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Abstract: Methods for detecting influential observations for the Weibull model fit to censored data are discussed. These 

methods include: one-step deletion diagnostics, influence functions and curvature diagnostics. Results indicate that the 

curvature diagnostics may be helpful in detecting masking. 
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1. Introduction 

The detection of influential observations, that is, observations whose deletion result in substantial changes 
in parameter estimates or functions of the parameter estimates, is of great importance when models are fit 
to censored data. This problem has been considered for both parametric models (Hall, Rogers and 
Pregibon, 1982; Weissfeld and Schneider, 1988) and the semiparametric proportional hazards model (Reid 
and Crepeau, 1985). It has been approached from several different directions such as deletion of 
observations and perturbation of data points. 

The focus here is on diagnostics for the Weibull model, although these results can also be applied to 
other parametric models for censored data such as the gamma, log-logistic, log-normal and exponential 
models. Diagnostics are developed for examining the effect of a single observation on parameter estimates 
and estimates of the pth percentile of the survival distribution. The influence curve and a one-step 
estimate based on fitting the Weibull model as a generalized linear model (GLM) are computed and 
compared with both the one-step estimates discussed by Hall, Rogers and Pregibon (1982) and deletion of 
the observation. 

The other approach to this problem, namely, examining the effect that perturbation of the data has on 
parameter estimates is also considered. The maximum curvature of the influence graph and the eigenvector 
corresponding to the maximum curvature are computed and examined in this case (Cook, 1986). This 
method has the advantage of isolating points that may have a ‘masking’ effect, that is, points which effect 
parameter estimates jointly and will not be detected by single case deletion diagnostics. These ‘masking’ 
points act as a group and are often not isolated through the use of single case deletion techniques. 

Escobar and Meeker (1987) describe how to use the local influence methods, introduced by Cook 
(1986) to detect data/model perturbations that have important effects on maximum likelihood estimates 
of regression model parameters and functions of these parameters, based on arbitrarily censored data. 
They use perturbations to case weights, observed responses, and the assumed value of the distribution 
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shape parameter to study influence on the full parameter vector, single parameters, and distribution 
percentiles. Their results apply to location-scale distributions, but their actual applications are with the 
Weibull and log-normal accelerated failure time models. Escobar and Meeker (1988) provide SAS macros 
which can be used for the local influence analysis and produce related graphical output. Meeker and 
Escobar (1988) explore the graphical output and explore the relationship between local and global 
influence and show how to use local influence analysis to guide the more complicated and computationally 
intensive global influence analysis. 

2. Weibull model for censored data 

Let q denote the failure time of the jth observation, xj a p-dimensional covariate vector with xoj = 1 and 
/3 a parameter vector with p = (&, . . . , /3,_,). Then, if r/ is distributed according to the Weibull 
distribution, log(q) will follow an extreme value distribution and the failure times, can be modelled as 

Aj=log(?;)=X,Tp+rJej (j=l,...,n), 

where e, follows an extreme value distribution. The censoring times (S,) are assumed to be independently 
distributed with distribution function G, so that 

q = min(Aj, S,) 

and 8, = I{ r, =A, 1 are the observed random variables of interest. It is also assumed that Aj is independent 
of Sj so that the censoring is random. 

Parameter estimates of j? and CJ can be obtained using maximum likelihood estimation with score vector 
U(j3, a) containing components of the form: 

alogL 
~ =u~li~l(-Sjxjj+xij exp(z,)), 

a4 

~ = -0-i i (6;+Gizi-z, exp(z,)), 
ai0gL 
au 

i=l 

where I, = (y, - ~?‘)/a. The information matrix takes the form 

k,j=l,..., p, 

(1) 

(2) 

with the asymptotic covariance matrix estimated by I(p, a)-’ evaluated at (p^, a^). The solution to the 
likelihood equations is obtained using a numerical iterative method such as the Newton-Raphson method. 
For application of this method, the following set of equations is solved iteratively: 

where 8 = (/I, a) and I-’ and U are evaluated at 0tkl. 
An alternative method for obtaining parameter estimates of p and u is based on the generalized linear 

model approach (McCullagh and Nelder, 1983; Aitkin and Clayton, 1980). In this case the censoring 
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indicator 6, is assumed to follow a Poisson distribution with mean 

j4,=t~exp(x;IP), i=l,..., n. (7) 

Parameter estimates are obtained by fitting the log-linear model in GLIM with offset u log t, and 
computing a^ from 

2 &/a = 5 (t” exp(x$) - &) In t,. 
i=l r=l 

The estimation begins with a^ = 1, fits the log-linear model with offset u log tj then uses equation (8) to 
obtain a new estimate of a^. The procedure oscillates between the last two steps until convergence with 
suitable damping of a^. 

