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INTRODUCTION

Funcrions of measures have already been introduced and studied by Goffman and Serrin [8],
Reschetnyak [10] and Demengel and Temam [S]: especially for the convex case, some lower
continuity results for the weak tolopology (see [5]) permit us to clarify and solve, from a
mathematical viewpoint, some mechanical problems, namely in the theory of elastic plastic
materials.

More recently, in order to study weak convergence of solutions of semilinear hyperbolic
systems, which arise from mechanical fluids, we have been led to answer the following ques-
tion: on what conditions on a sequence u, of bounded measures have we f(u,) — f(u) where
u is a bounded measure and f is any ‘‘function of a measure’’ (not necessarily convex)? We
answer this question in Section 1 when the functions f are homogeneous, and in Section 2 for
sublinear functions; the general case of asymptotically homogeneous function is then a direct
consequence of the two previous cases! An extension to x dependent functions is described in
Section 4. In the one dimensional case, we give in proposition 3.3 a criteria which is very useful
in practice, namely for the weak continuity of solutions measures of hyperbolic semilinear
systems with respect to weakly convergent Cauchy data.

Another application concerns a work in preparation [6] on measure-valued solutions for
hyperbolic scalar equations.

The results of this paper were announced in [2].

1. F(u) WITH F HOMOGENEOUS

For compact Hausdorff space I', C(I", R?) denotes the Banach space of continuous R? valued
functions normed by

ol = suple| = sug(pr.-(x)z)” 2
X €

We assume throughout that I is nonempty.
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2 F. DEMENGEL and J. RAUCH

The R valued Borel measures u € M(T', R?) represent the dual of C(T', R?) with the pairing

1

(u, 9) = jwidu", u= ..., u.
The norm of u is then
flull = supCu, o3: lloll- =< 13.

The variation |u| € M(I", R) is defined by giving it values on open sets w C T’
|ul(w) = sup{¢u, 9>: 9 € C(T, RY), flollz= < 1, supp ¢ C w}.
Then [|ul = |u|(T) is the total variation. With these definitions, if 4 = gv, v € M(T, R) then

Ll = S(Zg.-(x)z)”zdlvl. w1

Norm convergence of a sequence of measures is denoted with an arrow —, and weak star
convergence is denoted with a half arrow —. Thus if u, e MT,R?), k=1,2,... and
u € M, R%),

e~ pu iff flue —pf >0

Me = 1 iff v @ e CT, RY), (uy, ) = (u, 0.

If F:R? - R is positively homogeneous of degree 1, and Borel measurable, then for
u € M, R?), F(u) e M(T', R) is defined as follows (see [, Section 5, pp. 65-67]). Choose a
nonnegative v € M(I', R) so that each component 4’ is absolutely continuous with respect to v.
Then u = gv with g: I’ — R? Borel measurable and integrable dv and F(u) is defined by
F(u) = F(g)v. That this is independent of the choice of v is proved as follows. For two choices
v, and v,, choose a third v;, with v; <€ v4, i = 1, 2 then express all three representations as
multiples of v,.

Immediate consequences of the definition are:

(1.2) If y; € M(T, R?) j = 1, 2 are mutually singular, u; L g,, then F(u, + u,) = F(uy) +
F(uy).

(1.3) If g:T' — R is a nonnegative Borel measureable function integrable du then

F(gu) = gF(u).
Example 1.4. If F(&) = (£'), then F(u) is the positive part of u'.

Example 1.5. If F(&) = |&] = (2(¢)?)"? then F(u) = |u| is the variation of u. If Q C R" is
open and u: Q — R is of bounded variation on Q then F(dx, ou/dx,, ..., du/dx,) is the surface
area measure for the graph of u (see [8]).

Example 1.6. If Q C R" is open u: Q — R is convex then [det[d?u/dx;dx;])"/" is the Monge-
Ampére measure of the graph, related to the Gauss curvature (see [9]).

The next theorem gives basic results concerning the continuity of the map u, F = F(u) with
the norm topology on M(T', R?).
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TaeoreM 1.7. If F and G are two Borel functions homogeneous of degree 1 and
|F(&) — G(&)| = 6 for all |£] = 1 then

|F(u) — G(w)| =< 8lul. (1.8)

If F is Lipschitz continuous and A is a Lipshitz constant |F(¢) —~ F(n)| < A|¢ — n| for all
& n e RY, then for y; e MT,RY) j = 1,2

|F(u) = F(u)l = Aluy — pol. (1.9)

For F positively homogeneous and Borel, the map u — F(u) is continuous for the norm
topology in M(I', R?) if and only if F e C(R?, R). In this case, the map u — F(y) is uniformly
continuous on norm bounded subsets of M(T, R%).

