
Computers & Elect. Engng Vol. 16, No. 2, pp. 65-77, 1990 0045-7906/90 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1990 Pergamon Press plc 

T E X T U R E  I N  I M A G E S :  A L G O R I T H M S  F O R  

C O M P A R I S O N  A N D  S E G M E N T A T I O N  

REN LIANG l, M.  SHRIDHAR I a n d  M.  AHMADI 2 

)Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, 
MI 48128, U.S.A. and 2Department of Electrical Engineering, University of Windsor, Windsor, Ontario, 

Canada N9B 3P4 

(Received 15 December 1989; received for publication 1 February 1990) 

Abstract - -  The extraction of features that are sensitive to texture in an image has been the subject of 
intensive investigations in recent years. Recently, several important industrial applications based on the 
texture of a surface or texture in a scene have been identified. Many of these applications involve 
classification of texture, comparison of two texture samples or segmentation of an image into texturally 
homogenous regions. In this paper, the maximum likelihood technique has been adopted to enable 
comparison of two textures (similarity measure) as well as segmentation of a given image into texturally 
homogenous regions. In addition, features are derived from the gradient of the image rather than the 
spatial gray-level co-occurence matrix. A new measure of similarlity termed, "the similarity index (SI)" 
has been derived for comparing two textures (e.g. homogeneity of a painted surface). Experimental results 
with a variety of textures have demonstrated the feasibility of the new approaches taken. 

1. I N T R O D U C T I O N  

In many important applications involving image analysis, it is frequently required to segment 
a given image into homogeneous regions. Such homogeneous regions are characterized by 
invariant features within the segment. Many papers have recently appeared in literature [1-5] 
that provide techniques for segmenting an image based on such criteria as homogeneity of 
gray level, edge detection and tracking, thresholding etc. Many of these techniques are essentially 
point (pixel) operations, in that, they assign a single pixel to a given region based on its location, 
gray level and/or gradient. However, these techniques are not generally suitable if the given 
image is characterized by texture. Such images can arise when an object is imaged on a textured 
background or if the image itself consists of one or more textures. Applications include analysis 
of aerial scenes (landsat pictures), SAR data and characterization of shape of textured objects. 
Several new techniques[6-11] have been proposed for automatic classification of texture 
whereby the texture in a scene (or part of a scene) is assigned to one of a finite number of known 
texture classes. 

In this paper the authors present a new measure termed, "the similarity index", for comparing 
these textures. Also the authors use the "gradient histogram" feature developed by Raafat and 
Wong [7] and the gray-level co-occurrence matrix proposed by Haralick [8] for the development 
of a general algorithm that can; 

(i) classify a texture sample as belonging to one of several prespecified classes 
(ii) yield a measure of similarity (or dissimilarity) when two textures are compared 

(iii) segment a given textured image into texturally homogenous regions. 

Tests done with a variety of textures and textured images have shown that the alogorithm yields 
satisfactory classification, comparison or segmentation. 

2. T E X T U R E S  S E N S I T I V E  F E A T U R E S  

Many different types of features have been proposed for measurement and characterization of 
texture. Some of these include the gray-level co-occurrence matrix, the gray-level run-length, 
gray-level difference, Fourier Power Spectrum, Auto Correlation, etc. [8,11]. 

Of the many features available, the gray-level co-occurrence matrix has been widely used by 
many investigators. The advantage of using the co-occurrence matrix lies in the fact that several 

65 



66 REN LIANG et al. 

sub-features such as angular second moment,  correlation, contrast, entropy, etc. can be derived for 
obtaining a unique characterization of a given texture. 

Recently some investigators notably Derin, Elliott et al. [15,16], have used Markov Random 
Field characterization for textural scenes. In this interesting approach, the authors have used a 
hierarchical Gibbsian model to characterize texture in terms of  a finite number of parameters. 
Although, techniques for the estimation of these texture parameters were suggested, the authors 
in their study simply assumed that these parameters were known a priori. It is felt that this 
assumption, coupled with the computational complexity of  their algorithms could be restrictive for 
certain applications. However this is a promising area for further developments. 

