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Abstract-Within the context of the small-strain approach, the plane-stress mixed-mode near-tip 
fields of a stationary crack in an elastic perfectly plastic solid under small-scale yielding conditions 
are examined by finite element methods. The finite element results show that asymptotically at the 
crack tip two elastic sectors exist under near mode I mixed-mode loading conditions, and one elastic 
sector exists under near mode II mixed-mode loading conditions. The fully yielded near-tip field, 
plastically deformed at all angles, is obtained only under pure mode II loading conditions. The 
corresponding asymptotic crack-tip solutions (consisting of constant stress sectors, curved fan 
sectors, and elastic sectors) are also constructed. The asymptotic crack-tip stress solutions agree 
well with the finite element results for the complete range of mixed-mode loadings. Some similarities 
and differences between the near-tip fields under plane-stress and plane-strain conditions are also 
discussed. 

1. INTRODUCTION 

A SUBSTANTIAL understanding of the near-tip structures for power-law hardening materials obeying 
a deformation plasticity theory has been achieved in recent years. Representative works along this 
line are those of Hutchinson[ 1,2], Rice[3], and Rice and Rosengren[4] for a crack under pure mode 
I and pure mode II loading conditions, and of Shih[S, 61 under mixed-mode loading conditions. 
For power-law hardening materials, the asymptotic crack-tip stress and strain fields possess the 
well-known HRR singularity. The corresponding crack-tip field solutions for perfectly plastic 
materials were also proposed by the above authors, with the assumption that the material 
surrounding the crack-tip is fully yielded at all angles. These solutions agree with the perfectly 
plastic limits of the corresponding asymptotic solutions for power-law hardening materials, and 
contain radial stress discontinuities under plane-strain near mode I mixed-mode conditions and 
under plane-stress mode I and mixed-mode conditions (for anisotropic perfectly plastic materials, 
see Pan[7,8]). 

Within the framework of rigid perfectly plastic theory (where the elastic strain is neglected), 
a line of discontinuity in the stress field may be viewed as a mathematical idealization of an 
infinitively thin elastic region separating two plastic regions. However, for perfectly plastic 
materials when the material elasticity is considered, it seems reasonable to ask: how does the elastic 
strain affect the near-tip field structures? 

To address the above issue under plane-strain conditions, Gao[9] proposed the crack-tip stress 
fields that contain two elastic sectors under mixed-mode loading conditions. However, the finite 
element computations carried out by Saka et aL[lO] showed that only one elastic sector exists 
around the crack tip under mixed-mode loading and small-scale yielding conditions, with Poisson’s 
ratio being nearly l/2. A systematic investigation of the plane-strain mixed-mode crack-tip fields 
has been conducted by Dong and Pan[l 1, 121. Their computational results and asymptotic analysis 
show that, as the limiting steady-stress state near the crack tip, the near mode I crack-tip fields 
do contain an elastic sector, but they differ from the crack-tip fields proposed by Saka et aL[lO] 
by a constant stress sector separating the elastic sector and a neighboring fan sector. The 
corresponding conditions for the existence of the elastic sector were examined by asymptotic 
analyses and verified by finite element computations. 

Very little information is available in the literature pertaining to the above issues for elastic 
perfectly plastic materials, particularly under plane-stress mixed-mode loading conditions, 
despite its practical importance to structural problems. To our best knowledge, a detailed finite 
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element investigation of the near-tip fields for elastic perfectly plastic materials under plane-stress 
and small-scale yielding conditions was done by Narasimhan and Rosakis[ 131 for pure mode I 
loading. However, the two constant stress sectors of the asymptotic near-tip field assembled by 
Hutchinson[2] were not identified in their investigations. Thus, detailed numerical work as well 
as the corresponding asymptotic analyses are required to firmly establish a conceptual under- 
standing of near-tip behaviors under plane-stress conditions. This is usually more complex than 
that in plane-strain because the equations of plane-stress perfect plasticity are somewhat more 
involved[ 141. 