Proof. The first assertion is immediate. For the second choose v € M(T', R) with u; < v
Jj=1,2. Then y; = h;v and

|F(1)) — F(up)| = |F(hy) ~ F(hy)| div] < Alhy — Byl dv = Alu) — .

To prove the necessity of continuity in the third part suppose that £, = & in R?. Then for any
vel,u =¢.6,~ &,. If u— F(u) is continuous for norm convergence we conclude that

0 = im||F(4*) — F(w)ll = Eim|FE)8, — FE)S,] = lim|F(&) - FE)!.

Conversely, given R > 0 and ¢ > 0 we will find a d > 0, depending on F, so that if || ;|| < R,
Jj=1,2and ||g, - u,|| < & then |F(u,) - F(u)|l < .

Choose 2 = sup{|F(£): |¢] < 1}. Choose J; > 0 so that |{¢| < 1, |7] = 1, and |£ - 5| < 6,
imply |F(&) — F(n7)| < e/4R. Let 6 = 8,¢/4L.

With y; as above let v = |u,| + |u,|. Then y; = g;v, g; Borel, |lg;ll,- < 1, and |lv]| = R.
Then .

vix: lg:(0) ~ g2(0] > 6} < (% jlu; — | < e/4L.
1

We then estimate

1F() - Ful = | 1Fey) - Fiel dv = S . j
N 1g1—g2] > &1 ig1-g21 < 81

£ £ ¢
< 2Lv - >+ —=lvl<z+=-=¢c. N
[|81 gz| 1 4R | ” 273
We next turn to the more subtle question of convergence in the weak star topology. The map
4 — F(u) is not continuous in that topology.

Example 1.10. Let M([-1,11: R) > yuy = 6, — 6_,,x and F(&) = ||, then y, — 0 and
F(up) — 26, # F(0) = 0.

In the scalar case, d = 1, all homogeneous F are linear combinations of &, so (u)+ = ().
suffices to insure that F(u,) = F(u). For d > 1, vague convergence i, — u, and convergence
of the variations (uj). — u', is not sufficient to guarantee F(u,) — F(u).

Examp[e‘l.ll. Let r = ["1, 1], d = 2, ”k = (61/k9 62/’()’ then /lk - u = (50, 60) and
(ui)+ — (1)1 . In fact, for any 7 € R%, (- )+ = (17 * 4)+ . Nevertheless, if F(&) = ||, then
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F(u,) = u, = 26, while F(u) = V26,. When F is convex there is weak semicontinuity for the
map u = F(u).

ProrposiTioN 1.12 [5]. If Fis convex then 4 — F(u) is lower semicontinuous for weak star con-
vergence that is, if g, — u then F(u) < lim F(u,).

Weaker conditions than norm convergence suffice to guarantee F(u,) — F(u) for all con-
tinuous homogeneous F.

Example 1.13. If je Co(R", R), [j0)dx =1, j.(x)=k"(kx), and u e M(R",R%)N
&'(R", R?) then Uy = ji * U converges vaguely to u but not necessarily in norm. However
F(u,) — F(u) for all continuous homogeneous F (see (1.21)). For I' C R” this shows that our
definition of F(u) is quite natural.

Example 1.14. If one regularizes the components of i with different kernels the convergence
in example 1.13 may fail. For example if j € Co(R, R), {/ = 1, suppj C (0, ®), ji(x) = kj(kx),
Ji®) = ji(=x), u = (8, Op), then py = (i * I, jog * 0) = Uk, Jux) — 4. However, with F() =
(& + &)V, F(u) = V26,, and F(uy) = (V5 + 1)/2)d,.

Our main result gives necessary and sufficient conditions on a sequence u;, — u in order that
F(u,) — F(u) for all continuous homogeneous F.

THEOREM 1.15. Suppose that y, is a sequence in M(I", R?) weak star convergent to u. Then, the
following conditions are equivalent.

(A) For any continuous F positively homogeneous of degree 1, F(u,) — F(u).

(B) @(u) — @(u) for one strictly convex norm, ¢, on R9,

(C) For any ¢ > 0 there is an & € C(I', R?) so that

,}“i;n:lolluk — hlmlll < e (1.16)

(D) For any ¢ > 0 there is a finite family of disjoint compact subsets K, ..., Ky of I' and
unit vectors &,, &, ..., &x in R? such that

l}_izn;”ﬂk - E&xx el < e (1.17)

For condition (B) of the theorem we recall that a norm ¢ on R? is strictly convex if and only
if(ve>0)3d0 >0)vE n)

€l =Inl =1 and @&+ n/2)>1-d=9(& - <e.

This result is in fact contained in the proof of theorem 3 of Reschetnyak [10], though it is not
enounced in it. But its proof requires many sophisticated notions and lemmas. We give here a
very natural and elementary proof of 4 — B.