Other studies by Raafat  [7], Weszka et al. [12] have indicated that the gradient of the image can 
be used to derive features that are sensitive to texture. Further the features based on gradient 
could be made sensitive to the orientation of texture characteristics by retaining the directional 
information. A final point here, is that the gradients may be evaluated efficiently. 

The texture-sensitive feature is derived as a gradient histogram. The feature is derived as follows: 

Given an image array f ( i ,  j ) ,  the directional gradients G, and G~ are computed as 

G,.( i , j )  = [ f ( i  + l, j -  1) + 2 f l ( i  + l , j )  + f ( i  + 1 , j  + 1)] 

- [ f ( i -  1, j -  1) + 2 f ( i -  1,j)  + f ( i -  1, j + 1)] (1) 

G,(i, j )  = [ f ( i  - 1, j - 1) + 2f(i, j - 1) + f ( i  + 1, j - 1)] 

- [ f ( i -  1,j + 1) + 2f(i, j + 1) + f ( i  + 1,j + 1)]. (2) 

The gradient magnitude and direction are computed as 

G(i, j )  = G~.(i, j )  + G~(i, j )  (3a) 

O(i, j )  = tan ' (G,./G,.). (3b) 

The gradient histogram is derived by coding the magnitude and direction. In this study the 
magnitude is quantized to N~ levels and the direction is quantized to N2 levels as shown in 
Fig. l(a). Ignoring the region with zero magnitude one obtains a total of  N 2 ( N  1 - - l )  levels. Thus 
any gradient value can be mapped into one of the N 2 ( N  1 - -  1) levels. The frequency distribution of  
the mapped levels in a given textured image is derived as a histogram g(n) corresponding the level 
n[1 ~< n ~< N2(NI-1)] .  The author used 13 levels for magnitude and 8 levels for direction (i.e. 
N~ = 13, N2 = 8) in this study Fig. 1. 

The characterization of texture in terms of gradient function is not a new concept; Weszka 
et al. [12] have in their work indicated that local properties such as gray-level and gradients are 
very useful in characterizing texture. A typical texture set and its quantized version and gradient 
along with the histogram are shown in Fig. 1 (b,c). 

3. T H E  M A X I M U M  L I K E L I H O O D  T E C H N I Q U E  F O R  T E X T U R E  

In this section, the derivation of the maximum likelihood function for texture classification, will 
be presented. The derivation is similar to the technique proposed by Vickers and Modestino [6]. 
The major difference, in this paper, lies in the use of  gradient histogram as the feature instead of 
the co-occurrence matrix used by Vickers and Modestino. The classification is made based on the 
maximum value of the likelihood function with respect to the texture classes. The derivation 
proceeds as follows: 

Let Lk(g) be the likelihood function for the texture class k where k is in (0, K -  1), the g is the 
gradient histogram vector. Lk(g) is defined as 

L~(g) = ln[P(glk)], k = 0, 1, 2 . . . . .  K -  1 

where P(g[k)  is the conditional probability density of  the vector g given that the texture class is 
k (see Appendix A). 
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Fig. 1. (a,b) Caption on p. 69. 
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Fig. 1. (c,d) Caption on facing page. 
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Fig. 1. (a) Gradient Histogram region. (i) magnitude region. (ii) Direction region. (iii) Histogram region. 
(b) A texture set. (c) Quantized and equalized image of Fig. l(b). (d) gradient image of Fig. l(b). 

(e) Gradient histogram of a texture sample. 

