q 0] x Rm} = O{n(p’-fi)‘2} = o{a(~‘~“)/2} (5) 

as a + CO. Let S,, = CT=, Xi where X, , X2, . . . , are i.i.d. with Xj - X. Let 

A =sup R([t, r+l]xR”) 
rtn 

which is finite by the renewal theorem in one dimension. Let M = inf{S, : n Z= O}. 

Since E~X~(3+‘)‘2 <co, EJMl(‘+“‘* < ~0. Conditioning on the first time S, G -a, 

R([a,a+l]xW”)=R([-a-l,-u]xW’) 

G AP(M 5 -a) = o{&~‘)‘2} (6) 

as a + 00. Similarly, if M = inf{$jv - S, : j 2 0}, then 

P(S,Zu,3j~n)=P(~ju-Sj~~jv-u,3jGn) 

< P(tju - S, < $nv - a, 3j > 0) = o{~‘-‘-‘)‘2) 

as a-,~, because &IV-u---z. Conditioning on the first time S, exceeds a, 

i P*‘([u,u+l]xIW”)~AP(S,~a,3j~n)=o{u’~’~S”2} 
.,=0 

as u-,oo. Now 

po*n= i * 0 k=O k 
P*“/2k, 

andR*P”k=C;“=,P*“fk’= R-xjsk P*‘*R-1. ,~n Psi for all k G n. It follows that 

R- C P*‘< R*P,*“c R, 
G 

and hence for f E go, 

, j-l.l-Jf cv p * Z” ) < c P*‘([u, a + l] x [w”) = O{u(~‘-fi)‘2] (7) 
;=?I 
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as a + a. Using (5) and (6), 

I fd(~*P~“)~~*P~“([a,u+l]xlW”) 

= Z?([a-x,a+l-x]xIW”)dP~*“‘(x,y) 
I 

CAP,*“((-co,O]x[W”)+sup R([t, t+l]xR”) 
I’U 

= o{a (-l-8)/2 
1 (8) 

as a +oo. The theorem now follows from (7) and (8), because W* PO*” = 

R*P;"+l?*P,*". 0 

The proof of Theorem 3 will use the following lemma, a rate of convergence 

result in one dimensional renewal theory that appears as Theorem 3.5 of Kalma 

(1972). Under the stronger smoothness condition that the distribution of S, has an 

absolutely continuous component for some n, the lemma follows from results of 

Stone and Wainger (1967). They also study the lattice case as does Frenk (1987). 

Lemma 7. As a + ~0, 

R([a, a+l]xlW”)=l/v+o{a’-‘-““}. 0 (9) 

Proof of Theorem 3. Let us begin by noting that Z?([ a, a + l] x [w”) = 

l/v+o{u’-‘-fi”2) as a -+a. This would hold with equality if A were Lebesgue 

measure. The integrations against the counting measures are Riemann approxima- 

tions to the corresponding Lebesgue integral, and arguments from numerical analysis 

can be used to show that the difference is sufficiently small (the trapezoid rule, 

keeping careful track of the error, is good enough). Alternatively, one could use 

Euler-MacLaurin summation formulas (see Bhattacharya and Rao, 1976, Appendix 

4) or Fourier methods to establish this result. Let S,, = {y: ]y - yu] G K,s}. If 

K, is large enough, then 

R([u,u+1]x(lR”-&))=0{&-““~} (10) 

as a + co. By Theorem 1 with f the indicator of [a, a + l] x S,, 

R([u, a + l] x SO) = Z?([u, a + l] x S,)+o{u(-‘-‘)“(log a)‘““} 

= l/Y+o{a’-‘-fi”* (log a) ““I} (11) 

as a + 00. From Lemma 7, it follows that as a + 00, 

R([u, a + l] x ([w” -S,)) = o{u(-‘-“‘2(log u)~“}. (12) 

Now write f=f, +fi where fl(x, y) =f(x, y)Z{y E S,}. Using (12), If2 dR = 

o{a ‘--‘--n)‘2(log a)““‘} and the theorem follows by applying Theorem 1 to f, . 0 
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3. Approximations for I,/I and ,y. 