The conditions (C) and (D) state in different ways that the ‘‘polarization’® u,/|u,| is nearly
independent of k.

Example 1.18. u, = 8_,,, — 6, € M([—1,1}: R). Here (A) is violated since u, — 0,
el = 26,. To see that (C) is violated, notice that for any & € C(R, R)

lim| e — Alpelll = lim(J1 — A(=176)| + |1 + K(1/k)|) = 2.
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Note however that if & = X(_..q) = Xjo, then u, = hlu,| for all k. Thus the continuity of h
in (C) is essential. Similarly, if K, =[-1,0f, K, =10,1], & = +1, & = —1 then yu; —
Y &xk, | sl = 0 for all k. Thus the compactness of the X; in condition (D) is essential.

Example 1.19. If d = 1 and u; = 0 condition (C) is satisfied. One need only take & = 1.
Similarly taking K = I" and & = +1 we see that (D) is satisfied. The same choices work under

the weaker h\rnnﬂ-‘nmc ”lu \ " - (. An interesting nonnegative example is given by 4, =
YWwvdanwl i1 PULIJ\«DAD Mk . £ Ald ARibVWL vobl‘ls llvllll\rsu‘.‘ vl\ulllylv s El'vll U] "rk -

Jedx e M([0, 1]: R) w1th
k-1

= Z 1+ 1y )X[_,/k U+1)/k]» S=Xo1-

Then u; — u = fdx satisfies the criteria of theorem 1.15, so F(u,) = F(f,)dx — F(u) =
F(f)dx for F positively homogeneous and continuous. On the other hand, for nonhomo-
geneous F, for example F(s) = min(s?, 1) we do not have F(f,) = F(f). This underlines the
fact that the set of F in (A) is quite restricted.

Example 1.20. If y, — p in norm let us prove (C) without recourse to theorem 1.15. Let g be
in LT, | u|) such that 4 = glul, 6 > 0 and h € C(T', R9), so that f|h — g||u| < 6/3. We may
assume that |#| < 1. Let then k, sufficiently large in order to have for k = k,, §lu, — ul < 6.
Then for &k = k,,

jmk = | < Sluk ol + gm = hlul] + jihnuk =3x8/

Similarly, one verifies (D) by approximating g defined by u = g|u|, by a simple function
¢, xx, with K; compact and unit vectors &;.

Example 1.21. If u € M(R", R%) has compact support and u, = j, * 4 as in example 1.13 we
show that (C) is satisfied. For any & > 0, choose h € Co(R", R?), ||A],~ <1 such that
fu — hlulll < /6. Then choose N > 0 so that for k = N,

x — y e suppjx = |h(x) — h(Y)| < el uli/6.
We use two estimates concerning convolution with j,: for any any finite v € M(R", R?)
ljx*vll = llvl, andfornz=N
Lk * (Av) = B * V) < ellv]/6.

The latter follows on expressing the left hand side as

|

Using these estimates yields for n = N

§jk(x = hx) — k() dv(y)| dx

Ui = Ji* it = ji* (Blul) + vy, [v,ll < &/6
= h(e = (lu) + vy + vy, llv,ll < e/6.
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Then, since j, * |u| = 0,

lel = 1BlGy * ul) + vs, [vsll < 2¢/6.
=jex(hllul) + v + vs, vl < /6
=jk + (]ul) + Vs + vy + V3, ”05” < &/6.

Since uy — Alug| = vy + vy + A(vs + v, + vs), we have for n = N, [lue — Al <e. B
To prove theorem 1.15 we will show A = B = C = D = A, The implication A = B is trivial.

Proof that (B) = (C). Choose A € [1,[ so that ¥ &, 7 € R?,
AT2E = nl = & - m) = AE - 7.
Then given any € > 0 we choose d > 0 so that

@@ =9m=1 and @E+mn/)z1-3)=09¢-n<e/(A Sl’:p”¢(ﬂk)”2)-

Since u, < ¢(u,) and 4 < ¢/u) we may choose Borel measureable functions g, and g so that
Ui = o), 4 = go(u) and o(g,) = ¢(g) = 1 at all points of T

Choose h € C(T', R?) with ¢(h) = 1 and

j(o(h - g)de(u) < €6/8A.
Since (@(uy), 1> = {@(u), 1) we may choose k, so that for all k¥ > k,
gd(p(,uk) = Sd(p(u) + €0/8A.

The subadditivity of ¢ shows that

h h—
1 =9¢h)=< (p<g—§—> + (p(—2§>

Since | p(h — g) dp(u) < €6/8A, we find

h h—
jdw(uk) = j((o(g ; > + <o< 5 g)) de(u) + €d/8A

j q;(?—;—h) do(u) + 366/16A

= %jd(p(,u + ho(u)) + 3ed/16A.