In this paper, the plane-stress small-scale yielding near-tip fields under monotonically 
increasing mixed-mode loading are examined using finite element methods. The material is assumed 
to be an elastic perfectly plastic solid obeying the J2 flow theory. Attempts are made to elucidate 
the details of the limiting stress states near a crack tip, which we will refer to as the steady stress 
states. Then, the asymptotic near-tip fields for elastic perfectly plastic solids are assembled and 
shown to be in excellent agreement with the finite element results. 

2. FINITE ELEMENT ANALYSIS 

2.1. Computational model 

We consider a crack in an elastic perfectly plastic solid with the reference coordinate systems 
depicted in Fig. 1; the Cartesian coordinates x, and x2 and the polar coordinates r and 0 are 
centered at the tip. The mixed-mode small-scale yielding problem was modelled by considering the 
crack in the circular domain of radius I,, as shown. The circular domain was entirely discretized 
by finite elements. In the immediate crack-tip region, we used a ring of 40 wedge-shaped elements 
of size ri. Collapsed nodes were employed to simulate the l/r singularity in strain at the tip. The 
crack-tip elements were equally distributed from --R to rr and surrounded by 24 circular strips of 
elements generated by a logarithmic scale in the r direction. The entire model consists of a total 
of 1000 isoparametric elements, and ri/r, z 10e7 is used in the calculations. 

The displacements due to the leading singular terms of the linear elastic asymptotic solution 
of the crack-tip field, 

Ui = $j J & (K*tii(Oy V)' + K,tii(B, V)"), i = 1,2, 

are specified as the boundary conditions at the outermost boundary r = r, of the domain. Here, 
G represents the shear modulus, v represents the Poisson ratio, K, and K,, denote the mode I and 
mode II stress intensity factors of the far-field, and &(8, v)’ and z&(8, v)‘i are the dimensionless 

Fig. 1. A finite element model and the coordinate conventions. 
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displacement functions associated with the elastic singularity and depend only on the orientation 
0 for a given elastic material. The loading is applied through the stress intensity factors, K, and 
K,,, which are the amplitude factors in eq. (1). The relative composition of K, and K,, is controlled 
through a mixity factor Me, defined as[5] 

M’ = 1 arctan 
[ 

lim c&r, 0 = 0) 

71 r-m a,@, 8 = 0) 1 
2 

arctan 

4 =- [ - 1 , 
71 4, 

(2) 

where the magnitude of M’ ranges from 0 to 1, with M’ = 0 for pure mode II, and M’ = 1 for 
pure mode I. 

Eight-node serendipity elements with a reduced integration scheme were used in the element 
stiffness calculations. In a previous article[ 121, we showed that both eight-node serendipity elements 
with a reduced integration scheme and nine-node Lagrangian elements with the B-method proposed 
by Hughes[l5] can be effectively used to relieve the artificial mesh-locking that occurs for nearly 
incompressible materials in plane strain. However, this problem does not arise in plane-stress since 
there is a non-zero out-of-plane strain component that is determined in terms of the in-plane strain 
components. 

2.2. Numerical procedure 

The material was modelled as an elastic perfectly plastic solid. A small-strain incremental 
plasticity theory was employed with the Huber-Von Mises yield condition and the associated flow 
rule. A displacement-based finite element method with an iterative procedure based on a modified 
Newton-Raphson method was used in the analysis. The finite element equations were derived from 
the principle of virtual work. At time t + At, this takes the form 

s a,,(t + At) ScijdA = 
s 

Ti(t + At) 6ui dS, 
A aA 

(3) 

where a,(t + At) represents the Cauchy stress tensor, which satisfies the equilibrium conditions at 
time t + At, and Ti(t + At) is the imposed traction vector on the boundary dA of domain A. In 
addition, 6ui represents the virtual displacement field that vanishes on the part of the boundary 
where displacements are specified, and 6~ is the associated small-strain tensor. Here, time t is used 
as a convenient variable to represent differential loading levels. Linearizing eq. (3) with respect to 
the equilibrium configuration at time t and introducing the finite element approximation, we obtain 
the following incremental equilibrium equations in matrix notation: 