When proving expansions in the central limit theorem, Taylor series arguments are 

used to approximate the characteristic function of normalized partial sums. The 

corresponding task in renewal theory is approximating + and xn, but there is one 

important difference: after the appropriate resealing, p2 and q will be of the same 

magnitude. In the Taylor expansions to be developed, the highest power for q will 

be twice the highest power for p, and the distance from (p, q) to the origin will be 

measured by 7 = a+ 19). 

Lemma 8. Ler 

,. 
+=l+ipu-+q2--PM,-iM2. 

Then 

4 = $+o(r”+fi) 

and 

4’= $+o(7l+fi) 

as 5--+O (i.e., as (p, q)+O). 

(13) 

(14) 

Proof. Let K, = supx+Oleix - 1 -ixl/lxl”t”‘2< co. Then 

e bx - 1 - ipX 
(pl(3+6v2 e 

iy.z 
S K,lXj(3+8)‘2, 

so by dominated convergence, 

$~(p, q) = E eiq‘=+ipEX eiy’z+o(IpJ(3+s)‘2) 

as p + 0, uniformly in q. Similarly, if K, = supx+oleix- 1 - ix+$x2+$x31/)x13+‘, then 

le iq’z- 1 -iq.Z+~(q.2)2+$(q.Z)31 

Iq13+fi 
=S K*IZ(3+8 

and dominated convergence gives 

E e’Y’Z=1-~q2-iMZ+o(~q~3t’) 

as q + 0. Finally, let K, = sup,+,le’“- 1 -ixI/lxI’-ts. Then 

and 

EX eiTz = v+iM, +o([ql’*“) (15) 
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as q+ 0 by dominated convergence and (13) follows. To establish (14), let K,= 
sup,YZOleix- l\/I~l”+‘)‘~. Then 

liX(e’“x - 1) eiqZI ~ K41Xl(3+61/2 
IPI 

(1+8)/z 

as p + 0, uniformly in q. Hence 

4’(p, q) = EiX eipx+iqZ = iEX eiY’z+o{IPI(L+fi)/2} 

as p + 0, uniformly in q, and (14) then follows from (15). 0 

From this lemma it is a simple matter to approximate I,!J and I+V. Using the Taylor 

expansion 

1 __=l_a+() 
bi-a b b’ 

as a/b-+0, 

1 1 pM, +iM, -= 
l-4 - ipv + $q2 - (-ipv +$q2)’ 

fo(&‘) 

as 7’0. 

as 7+-O. 

as r-+0. 

Taking real parts, 

l/5= j+o(P) 

Using the approximation (14) for +‘, 

*‘= jl+o(r”P’) 

(lo) 

(17) 

The next step is to approximate xn and x:~. This is rather delicate because bounds 

are needed that hold as n +OO uniformly in a neighborhood of the origin, and 

separate bounds are needed as n--f CT with td+ 0. Using the Taylor expansion 

log( 1 + a) = a + O(a’) as a + 0, 

1og~n=n{1og~(1+~)-~iv}=-~nq’-~npM,-~inM,+o(n~3+“) (18) 

as T + 0. Using ea = l+a+O(a2) as a-,0, 

Xn = in + n e-W/40( rx + “) 
(19) 

as n + w with rrr3 + 0, where 

in =e ~t’q’/4P2fiKP’( l _&p&f, _ $nM2), 
C-3)) 

The factor e~2f’Kp’ is one to sufficiently high order in this limit to be negligible, but 

will play an important role when bounds are sought as n + CO holding uniformly 

for (p, q) in a neighborhood of the origin. The constant K will be set later. 