Since u, + ho(uy) — u + ho(u), the lower semicontinuity (1.12) implies that we may choose
ky = kg so that for all £k > k,,

&

&dw(u + ho(u) = jdw(uk + ho(ue)) + A
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Then,
de(uk) = %jda)(uk + ho(uy)) + €6/4A

- S(p<gk; h) do(u,) + £8/4A.

Rewriting yields
S(l — o((& + h)/2)) do(u,) < 6/4A.

Let A, = {x e T: o((g(x) + h(x))/2) < 1 — J}. Then p(u)(A,) < €/4A and on T'\A4,,

@(gx — ) < &/QA suplle(u).
To estimate ||y, — hlu,|| begin with

hu—MwW=h&—hNWASA“§M&—hNWA

<A SI‘ o(gx — h) do(uy).

The estimate for ¢(g, — h) on N'\A, shows that the contribution from I'\A, is dominated by
£/2. On A, use p(g, — h) < 2together with the estimate for the size of 4, to show that the con-
tribution from A, is also bounded by /2. Thus, for k > k,, we have ||lu, — h|u,!|l < € and the
proof of (C) is complete. W

Proof that (C) = (D). Given ¢ > 0 choose h, € C(I', R?) so that Tim|l u, — Aol u, |l < €2. Let

Box)  if |he)] = 1

h(x) = {ho(x)/|ho(x)| if [hg00)] > 1.

Then k € C(T', R?), and ||}~ < 1. For k = 1, choose Borel measurable &, with u, = h|ul,
and |h,(x)| < 1 for all x € I'. Then since || < 1,

mq—mmm=@m—hmmusym—haﬁml

= Huk - ho|/lkH|-
Thus fim||u, — #lul| < €2. It follows that
luellx: A = 1 — g} <e.

Let A = {x e R%: 1 — ¢ < |x| < 1}. Pave R? by a family of hyperplanes parallel to the axes
so that

(1) the rectangles of the paving have diameter less than &, and

(2) for each hyperplane H defining the paving,

lul(h™ ' H)) = 0 = |uelr™ '), k=1,2,....
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Since only a countable number of hyperplanes have inverse image by A of positive measure for
4 or some u, , pavings satisfying (1) and (2) are easy to find.

Let Ry, R,, ..., Ry be the closure of the rectangles of the paving with nonvoid intersection
with 4, Let E; = h~'(Int(R;)), i = 1, 2, ..., N. Then the E; are open in T and 3E;, contained in
h~! of the hyperplanes in the paving, are null sets for |u| and |u,|. As

N\UE; C {|h| < 1 - €} U U3E;},
we have
lu|(T\UE)) < &.

For each J, choose a compact set y; C E; with
lul(EN\y;) < €/N. (1.22)

Choose open sets Q}, Q? with y; C Q! cC Q? CC E; and let K; = (EAQ*) U Q/.

As h(E;) is a rectangle of diameter less than & which intersects A we can choose a unit vector
¢ € R? with |h(x) — &;| < 2¢ for all x € E;.

We will show that these choices of K;, & serve to verify (D). On UK; we have
[h — E;&xk,| < 2¢, and on D\Uk;, |h — Z&xx,| < 250

lh - Zfi)(x,—)l#km < 2¢) el + 2| [(D\UK)).

Write I\UK; = (I'\UE;) U U(E\K;). The first set has | u,| measure less than ¢. For the second,
notice that (E\K;) CC E\y; so we may choose ¢; € Co(E)\y;, R) with 0 = ¢, <1 ¢9,=1on
E\K;. We then have

Itr — Z&xxdlmelll = 2ell il + 26 + <luel, ¥ 00
To estimate the last term, note that E; = h~'(Int R;) so |h|* = 1 — 2¢ on E;. Taking the
scalar product of u, — h|u,| with h yields
- e — vl < e + 2¢ellull.
The supports of ¢; are disjoint and contained in E; so ||Z¢,]|;= < 1. Thus,
[ iel, Zoi> — <k - e, Tod| < €2 + 2l el
Now,
Che g, Zoiy = Cug, hE@;) = (u, hZe;) < |ul(UENY) < &
the last estimate following from (1.22). Thus

@ﬁllh A EXERS 451}‘pllukll)e + &
and (D) is proved. R

Proof that (D) = (A). Choose R > sup|lu.ll. Given £ > 0, part 3 of theorem 1.7 shows
that there is a J €]0,¢] so that if v,,v, e M(T,RY), |v,l =R, |lv, — v,| < 36 then
IF(v) — Fvp)l < e.