K,AU=F(t +At)-P(t), (4) 

where AU = U(t + At) - U(t) is the vector of incremental displacements at the nodal points, 
K, = fA B?)B dA is the tangent stiffness matrix corresponding to the configuration at time t (B is 
the strain-displacement matrix and D the material constitutive matrix of the elastic-plastic 
material), F(t + At) is the vector of the applied external loads at time t +At, and 
P(t) = jA Be(t) dA is the equivalent force vector of the element stresses at time t. 

The loading is applied through the mode I and the mode II stress intensity factors, which enter 
the far-field displacement boundary conditions [eq. (l)]. The remote load intensity can be expressed 
in terms of the well-known J integral[3], 

J=;(K:+K:,), (5) 

in order to facilitate subsequent discussions. A small initial load (small J) is applied so that all 
elements remain elastic. J is then scaled to cause incipient yielding at the crack-tip element where 
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the stresses are the highest. At this point the value of J is denoted as Jo. The load is then increased 
incrementally by a fraction of Jo. An iterative Newton-Raphson procedure is employed to solve 
the incremental equilibrium equations (eq. 4) for each load increment, such that for the kth 
equilibrium iteration at time t + At, the Euclidean norm 

ARk = F(t + At) - Pk- ‘(t + At) (6) 

satisfies 

II ARk II 
- < TOL, 

II F II 

where the TOL is a small preset tolerance. It is important that the stress evaluation, which can 
be written as 

.;(t + At) = a,(t) + 
s 

$, (I + AI) 

Diik/ de,, 3 (8) 
Q0 

is performed by integrating from the values of the last accepted equilibrium state to the current 
state of iteration k, so that the final results are not affected by errors introduced during intermediate 
iterations[l6]. The incremental processes are continued until a steady stress state at the crack tip 
is observed. At all times the maximum extent of the plastic zone around the crack tip is smaller 
than l/l00 of r,, to preserve small-scale yielding conditions[ll]. For the results reported here, 
Poisson’s ratio v is taken as 0.3, and the ratio of Young’s modulus E to the tensile yield stress go 
(E/o,) as 500 to represent typical structural steels. 

2.3. Numerical results 

The crack tip stress fields at r/r, Iv - lo-* for various combinations of K, and K,, of the far-field 
are shown in Fig. 2 for near mode I mixed-mode loadings (M’ = 1, 0.84, and 0.54) and in Fig. 3 
for near mode II mixed-mode loadings (M’ = 0.30, 0.15, and 0). Here rp represents the extent of 
the plastic zone from the crack tip at 8 = 0. In these figures, a,( =$sijsi,, where sij is the deviatoric 
stress) represents the effective stress, and only every other data point is plotted for clarity. 
No smoothing techniques were used in any manner in displaying the numerical results. The symbols 
are the finite element results taken directly from the Gauss quadrature points in the immediate 
vicinity of the crack-tip, after the steady stress state is observed. (Note that the stress components 
shown in all the figures in this paper are normalized by the yield stress ao.) 

In all the cases, the stress fields contain no discontinuities in the radial stress component, cr,, 
in contrast to the asymptotic solutions constructed by Shih[6] and Dong and Pan[l4], where it was 
assumed that the material surrounding the crack tip is fully yielded. It can be seen that ge is less 
than unity in the two regions bordering the two crack faces for near mode I mixed-mode loadings 
[Fig. 2(ac)], and in the region bordering the lower crack surface for near mode II mixed-mode 
loadings [Fig. 3(a, b)]. For pure mode I, similar results were also reported by Narasimhan and 
Rosakis[ 131. It should be noted that the fully yielded crack-tip stress field is obtained only under 
pure mode II conditions [Fig. 3(c)]. A careful examination of Fig. 3(b) shows that in the 
neighborhood of the lower crack face (0 = - 180’) err is less than unity, and it is still deformed 
elastically. 