Given Lk(g), the classification is made as follows: 

Assign texture to class k 0 if 

Lko (g) = max Lk (g). 
k 

While the classification technique is simple and follows tradit ional lines, the major  difficulty in 
using this approach  is the need to know a priori, the condit ional  probabil i ty density function 
P {g]k }. It should be noted P {glk } is a multi-dimensional density function since g is a vector  with 
N2(N~- 1) elements. It is shown in Appendix A, that under  suitable assumptions P{g lk}  can be 
written as 

P{g[k}  = g(i) ! [Qi(k)] gu)/g(i)! (4) 
L i = 0  i = 0  

where Qi(k) is the probabil i ty o f  observing i th entry in g under the assumption that  the texture 
class is k. 

An underlying assumption in this derivation implies that  all entries in g are assigned 
independently.  

Using the above equat ion in the expression for Lk(g) and ignoring terms that  do not  depend on 
k, one obtains a modified l ikelihood function. 

N 1 

£k(g) = ~ g(i)ln[Qi(k)]; k = 0, 1 . . . .  , K - -  1 (5) 
i = 0  

where N = N 2 (Ni -- 1). 
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It is now only necessary to estimate Qi(k) to perform the classification. Qi(k) is estimated by 
using a training set containing known samples from each of  the k texture classes. It can be shown 
that an estimate of Qe(k) is obtained as 

Q~(k) = gk(i gk(i) = gk(i)/G (6) 
i= 

where G is a constant and gk(i) is the histogram of kth reference texture and g(i) is the histogram 
of the test texture. 

The likelihood function £k(g) is now redefined as 

N - I  

£k (g) = ~ g(i)In {gk (i)/G }. (7) 
i = 0  

The use of this likelihood function in texture discrimination is discussed in the following section. 

4. T E X T U R E S :  C O M P A R I S O N  A N D  S E G M E N T A T I O N  

The classification of texture samples using the maximum likelihood function is a fairly simple 
and straightforward procedure, once Qi(k) is available. However, in many problems, it is often 
necessary to deal with two other applications. These are 

(i) Texture Comparison 
Given a reference texture and a test texture, it is often required to obtain a measure of similarity 

between the two textures. 
(ii) Segmentation 

Given an image with several different but unknown textures, it is required to segment the image 
into texturally homogenous regions. 

It is clear that both of these problems cannot be directly solved by the maximum 
likelihood technique. In order to solve the comparison problem, it would be desirable to define 
similarity measure (preferably in the range 0 1) that can be used to infer the closeness of two 
texture samples. 

4.1. Similarity measure .for texture comparison 

The similarity measure for comparing two textures is derived from the likelihood function of 
equation (7), i.e. 

N - I  

£k(g) = ~ g(i)ln[gk(i)/G] 
i = 0  

where g(i) represents the features of  the texture image and gk(i) represents the features of the kth 
reference texture. 

£k(g) can be rewritten as 

£k(g) = y g(i)[In gk ( i ) -  in G] 

= Y, g( i)In gk(i)-- Y. g(i)In G. (8) 

Observing that the second expression on the right of equation (8) is independent of k, one can 
define a new likelihood measure as follows 

C~(g) = ~ g(i) In gk(i). (9) 

An examination of equation (9) reveals that this modified likelihood measure can be effectively 
used to compare two textures. 

In fact this measure will now be used in deriving a "similarity measure" as follows: 

(1) Define C,,,,, = ~. g,,(i)ln[g,(i)] (10) 
i 

where m and n represent two texture classes. 
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(2) Define a "Similarity Index" Stun as 

sin. = ¥ J (11) 

The motivation for this derivation is based on the following observations: 

(1) C,,, defined above is in fact a likelihood measure. Hence it will reach a maximum 
value, only when the two textures are identical (m = n) 

(2) Since, in any practical situation Cm, 4: C,m it is necessary to define a similarity 
measure that will be independent of which texture is considered as reference, i.e. 
one needs a measure Sin, which satisfies 

Sin,,---- S,m. 