Choose K;, &; as in (D) so that

lim| gy — Zﬁi)(lﬁlﬂkl“ = 4.
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Then I'\UK; is an open subset of I with

Iim| u, J(C\UK;) < 4.
It follows that
ju|M\UK;) < 6. (1.23)

Choose p; e C(T',R), 0 < p; < 1 so that p; = 1 on K; and for i # j, p;p; = 0. Let p = Lp,.
Then since |pll < 1, |uel — p - ux is a positive measure. Then (1.23) and (1.17) yield

fimll|uel = p-mll <26 and  Timfiu, — plulll < 26. (1.24)
Forany g e C(I, R) with0 = ¢ < 1
ul, @) < imdluel, 0> < Hmp » gy, @) + 26 = <p - 1, 0) + 28.
Thus, 0 < (Ju| ~ p- u, @) < 25, and we conclude that ||| — p - ull < 28. Then,

Ll = el = (el =)+ @ e —p-w) + (p-u — ub.

The first and last measure have norm less than 26 and the middle converges vaguely to zero.
Thus for any y € C(K, R), [|7ll;= = 1

mql el — lul, ») < 46.

As J = ¢ and ¢ was arbitrary we conclude that |u,| — |u|. Passing to the limit in (1.24) yields
lu — piulll = 28. Thus, the choice of 4 yields,

Em||F(u) — FOluldll < e,
and

IF(u) — F(p)lulll < e.
Thus,

F(u) — F) = Fip)(U el — 1) + wi

where the first term tends vaguely to zero and limlv,|| < 2¢. Since &€ > 0 was arbitrary, it
follows that F(u,) — F(u). W

We end this section by noting that theorem 1.15, though given on a compact set T applies to
yield corresponding results for measures defined on an open subset Q C R?. Four natural
choices present themselves, the duals of Cy(Q, RY) C é(Q: R ={ue CEQ:RY): u=0
on 3Q} C C(Q: R?Y) C BC(Q, RY) = C(Q: RY) N L™(Q: R?). The first is the set of continuous
functions with compact support. The topology is the usual inductive limit. The last three are
Banach spaces with the sup norm. In all four cases weak star convergence of measures is
described in terms of weak star convergence in C(I': R?) for suitable compact subsets I' of Q.
We have

1)) e = pin Co(@: RYY  iff ¥rc g compact» Mk — & in C(T: RMY (1.25)
(D) u = uin BCQ: R*  if (1.25) holds and V0, 3rc g, compact» | 4/(Q\D) < 8. (1.26)

Finally, C(Q) and é(Q)’ are the same as BC(Q)’, and, weak star convergence in each of these
spaces is equivalent to weak star convergence in each of the others. The next corollaries are then
direct consequences of theorem 1.15.
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CoroLLARY 1.27. If Q C R"is open and u, — u in the weak star topology for Co(Q: R?)’ then
the following conditions are equivalent.

(A) F(u,) — F(u) for all continuous F positively homogeneous of degree 1.

(B) o(uy) — o(u) for one strictly convex norm ¢ on R4,

(C) For any compactI" C Qand ¢ > Othereisan h € C([, R?) so that lim||lu, — Al ull < e.

(D) For any compact I' C Q and ¢ > 0 there is a finite disjoint family of compact sets K; C T
and unit vectors & € R? with lim|lu, — & x|l ulll < €.

CoRrOLLARY 1.28. If Q C R"is open-and i, — u in the weak star topology for BC(Q: R?)’, then
the following conditions are equivalent:

(a) F(u,) — F(w) in BC' for all continuous F positively homogeneous of degree 1.

(b) (1) = @(u) in BC' for one strictly convex norm ¢ on R?.

(c) For any ¢ > O there is an & € Cy(Q: R?) so that Tim| u, — hlu,lll < e.

(d) For any ¢ > 0 there is a finite disjoint family of compact subsets K; C Q and unit vectors
& € R with Tim|| g, — Efilk,lﬂkl” <e&.

The proof of the corollaries are left to the reader.

2. f(u) WITH f SUBLINEAR
Definition. f: R? —» R is called sublinear if Iellim f(&)/]&E| = 0, that is for any & > 0 there is
an R so that for |&| > R, f(&)/|¢] < e.

Example 2.1. f,(¢) = |£]/(1 + 6]&|?) and the components f¥; of fx = (fu, ..., [,
4 if €]l =N

&) = {N{/ gooiflEl >N

are all continuous sublinear functions.

Definition. Suppose I’ C R" is compact and dx is Lebesque measure. For 4 € M(I", R?) and
sublinear f € C(R?, R) with f(0) = 0 the measure f(u) is defined as f o g dx where 4 = gdx + v
is the Lebesque decomposition of 4 with g: I' = R? Borel measureable and integrable dx.