In Fig. 4(a, b), we plot the normalized stresses with respect to the normalized radial distance 
from the crack tip, r/r,, in a logarithmic scale along two radial lines for M’ = 0.54. One radial 
line is within the elastic sector at 8 = 133”, and the other is well inside the plastically deformed 
region at 8 = 7.1”. In both figures, we see that for r/r, =+ 1, the straight line distributions of the 
normalized stresses as functions of the normalized radial distance have a slope of - l/2 and clearly 
indicate the r-i singularity as it must be in the elastic K-field. As r/r, approaches 1, the magnitude 
of the slope decreases. As r/r, decreases from 1, the slope of these lines becomes zero inside the 
plastically deformed region [Fig. 4(b)] and becomes zero at r/r, - - 10-l within the elastic sector 
[Fig. 4(a)]. 
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Fig. 2. Comparisons of the finite element results with the Fig. 3. Comparisons of the finite element results with the 
asymptotic solutions for near mode I mixed-mode loadings: asymptotic solutions for near mode II mixed-mode loadings: 

(a) M’ = 1 (mode I), (b) M’ = 0.84, (c) M’ = 0.54. (a) M’ = 0.30, (b) M’ = 0.15, (c) M’ = 0 (mode II). 
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To facilitate direct comparisons between the finite element solutions and the asymptotic 
solutions presented in the next section, we introduce a near-field mixity parameter MP. This 
parameter MP, defined by Shih[S], identifies each stress field in Fig. 2 and Fig. 3 by the relative 
composition of mode I and mode II conditions directly ahead of the tip. Thus, the near-field mixity 
parameter, MP, can be expressed in the same way as M’ in eq. (2) in terms of the opening stress 
and the shear stress ahead of the crack tip: 

MP = 1 arctan 
[ 

lim 
5&r, 0 = 0) 

n 1 r_rocr,&,8=0) ’ (9) 

The magnitude of MP equals 1 for pure mode I and 0 for pure mode II. The value of 
MP lies between 1 and 0 for mixed-mode loading. For a given far-field mixity parameter M’, 
defined by eq. (2), there exists a unique value of MP under the prescribed loading conditions. 
The relationship between M’ and MP is plotted in Fig. 5 from the current finite element 
computations. 
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Fig. 4. Log-log plots of the normalized stresses as functions of the normalized radial distance for M’=0.54 
at two angles: (a) f? = 133” (inside the elastic region), (b) f3 = 7.1” (inside the plastically deformed region). 

3. ASYMPTOTIC NEAR-TIP FIELDS 

3.1. Equilibrium equations 

In this and subsequent sectors, we intend to seek a near-tip solution in which all stresses are 
continuous. With reference to the polar coordinates (see Fig. l), the equilibrium equations can be 
written as 

(11) 

Rice[3, 171 analysed the stress state bii = aij(0) as r + 0 at the tip of a stationary crack and a growing 
crack in an elastic perfectly plastic solid. He argued that since the stress at the tip must be bounded, 
terms of the form r(&,/ar) in the equilibrium equations must vanish as r + 0. Hence, eqs (10) and 
(11) reduce to the two ordinary differential equations: 

dare 
err - u&J + - = 0, 

de 
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Fig. 5. Relationship between the near-field plastic mixity MP and the far-field elastic mixity M’ obtained 
from the finite element analysis. 