For uniform bounds in some neighborhood of the origin, the following lemma is 

necessary. This lemma would follow from Taylor expansion if EX2< a, but is 

curious in that moments for X and 2 are not used. Let 5 = (p, q). 
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Lemma 9. Let 

Then for E suficiently small, CY > 0 and 

lx,(,g)l < 1 - &/e2s eg+/‘2 

for all 151 S E. 

Proof. The bound appears as Lemma 1, Chapter IV of Cramer (1970). That (Y > 0 

for F sufficiently small follows easily from assumption (Al). It also follows from 

the weaker assumption that PO (or distribution with characteristic function x,) is 

fully (m+ 1)-dimensional in the sense that its support is not contained in any 

m-dimensional hyperplane in R”‘+‘. 0 

Using this lemma, fix a neighborhood N,, = [-p, plm+’ of the origin and a constant 

K E (0, i) so that r21c, is bounded on N,, and 

lxll 4 e -2Kc/G+q~) 

on N,. Then 

(21) 

on No. It is worth noting that if f is bounded on N,, and f = o( 1) as T+ 0, then 

Xnf = o(l) e-nK(P’+4’l 

as n +cc uniformly for (p, q) E N,,. (This explains the spurious 2 in 21.) Using this, 

(16) and (17), 

and 

as n + co, uniformly on N,,. Also, by (14), 

as 7+0, so 

~n{(log~,)‘+~M,}=e~“K’p~+y2’o(~‘+R) 

as n + 00, uniformly on N,. 

(24) 

Approximating xn and xl is harder-small o bounds may not hold uniformly 

on N,. 
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Lemma 10. As n + ~0, 

x,,-i,=ne ~nK(p~+q’)0(T3+b), 

uniformly on NO. 

Proof. The lemma follows from (19) if n + cc with nr’+ 0. Suppose n -+ 00 with 

rt? > b > 0. Then by (23), 

IxJse 
_,IKl pl+yZ1 _ -e 4K(p’+q’)O(n73+fi). 

The same bound holds for I/Gni, because 

l-tP GO(l)- 
Kbe’ 

the last line since SU~,:,~, t e-(’ = l/(c e). The proof will be finished by showing that 

(25) holds as n + CC with &> a and nr’+’ < b. In this limit, rip’s nap+ 0. Using 

this and (18), 

xn = e 
~nq~/4-nPM,/2~lnMz/‘{I +O(ur’+fi)}. 

Now with K, chosen so that IM,( s K,lql, 

e nK, p2+qz) e-y2’4~“pM~‘2~exp{-n($-K)q’+~nK,IplIq~+nKp2} 

(26) 

“exp(np2(4(l~~K)) +nKp’) + 1. (27) 

Hence in (26), the large 0 term is nO(7’+‘) eenK’p’+y”, and it is sufficient to show 

that 

is bounded. Since enKp’ - 1 = 0( rr~~), it is sufficient to show that 

epnkq’ 

n7,-8F 
npM,IZ~i~~M.J2_ 1 - fnpM, +$inM,} 

is bounded. To continue, note that for any complex 

leC-I-[l= 11”’ (I-l)f2e’idil ~~/[12e’.““. 

(28) 

5, 
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Hence (28) is bounded by a multiple of 

e -nKqZ 
3ts (n2p2q2+ n2q6) e4~llqlK5/2 
n-r 

The first factor is bounded by 27’-’ +O, the second factor is bounded by l/e= 

SUP,>~ t e-‘, and the last factor is bounded by algebra similar to that in (27). This 

proves the lemma. 0 

Approximating XL is now relatively easy. By (24) and Lemma 10, 

xk = n(log XI)‘,& 

= -$nM,*, + o( no’+‘) e~K(p*+y2) 

zz -in M ,& +o(nTl+“) e~nK(P2+421 

as n + co uniformly on No. Since 

$+~nM,~,, ={-4nKp(l -inpM, -$inM,) 

-$nM,(npM, +inM,)} e nq2’4-2nKp’ 

=e -w*/~-I~WO{~~~+ n272jP~ jql+ n2T2q2j 

= e-nKd+4*)~(nT2), 

we have 

xA-;L=e -nK~P*+y~)O(nrl+~) 

as n + 00, uniformly on No. 