Remark. The normalization of Lebesque measure is critical. If one replaces dx by adx,
a € ]0,[ then the Lebesque decomposition becomes (g/a)(adx) + v and one would get
af(g/a) dx, a different result.

Properties 2.2. (i) f(u) < dx. (i) If g4 L dx then f(u) = 0. (ii) If (u; — u,) L dx then
Sy) = fuy). (iv) If M = || £(&)/|E] | p=rey < oo then || f(u)]| = M||ull.

If e = Jji * u as in (1.13) then f(u) = f(p). (2.3)

This follows from Lebesque’s Differentiation theorem as we show in example 2.6. Property
(2.3) shows that the definition of f(u) is natural. If one tried the same definition,
f() = f(g) dx, for f of linear growth, | f(x)| = c|x|, the continuity property (2.3) would no
longer be true.

The analog of theorem 1.15 for sublinear functions is the following.
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TrEOREM 2.4. Suppose T is a compact subset of R™ and that u,, 4 € M(T", R?) have Lebesque
decompositions u; = g, dx + v,, u = gdx + v with respect to Lebesque measure dx. Then the
following conditions are equivalent.

() For any sublinear f € C(R%, R), f(uy) = f(1).

(® For any sublinear f € C(R?, R), f(ue) = f(u).

(y) The functions g, are bounded in L(T', RY, dx) and g, converges to g in measure, that is,
foranyn >0

lim dx{x e T: [g(x) — g(0)| > n} = 0. 2.5)

Example 2.6. We verify that y; = j, *u as in example 1.13 satisfy (y). First g4, < dx and
el = 17l L1ge,anll 1ll, shows the boundedness of the g, = (ji * &) + Jji * v. It is classical that
ljk =& — gllzaee,axy = O as k — 0. Thus it suffices to remark that j, * v converges to zero in
measure, a consequence of Lebesque’s Differentiation theorem. In contrast to example 1.14
one may regularize the components u’ with different kernels and the above argument shows that

(y) remains valid, so f(u,) = f(u).

Example 2.7. The condition of theorem 1.15 are satisfied by u, = ZJ’-‘;(,‘ Oi/k/k = X0, 14X,
since u; = 0 (see example 1.19). Here g, = 0 and g = x|, ;; dx, since u, = 0 (see example
1.19). Here g = 0 and g = x,1) 50 the conditions of theorem 2.4 are violated. On the

other hand, u, = Z}f: 0‘(—1)’6j/k/k — 0 satisfies the hypotheses of theorem (2.3) since
0 = g, — g = 0 but violates the hypotheses of theorem 1.15.

To prove theorem 2.4 we will show that (@) = (y) = (f). Since it is clear that (8) = («), this
is sufficient.

Proof that (a) = (y). Let us consider the following subspace C(R?, R):

_ a . JS&Xx)
5= [fec(ﬂ? ’P):x}inileHl"o}'

Endowed with the norm Sugd U7X + 1)), Sis a Banach space. Let us consider the
Xe
following sequence of continuous linear forms:

T,:S— R

f= g S@€n).
Q

It is easy to see that T, is continuous for the previous norms and that |7,|| = {r(lg,| + 1).
Since for every f € S, T,{(f) — T(f) where T(f) = {rf(g), we obtain by the Banach Steinhaus
theorem that

Im| 7] < +
which implies that

g lg.] = M < +o0.
Q2
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So the g, are bounded in L'(T, dx). Given ¢ > 0 choose N > 4 {|g| dx/e. Choose k, > 0 so that
k > k, implies {|g.| dx < 2 f|g| dx. Then for k > k,

flgl dx
N

dxix: [g.(x)| > N} < 2—=—— < &/2, (2.8)

and

flgl dx IgI 2.9)

dx{x: |[g(¥)] > N} < ==— < ¢/4.

Let fi; € C(R? R) be as in (2.1) and define ¢ € C(R, R) by
) = s? if [s] =N
PO=IN ifls = N.
Since fi; and ¢ o f}; are sublinear and continuous /} = fi(g,), I' = f'(g) satisfy
dx = I'dx (2.10)
()* dx — (') dx. 2.11)
Then
~[lf;v(g) ~ fu@ldx = L j(lfé)z + () dx - E §21£1idx.

Using (2.11) for the first sum and (2.10) for the second shows that the right hand side con-
verges to

) jz(l")2 dx ~ ¥ jz(l")2 dx = 0.
Since fu(gx) = g« when |g,| = N and fy(g) = g when |g| < N we see that we may choose K so
that k£ = K implies
dxix: |g(x)] = N and |g(x)| = N and |g,(x) - g(¥)| = n} < /4.
This combined with (2.8) and (2.9) proved that
lim dx{x: |gx(x) — g)| = n} < e.