3.2. Yield condition 

Following the development of Rice[l7], we write the J, yield condition as 

@(aJ = ;sijsij - cr; = 0, (14) 

where sij is the deviatoric part of rrij, and crO is the tensile yield stress, Under plane-stress conditions, 
the yield condition (14) is expressed as 

@(Gii) = c:, + & - c,, (722 + 30:1- cr; = 0, (15) 

referring to the Cartesian coordinates, and 

@(Oij) = cr;, + c& - U,?fJ,‘j@ + 30;o - fl; = 0, (16) 

referring to the polar coordinates. The differential form of the yield condition, as r approaches 0, 
is 

do, 
S”X = 0. (17) 

Under plane-stress conditions, eq. (17), in combination with the equilibrium equations (12) and 
(13), gives 

(18) 

3.3. Plastic crack-tip sectors 

Equation (18) leads to the following forms of simple solutions near the tip: 
(i) Constant stress sectors. Within a constant stress sector, the stresses (T,, , ozz, and eIz 

(referring to the Cartesian coordinates) are independent of 8, i.e. 

e,, = constant, (19) 

az2 = constant, (20) 

~7,~ = constant, (21) 

where the constants are chosen to satisfy the yield condition and other relevant boundary 
conditions. The characteristic grid is generated by two non-orthogonal families of parallel lines [see 
Fig. 6(a)]. The angle 21// is a function of rr,, , tsz2, and gIz. 
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(b) 

Fig. 6. Asymptotic crack-tip sectors: (a) constant stress sector, (b) curved fan sector (fuily extended), 

(ii) Curvedfun sectors. Within a curved fan sector, s, = 0 corresponds to one of two families 
of characteristics, namely, a fan of radial lines. Along these radial lines, 

a@@ = ~cF,, . (22) 

The equilibrium equations (12) and (13) and the yield condition (16) are satisfied if we take 

c,,= &?,COS8,, (23) 

(Tgg = rt 2r, cos 81, (24) 

cr&= f5,sin8,, (25) 

where tO( =a,J$) is the yield stress in shear, and 8, is measured counterclockwise, as shown in 
Fig. 6(b) for a fully-expanded curve fan sector. Evidently, the stresses are constant along the radial 
lines. As shown in Dong and Pan[l4], the equation for the curved characteristics has the following 
form: 

r ’ sin 0, = constant. (26) 

The curved characteristics tend asymptotically to the horizontal line at 8, = 0 and a. Along this 
horizontal line the two families of the characteristics converge to one, and o,, = +27,, o;, = +T,. 
Both the stress states correspond to the parabolic points at the Von Mises ellipse[ll)]. Hi11[19] has 
shown that at the parabolic point a% = 27, and cr, = s,, the normal velocity component has a 
discontinuity and thinning occurs along the line of discontinuity, and that at qBe = -2r, and 
ar, = -ro, the normal velocity component has a discontinuity, but thickening occurs. 

3.4. Eiastie crack-tip sectors 

As seen in the finite element results, it seems reasonable to admit the existence of an elastic 
region around the crack tip and to assume that the stresses in the elastic region are nonsingular. 
For the elastically deformed region, the compatibility equation in terms of stress components gives 

V’(C + a& = 0, (27) 



Plane stress in elastic perfectly plastic solids 51 

where V2 is the Laplace operator with respect to the polar coordinate system, i.e. 

and its corresponding asymptotic form for bounded stresses as T + 0 is 

( 

2 

r2 $+$+f$ 4-g. 
> 

Then, the compatibility eq. (27) becomes an ordinary differential equation: 

(29) 

Solving eqs (12), (13) and (30), we can write the solutions for the stress components in the following 
forms: 

err = 2A + 2B9 - 2C cos 29 - 20 sin 28, 

bgO = 2A + 2B8 + 2C cos 28 + 20 sin 29, 

(TV= -B+2Csin28-20~0~20. 

(31) 

(32) 

(33) 

The integration constants A, B, C, and D are to be determined by the boundary conditions. 