The definition according to equation (11) satisfies this requirement. The above coefficient has its 
value in the range 0-1. When the two textures are identical Stun assumes the value 1. The parameter 
I is chosen according to the sensitivity and resolution needed, in a specific application. The authors 
typically used / =  10 for all the texture images in their study. 

4.2. Segmentation of textured images 

The segmentation of a given image (consisting of multiple textures) into texturally homogenous 
regions can be easily achieved with the use of  the new similarity index defined in the previous 
section. 

The segmentation procedure is based on the region growing technique originally proposed 
by the authors [13]. While the region growing technique assigned individual pixels to a region 
being grown based on some similarity measure, the modified technique assigns subregions of  
predetermined size to a texturally homogenous region being grown. The procedure consists of: 

(a) Starting at the Northwest corner of  the given digitized image, select two adjacent 
subregions (i.e. textures in two adjacent windows). Please note that depending on 
the resolution needed in segmentation, the two windows may overlap. The region 
closest to the Northwest corner will be assigned a label "1" 

Fig. 2. An image with multiple texture. 
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(b) Determine the similarity index defined in equation (11) to evaluate the similarity 
between the two subregions~ If the similarity index is greater than some c, assign 
the current label to the adjacent subregion. 

(c) Select the next adjacent window and repeat step (b). If no adjacent region has a 
similarity index greater than c, then initiate the growth of a new region with a new 
label by starting with an unlabelled subregion (window). 

(d) Continue until all subregions (windows) have been labelled. 

The full details of this segmentation technique may be found in [13]. 

5. TEST R E S U L T S  

The techniques presented in the earlier sections were implemented on a variety of textured 
images. The images ranged from those found in Brodatz [14] to images of painted car body surfaces 
supplied by Diffracto Ltd of Windsor, Canada. The following tests were performed: 

(1) Classification using the similarity coefficient 
(2) Evaluation of texture homogenity across an image 
(3) Segmentation of textured images. 

5. I. Classification with similarity index 

In this approach, the sample test texture is compared with each of the reference textures and 
the similarity coefficients evaluated. The test texture is then identified as belonging to that reference 
which yields the highest similarity coefficient. If the highest similarity coefficient is less than 0.7, 
the test image is labelled as "unknown texture" and rejected. The results of this approach were 
applied to 20 textured images taken from the pages D5, D9, D14, D18, D20, D22, D27, D28, D34, 
D36, D52, D55, D56, D65, D66, D80, D81, D103, and D i l l  of the [14]. 

Using the similarity index measures, the following textures among the 20 test samples used were 
grouped as belonging to the same class. 

(1) Textures of pages D22 and D36. 
(2) Textures of pages D80 and D81. 
(3) Textures of pages D23 and D27. 
(4) Textures of pages D5 and D28. 

Table I. Similarity based classification 

Test/Class/ 
Sample 10, 10 50,0 0,65 180, 10 180, 100 140, 50 30, 180 100, 180 70, 140 

10,10 
50,0 
0,65 

180,10 
180,100 
140,50 
30,180 

100,180 
70,140 

1 1 I 
1 I 1 
l 1 1 

2 2 2 
2 2 2 
2 2 2 

3 3 3 
3 3 3 
3 3 3 

Table 2. Similarity Index (SI) with n = 10 

Texture (I) Texture (2) Texture (3) 

Similarity 10, 10 50,0 0,65 180, l0 180, 100 140, 50 30, 180 100, 180 70, 140 

Tex 10, 10 1.000 0.921 0.901 0.596 0.555 0.592 0.431 0.423 0.386 
50, 0 1.000 0.937 0.634 0.607 0.626 0.405 0.383 0.366 

(1) 0, 65 1.000 0.555 0.537 0.549 0.376 0.352 0.340 

Tex 180, 10 1.000 0.910 0.958 0.258 0.326 0.296 
(2) 180, 100 1.000 0.937 0.219 0.244 0.233 

140, 50 1.000 0.264 0.303 0.273 

Tex 30, 180 1.000 0.911 0.924 
100, 180 1.000 0.934 

(3) 70, 140 1.000 
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Fig. 3. (a) Painting picture set. A painted sheet metal surface (b) Another sample of painted sheet metal 
surface. 