As ¢ > 0 was arbitrary this proves the desired result, (2.5).

Proof that (y) = (8). Let us remark to begin with that the image by f sublinear of a bounded
set in 1! is equi-integrable. In other words, ¥ L > 0, v ¢ > 0,

30>0, meas4 <J=  Sup {j If(g)]} < &. (2.12)
A

vell,flelsL
Indeed let R > 0 be so that |[£] > R = | f(&)| < €|&]/2L, and let § = ¢/(2 sup |f] + 1); then
B(x,R)
for every g in L', so that f|g| < L, and for every A such that meas A < 4,

Sf(e(x))dx + E Se(x)) dx

AN{x, lg(x)| = R}

j flex)dx < S
A

AN{x,lgx)l > R}

8
<57 j le)| + Sup |f| meas{4] < - +5=e
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Let then L = sup(f|g, dx| + flg dx|) < . Given & > 0, let R be so that for || = R, | f(¢)| <
e|¢|/4L. Choose d > 0, § < R, so that for x and y in the ball of radius 2R centered at 0 € R?

Ix =yl <6 = |f(x) - fW| < /4 dx(D).

We now choose, according to the previous property (2.12) 4, such that meas A < §, =
Sup 4| f(e)l < &/8, and k > k, such that meas G, < §, where G, = {x, |g,| > RJU
fiIGIsL

(x, lgl > R}.
Choose also k, so that for k > k,

dx((|g(x) — &(¥)| = J) < &/8 dx(I) llgllgllf(é)”- (2.13)

We then write

Slf(gk) - fl@l = Slgk-g|<6 If(gk) -f@l+ Slgk—g|<6 |f(gk) - f(®)

lgxl,igl 2R lgk! > 2R orlgl > 2R

+ Slgk—gl >b |f(gk) - f(g)l

lgkl,lgl s 2R
£ eSup|f|mesT j
S = I + ——— - [f(gx) — f@)I.
4lr]| aSuplfmesT * s o /80~ T

The last integral is arbitrarily small if we note that when ¢ is less than R, and |g, — g| < 4,
lgx|l > 2R implies |g| > R and conversely. Then

v‘ng—gl>b ‘f(gk) _’f(g)l = S ‘f(gk) - f(g)‘
|gk| > 2R orlg| > 2R . flexl > Randflgl > R
<2 |led + |1e
o
2

and the proof is complete. W

As in (1.25), theorem 2.4 has corollaries giving necessary and sufficient conditions for
S(ue) = f(u) weak star in Co(Q, R?) or in BC(Q, R?)Y with Q open. The formulation and
proof are left to the reader.

3. ®(u) WITH & ASYMPTOTICALLY HOMOGENEOUS

Suppose ®: RY = R has an asymptote in the sense that
lim (/1] = G(©)

exists uniformly for ¢ in compact subsets of R?\0. Then G is positive homogeneous of degree
zero and if F(&) = |£|G(&), @ = F + f with f sublinear. If ® is continuous, then, so is F and
if ®(0) = 0, then f(0) = 0. This motivates the following definition.
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Definition. ® € C(R?, R) is called asymptotically homogeneous iff

Q) ®0) =0
(i) lim ®(@&)/t exists uniformly on |&| = 1.
=+

The paragraph leading up to the definition establishes the following equivalence.

ProposiTioNn 3.1. @ is asymptotically homogeneous if and only if & = F + f with
f, F e C(R% R), F continuous and positive homogeneous of degree one and f sublinear with
f(0) = 0. The functions F and f are uniquely determined by ®.

Definition. We suppose I' C R" is compact and dx is Lebesque measure on I'. If ®: RY — R is
asymptotically homogeneous then ®(u) & Fu) + f(u) where ® = F + f is the decomposition
of proposition 3.1 and F(u) and f(u) are defined in Sections 1 and 2 respectively.

THEOREM 3.2. Suppose u;,u € M(T', R?) have Lebesque decompositions u, = g, dx + v,,
u = gdx + v and that 4, — u. Then the following conditions are equivalent:

I ®(uy) — ®©(u) for all asymptotically homogeneous functions ©.

(I1) g, converges to g in measure and the equivalent conditions of theorem 1.15 hold.

Proof. The result follows immediately on combining theorem 1.15 and theorem 2.3.

In the case of scalar valued measures, that is d = 1, the remark following example 1.10 shows
that uf — u? is sufficient to insure that F(u,) — F(u). The next variation of that condition is
useful in our study of semilinear hyperbolic systems [4].

ProrosiTiON 3.3. If d = 1 and yy, u, g, &, Vi, v are as in theorem 3.2, then the following con-
dition is equivalent to conditions I and II of theorem 3.2.
(1) |uy — gdx| = |v].