3.5. Assembly of the crack-tip solutions 

The possible crack-tip sectors categorized in the previous sections may be assembled in a 
manner that is consistent with the continuity of or,, o,~, and age, since we seek a solution in which 
all the stresses are continuous. (Note that the traction continuity across a radial line emanating 
from the crack tip requires the continuity of aoO and arB, but not a, .) The assemblies of the crack-tip 
fields are shown in Figs 7 and 8 in the order of departure from pure mode I to pure mode II. 

3.5.1. Near mode I (MP = l-0.392) 

For near-mode I mixed-mode loading, the finite element results suggest the solution 
shown in Fig. 7(b) as a possibility. Regions (1) and (5) are elastic sectors, (2) and (4) curved fan 
sectors, and (3) a constant stress sector. Detailed examinations of this solution show that such a 
near-tip field does not exist for the entire range of near mode I mixed-mode loading unless a 
trace of a constant stress sector, as shown in Fig. 7(c), intervenes between regions (1) and (2) of 
Fig. 7(b). In what follows, we discuss the two types of the near-tip fields separately. 

(i) Solution 1. In Fig. 7(b), the parameters 6, 6,) and 8, through 8, are defined in the same 
fashion as in Dong and Pan[l4]. The two radial lines 00 and 00’ are the asymptotes of the curved 
characteristics of fan sectors (2) and (4), respectively. The stresses in the two elastic sectors, (1) and 
(5), are given by eqs (31)-(33), the stresses in the two curved fan sectors by eqs (23)-(25), and the 
stresses in the constant stress sector by eqs (19)-(21). The continuity requirements across a radial 
line between any two adjacent sectors and the traction-free boundary conditions along the crack 
surfaces generate thirteen equations in terms of fourteen undetermined parameters. The parameter 
6 and the near-field mixity MP is related by 

MP = 2 arctan 
2 

7c 1 1 tan’ (34) 

as shown in Dong and Pan[l4]. As 6 varies from 0” (mode I) to 90” (mode (II), M+’ varies from 1 
to 0. For a given far-field mixity, M’, the corresponding near-tip mixity, MP, can be found in Fig. 5. 
Then, the parameter 6 is prescribed by eq. (34). For a given value of 6, the thirteen equations can 
be solved using a simple numerical procedure. To examine the existence of such a solution, 
however, we only need to analyse the elastic sector, region (l), in detail. 
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Fig. 7. Assembly of the crack-tip solutions under near mode I mixed-mode loadings: (a) mode J limit of 
solution I, (b) solution 1, (c) solution 2. 
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Within the elastic sector, region (l), the integration constants can be expressed as 

A = 1 

+ cos - 3 sin - 

8 r,, cos(8, S,)(6z 28, 28, 20,) ’ 2~ cos 28, - sin 26, + 28, cos 26, 

B_1 - 2 z,c0s(8,+6,)(1+3c0s28,) ' 271 cos 28, - sin 28, + 28, cos 28, 

c = 1 to c0s(e, 6, ) (4~ + 28, + 28, 
+ 67t cos 3 cos + 

28, ) 8 27t cos 28, - sin 28, + 28, cos 28, ’ 

1 
D=-- 

r. c0s(e, + 6, )(l + 3 cos 28,) 
4 211 cos 28, ’ - sin 28, + 28, cos 28, 

(37) 

(38) 

where 8, must satisfy the following equation: 

2(1 + cos 28, ) (COS 28, - 1) + 67r COSze, -k3COS2el +ze,) 
= 2rr 28, - sin 28, + 28, cos 28, +h 27~ cos 28, - sin 28, + 28, cos 28, 4 tan@, + S,). (39) cos 

Before eq. (39) can be solved for 8,) the parameter 6, needs to be determined. This cannot be done 
unless all thirteen equations are solved simultaneously at a given 6. Nevertheless, for a solution 
to be physically valid, 6, < 6 must always be true as 6 varies between 0” and 90”. A simple numerical 
procedure is employed to solve eq. (39) for 8, at a given 6,. 