In the authors opinion, these results are consistent with the visual interpretation of  the different 
textures. In another  study, the multiple texture image shown in Fig. 2 was used for classification. 
The results obtained are shown in Table 2. The rectangular windows seen in Fig. 2 represent the 
sample textures. The results of  Table 2 clearly indicate that the sample textures were correctly 
classified. 

5.2. Texture homogeneity in an image 

In many industrial applications (e.g. uniformity of  paint finish on automotive bodies), it is often 
required to evaluate the homogeneity of  the texture across the entire image. The similarity 
coefficient can be used to evaluate the homogeneity through a statistical comparison with windows 
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(a) 

(b 
Fig. 4. (a,b) Caption on ,fitting page. 
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(c] 
Fig. 4. (a) A three textured image. (b) Segmentation of Fig. 4(a) by similarity with a coarse resolution. 

(c) Segmentation of Fig. 4(a) by similarity with finer resolution. 

placed on different sections of  the image. Figure 3(a) and (b) show two areas of  a car body that 
has been spray painted. 

The textures are similar, yet subtly different. The similarity coefficient for these two images were 
consistently in the range of 0.5-0.7 indicating some measure of  dissimilarity. 

The similarity measure was also used to compare two texture segments from an image consisting 
of just one texture. However, the gray levels showed some spatial variations (as would occur under 
non-uniform illumination). Although the gray level variations did influence the value of the 
similarity measure, the values remained in the range (0.85-0.98) across the image. 

Another  point to be noted here is the effect of  size of the segments on the similarity measure. 
I f  the segments are too small, local variations of  the texture primitives tended to affect the similarity 
measure. In our study, the images were represented by a (512 x 480) array. For this size, it was 
found that segments whose sizes were less than (40 x 40) tended to yield incorrect measures. This 
is especially critical when one deals with the problem of segmenting an image (consisting of several 
textures) into texturally homogeneous regions. 

5.3. Texture segmentation 

The textured image shown in Fig. 4 (a) was subjected to the segmentation technique presented 
in Section 4. The results obtained at two different levels of  resolution are shown in Fig. 4 (b) and 
(c). The effectiveness of  segmentation is clearly evident. 

6. C O N C L U S I O N  

The effectiveness of  gradient histogram as a texture sensitive feature has been established. 
A new similarity coefficient has been defined and its effectiveness demonstrated through its use in 
classification and segmentation. 
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A P P E N D I X  A 

Def. 1. Consider a trial which has K possible outcomes labelled A~, i = 1, 2 . . . . .  K. Outcome A~ occurs with probability p,. 
The multinomial distribution relates to a set of n independent trials of this type. Define a multivariate as a vector each 
of  whose elements is a variate. The multinominal multivariate is M = [Mi] where M, is a variate "number of times event 
A, occurs". The fractile of  a multivariable is a vector x = [x~]. For the multinomial variable x~ is the fractile of  Mi and is 
the number of  times event A~ occurs in the n trials. The probability function f (x t ,  x~ . . . . .  xk) is the probabilty that even 
A, occurs  x~ times,  i = 1, 2 . . . . .  k, in the n trials, and is given by 

f ( x l , x  2 . . . . .  x ~ ) = n !  (Pi /xi.)" (A.I) 
i - 1  

Then the evaluation of P{glk}, described in terms of multinominal distribution, can be written as 

P{glk} = ! [Q,(k)]g("/g(i)!} (A.2) 
s =  i =  

where Q~(k) is the probability of observing ith entry in g under the assumption that the texture class is k. It is important 
that to observe that each entry in g has its values assigned independently of all the other entries. 
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