Proof. First we show that III implies that the conditions of theorem 2.3 hold. The lower
semicontinuity of the variation yields

lul < liminfu,| < liminfly, — gdx| + [gl dx = [v] + |g| dx = [u].

It follows that | 4| = lim|u,| which verifies condition B of theorem 2.3 with the strictly convex
norm ¢(s) = |s|.

To show that g, converges to g in measure, observe that |g, — g/ dx =< |y, — g dx|. Then for
any 7 > 0 fixed we must show that lim sup dx(A4,) = 0 where A, = {x e I': [ge(x) — g(x)| = n}.
Choose a Lebesque null set, M, with |[v|("NM) = 0. For any & > 0 we will show that
lim sup dx(A4,) < 3e. Given € choose compact K; C M with |v|(M\K,) < en. Choose compact
K, ¢ I'"\M with dx(('\K,) < €. Choose g e CIN) with0 = p =< 1,¢ =10nK,, ¢ = 0onK,.
Then

ndx(A, NKy) =< j lex — glodx < | g — glodx.
Ax «
Using |g, — gl dx < |u, — g dx|, it follows that
lim sup dx(A, N K,) < n~ ' lim supju, — gdx|, 0) = n7Xv|, ) < &.

However, dx(I'\K,) < 2¢, so lim sup dx(A4,) < 3e.
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This completes the proof that (III) implies the conditions of proposition 3.2. It remains to
prove the converse.

We first remark that it suffices to prove the converse for nonnegative sequences 4, = 0. For
arbitrary u, we apply the special case to the sequence i — g* dx + v* which itself satisfies the
conditions of proposition 3.2. This yields |u{ — g* dx| = v*. Similarly |uy — g~ dx| = v~.

Since u, — gdx — u — gdx = v, we have

vl = v* + v~ < liminf|y, — gdx| < lim sup|u, ~ gdx|.
On the other hand, y, — gdx = uf —g*dx + uy — g~ dx, so
lim sup|u, — g dx| = lim sup{luf — g*dx| + |ug — g dxl} = v* + v7 = ||,

It follows that |u, — gdx| = |v| which is the desired conclusion.
It remains to show that if 4, = 0 satisfy the hypotheses of proposition 3.2 then |u, — gdx] —
|v| = v. Toward that end, note that

lue — gdx| =y — gdx + 2(uy — gdx)™ = p, — gdx + 2(g, — &)~ dx. (3.4)

We next prove that (g, — g)~ dx converges to zero in norm. Given ¢ > 0, choose § > 0 so
that for any Borel set 4 with dx(4) < &, we have §, g dx < &/2. Choose N so that for n > N,

dx{x e T: |g (x) — g(x)] > &/2 ()} = dx(4%) < 4.
Then,

S!(gk—g)'ldx=§ (g—gk)dX=j +S :
Osgisg ApN{g = g4} {g= g, }NT\4§
For n > N, the contribution of 4% is dominated by the integral of g over 4%, hence by £/2.
The contribution of the second integral is also dominated by £/2. This proves the desired norm
convergence.

It follows from (3.4) that | 4, — g dx| and u, — g dx have the same weak limit so |y, — gdx| —
v = |v|. The proof of (III) for nonnegative u, satisfying the conditions of proposition 3.2 is
complete. W

4. f(x, w), F(x, n), O(x, 1)

The results of the previous sections extend to functions which depend also on x. The
modifications of the proofs are immediate. Here we describe an appropriate class of functions
and the basic result.

Definition. f € C(T x R, R) is sublinear if f(x,0) = 0 and lim f(x, £)/|¢| = 0 uniformly onT.
£

Definition. F € C(I' x RY, R) is positively homogeneous of degree 1 iff F(x, tf) = tF(x, &) for
allx,feT x R?and r > 0.

Definition. ® € C(I' x R?, R) is asymptotically homogeneous iff ®(x,0) = 0 for all x € T and
there is an F € C(I' x R?, R) positively homogeneous of degree zero and a sublinear f such that
= F+ f
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It is no problem to modify the definitions of Sections 1, 2 and 3 to define F(x, u), f(x, 1),
®(x, ) the last two requiring I' C R” and depending explicitly on the normalized Lebesque
measure dx.

THEOREM 4.1. If u,, u satisfy the conditions of theorem 1.15 then F(x, u,) — F(x, u) for all
positively homogeneous F € C(I' x R*: RY). If u, = gy dx + v, u = gdx + v satisfy condi-
tion (») of theorem 2.3 then f(x, u;) — f(x, u) for all sublinear f € C(I' x R?: R?). If u, satisfies
the conditions of theorem 1.15 and g, — g in measure then ®(x, u;) — ®(x, y) for all asymp-
totically homogeneous ®.

Proof. Left to reader.
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