For pure mode I loading (the mode I limit of the mixed-mode cases), 6, = -6 = 0.013”, 
0, = - 8, = - 39.29” and f& = - & = 1.83”. The corresponding stress field is displayed as the solid 
lines in Fig. 2(a). The agreement between the analytical solution and the finite element results 
is evident. The symmetric mode I characteristic field near the crack tip is sketched in Fig. 7(a) 
(0, and f& are exaggerated in this sketch for clarity), and it can be regarded as the special case of 
the mixed-mode field shown in Fig. 7(b). However, for near mode I mixed-mode loading, 
surprisingly enough, solution 1 exists only for a very small range of mixed-mode loadings when 
0.013” < 6, < 3”. No such solution for the characteristic field shown in Fig. 7(b) exists when 
3” < S, < 58”, which virtually spans the entire range of the near mode I mixed-mode loading. In 
order to guarantee a solution (regardless of whether or not it is feasible), a trace of a constant stress 
sector must intervene between regions (1) and (2); thus, solution 1 [Fig. 7(b)] may be viewed as 
a special case of the resulting near-tip field shown in Fig. 7(c) in which the constant stress sector 
[region (2)] becomes negligibly small. 

(ii) Solution 2. A partial constant stress sector [see Fig. 7(c)] is introduced between regions (1) 
and (2). The new near-tip field, then, involves fifteen unknown parameters with fourteen equations 
being available. Attempts to find another equation were unsuccessful. For comparison purposes, 
0, from the finite element computations is used instead to construct the analytical solutions. Two 
solutions for the near-tip stress fields at MP = 0.85 and MP = 0.61 are displayed as the solid lines 
against the corresponding finite element results in Fig. 2(b, c). As e4 approaches 54.74”, the elastic 
sector (6) becomes a plastic constant stress sector and region (2) [in Fig. 7(c)] becomes hardly 
noticeable. At this point, 6 is 70.53” (MP = 0.392). The corresponding characteristic field is 
shown in Fig. 8(a), and the stress field is shown as the solid lines in Fig. 3(a). The finite element 
results in Fig. 3(a) (M’ = 0.30) clearly show that this is exactly the case. 

3.5.2. Near mode ZZ (MP = 0.392-o) 

As 6 deviates further from mode I (6 increases from 70.53”), a curved fan sector develops 
between regions (5) and (6) of Fig. 8(a). The corresponding characteristic field is shown in Fig. 8(b), 
where region (1) remains elastic, and CJ is the angle between the crack line and the asymptote (00”) 
of the new curved fan sector, region (6). As shown in Dong and Pan[l4], 8, = 125.26” and 
6, = 70.53”. A total of fourteen equations are solved by Newton’s method. The solutions for 
M’ = 0.30, M’ = 0.15, and M’ = 0 (mode II) are shown as the solid lines in Fig. 3. Again, the 
excellent agreement between the analytical solutions and the finite element results for all the cases 
is evident. The antisymmetric mode II near-tip field is shown in Fig. 8(c) for completeness. Note 
that only under pure mode II conditions, the elastic sector (1) becomes a plastic constant stress 
sector and the field becomes fully yielded at all angles. 
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G-4 (b) 

(4 
Fig. 8. Assembly of the crack-tip solutions under near mode II mixed-mode loadings: (a) the intermediate 
case between the near mode I and near mode II loadings, (b) near mode II mixed-mode loading, (c) pure 

mode II. 