The final preliminary estimates needed are 

G=W2/r4+lql/r2) 

and 

which follow from the definition of I,!I after some algebra. 

Proof of Lemma 5. Let A = (x&)‘- (T$)‘. Then A = A, + A, where 

A, =~n~‘-~n~‘=~n(lCI’-j’)+~‘(xn-R) 

and 

(29) 

(30) 

(31) 
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Using (22), (31), (25) and (23), (30), (29), 

A,=e- ,lK~p’+y~)[o( TM 
)+(q2/Th+/qJ/74)0(n~‘+fi)] 

and 

A 2 = e-nK’p2+4’)[o(n~2’)+(q2/~4+(q~/~2)o(n~’+”)] 

as n + ~0 uniformly on NC,. Adding these, 

A ( p/ n, q/G) = 0{ r~(~-‘)‘~}( 1 + q’)Y3+’ e-“Y2 

te- K~~-Kp~ln[O(n~2~R)12)~q~~.fi~l+O(nl~”~2fi), 

as n + ~0 uniformly for (p/n, q/d’%) E IV,,. A similar but easier calculation, using 

(19) instead of (25), shows that A( p/n, q/d%) = o{ nc3- ““} as n + a~ pointwise in 

(p, q). Since 

= O{n (I-cfi)/4} = o(fi) 

and 

I 

28 r e -KY’ +‘/,1 dp dq= n”+“‘/’ 
I 

(m+(ql,n1/4)2” e-K(P’iC,‘) dp dq 

=o{n Clili)/2 
1 

as n+m, and sincej(l+q’)7 ““emKY’dpdq<oo, 

J ,A, = n-’ ,,a/2 J IA(p/n, q/v”$ dp dq =o{n”-” “““} _ 
N,, , /J/“.‘~!\ n ,i N,, 

as n + ~3 by dominated convergence. This proves the lemma. 0 

Careful inspection of the proof of Lemma 5 reveals the value of symmetrization. 

Without symmetrization $ is replaced by $( 1 - +)-I, and the rational approximation 

for (1 - 4)-’ is 0( l/7’) on N,,. Although this is only slightly larger than the bound 

in (30), it adds a new error term to A,, namely 

7 - 
e -nK(/J-+q-)O(n7+I), 

By dominated convergence, 

n 
J 

8-I 7 e -,,r<(,l’+<,‘) dp dq _ n(J+?& 2d/4 (Pllfi I)!? e mK(Pz+C,‘) dp dq 

NC, J 

as n + CO, which is too large for the desired result. 
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4. Concluding remarks 

Although this research is similar in approach to Keener (1988), there are a few 

important differences. One is convolving W with Pz”. This has two effects: contribu- 

tions to the inversion integral over S - N,, are exponentially small, and integrability 

problems in the q integration are eliminated. Without this device, integrability over 

q depends heavily on the dimension m. 

The approach used to obtain Theorem 3 from Theorem 1 is slightly crude. A 

natural conjecture is that Theorem 3 remains valid without the log a that appears 

in the error rate. A similar problem in encountered in expansions in the central 

limit theorem, and two ideas are particularly useful in that setting. One is to use 

integration by parts to improve the error rate in the tails of the distribution. The 

other idea is to work with truncated variables. (See Bhattacharya and Rao, 1976, 

Theorems 19.2 and 19.5.) Although integration by parts is used successfully in 

Keener (1988), my attempts to use this technique in this multivariate case have 

failed. The trouble is that differentiation with respect to p generally improves the 

p-integrability of the error terms approximating x,,$, and to differentiate with respect 

to q, derivatives with respect to p must be sacrificed. The use of truncation in 

multivariate renewal theory seems difficult, but may be the next major step towards 

a general theory. 
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