4. DISCUSSION 

The current study under plane-stress mixed-mode conditions, along with the study under 
plane-strain mixed-mode conditions[l2], consistently show that for elastic perfectly plastic ma- 
terials, if the elastic part of the strain rate tensor is taken into account, it seems reasonable to 
introduce elastic sectors in the crack-tip fields. The radial lines across which the discontinuities in 
urr occur, as envisioned in the rigid perfect-plasticity solutions, are actually replaced by elastic 
regions in the same neighborhoods. Under plane-strain conditions, there exists one elastic sector 
bordering the upper crack face in the near-tip fields for near mode I mixed-mode loading[l2]. Under 
plane-stress conditions, there exists two elastic sectors bordering both crack faces for pure mode 
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I and near mode I mixed-mode loading, and one elastic sector bordering the lower crack face for 
near mode II mixed-mode loading. Within the elastic sectors, the stresses appear to be nonsingular 
under both plane-stress and plane-strain conditions[ 11, 121. 

The normalized plastic zones from the current finite analysis are shown in Fig. 9 for different 
combinations of remote mixed-mode loadings. Each point in the figures represents a Gauss 
quadrature point in plastic state. The plastic zone sizes are consistently scaled by the self-similar 
parameter JE/ai for all the cases, regardless of the remote loading levels, provided that the 
corresponding steady-state stress fields had been observed. 

For all combinations of the remote mixed-mode loadings, the relationship between the 
near-field mixity M’ and the far-field mixity MP is completely different from the relationship 
extrapolated from the power-law hardening solutions by Shih[S], while under plane-strain 
conditions the relationship between M’ and MJ’ is very close to the one extrapolated from 
power-law hardening solutions[ 121. This demonstrates that under plane-stress conditions the 
material elasticity strongly influences the relation of the near-tip mixity to the far-field mixity, 
compared to that of the perfectly plastic solutions extrapolated from the solutions for power-law 
hardening materials[5]. This is in contrast to the plane-strain case, where the relation of the 
near-field mixity to the far-field mixity for perfectly plastic materials, extrapolated from the 
solutions for power-law hardening materials, is well-bounded by that for elastic perfectly plastic 
materials[5, 121. 
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It is worth noting that the constant stress sector [region (2) of Fig. 7(c)] is introduced to ensure 
the existence of solutions while the presence of it is not clearly indicated by the finite element results. 
Although the correlations between the near-tip fields for both plane stress and plane strain are not 
clear, it is natural to wonder if this has any implications on the near-tip fields for plane strain, since 
one possible solution suggested by Gao[9] has the same structure as the one shown in Fig. 7(b). 
Indeed, it appears that the arbitrariness of Gao’s solutions[9] may be removed by arguing that a 
solution structure must be valid for the entire range of near mode I mixed-mode loading. 
Consequently, the slip-line field proposed by Saka et aZ.[lO] should result (note that the solutions 
of Saka et al.[ lo] missed a constant stress sector when compared with those of [ 11, 121). Apparently 
this issue has been bypassed in previous analyses[ 10, 11, 121, where the finite element computations 
clearly show that region (1) is a plastic constant stress sector. 

Finally, it should be mentioned that the mode I solution shown in Fig. 7(a) is the mode I limit 
of the mixed-mode solutions. In fact, under the symmetric mode I loading the parameter @ (or 
0,) is nonunique. A parametric study[20] has been conducted, and the results indicate that stress 
fields except g,, as functions of 8 are virtually insensitive to the choice of the angular span (0, - 0,) 
of the constant stress sector ahead of the crack tip, ranging from 1.83” to 20”. However, the finite 
element results suggest that the mode I solution should be either the case of the mode I limit of 
mixed-mode solutions or the case where the constant stress sector degenerates to a line (i.e. 
O2 = t& = 0). Since there is little difference between the two corresponding stress fields for small 
values of & and &, distinguishing one from the other with finite element methods proves to be 
difficult. Nevertheless, according to the arguments given in [21,22,23], it is reasonable to choose 
the case of the mode I limit of the mixed-mode solutions as the mode I crack-tip field under 
small-scale yielding conditions within the context of plane-stress theory. Investigations of the 
three-dimensional fields and the effects of tip blunting for a crack in a thin sheet subject to mode I 
loading can be found in [24,25]. 
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