3. Influence diagnostics for parameter estimates 

The impact of a single observation on parameter estimates can be ascertained using either deletion 
diagnostics or the empirical influence curve. Deletion diagnostics, where the parameter estimate is 
computed with the i th observation deleted from the data set, can be readily computed for an ordinary 
linear regression analysis; however, since iterative methods are used to obtain parameter estimates for the 
Weibull model, it is necessary to use one-step approximations based on either the Newton-Raphson 
method or the generalized linear model approach. For the Newton-Raphson method the one-step 
approximation to the deleted value of 8 = (j3, a) is given by 

where UC;, and I(,, are defined by (6) with the ith point deleted (Hall, Rogers and Pregibon, 1982). 
The one-step GLM estimate is obtained by ccmputing the one-step Newton-Raphson estimate of p, 

obtained from equation (l), with the values of j3 and a^ based on the full data set as starting values. A 
one-step estimate of a^ is then computed using (8). 

The impact of a single observation on parameter estimates can also be assessed by computing the 
influence curve. This quantity measures the effect that the addition of the point x to the sample has on 
parameter estimates and functions of parameter estimates. Let 4 = T,(F,), where F, is the empirical 
cumulative distribution function, so that 0 can be written as a functional of the empirical distribution 
function or can be replaced by a functional asymptotically, that is 8 = T(F). The general form of the 
influence curve of a maximum likelihood estimate is given by 

‘C(+ F, T) =I-‘(e)v,(e, y,), 

where uJ is the jth term of the sum used to compute the score function. 
This result can also be extended to linear combinations of the elements of 8. If R = Qfl, where Q is a 

vector of dimension p + 1, then the influence curve for R is 

‘C(Y,, F> R) = Q{IC(y,, F, T)}. 

This result can be applied to compute the influence curve for the pth percentile of the extreme value 
distribution which is given by yp = x/I + u log( - log(1 - p)). The most commonly used estimate of this 
curve is the empirical influence curve which takes the form 

EIC(y,, f?, 8) =I-‘(@$*, 

where Uj*( 6, y,) is the jth term of the sums composing the score vector. 

(10) 
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Influence can also be assessed by the use of measures of curvature (Cook, 1986). These measures can be 
obtained by examining the effect of perturbations, in either the elements of the score vector or the 
covariates, on the parameter estimates obtained from the model. If we let the vector w = (w,, . . . , on) 
denote the vector of perturbations, then the curvature is defined by 

C,=2lPPll 

where 111 = 1, the (i, j)th element of P is given by a2L($U)/awiaoj and & is the estimate of 8 
the perturbed data. The matrix P can be more easily computed through the use of the relation 

based on 

where the (i, j)th element of A is given by a*L(B 1 o)/Mj~uj evaluated at 8 = 6, o = w0 and L(B 1 w) is 
the perturbed likelihood. In the case of the Weibull model, one possible perturbation scheme involves 
perturbation of each element of the sum comprising the likelihood function, so that the likelihood is of the 
form 

and 

L(8 IO) = &d; log L&q 

-S,xij + xi, exp(zj), i=l ,..., p, j=l,..., n, 

Ai, = 
- + - 6,: + : exp(z,), 

(II) 
i=p+l, j=l,..., n. 

Thus C, and E can be easily computed. The maximum curvature, C,,,,,, is the maximum eigenvalue of P 
and the corresponding eigenvector is given by I,,. Elements of I,,, are then examined individually with 
large values pointing to observations which are possibly influential. 

The effect of perturbation of the independent variables can also be examined using this approach 
(Cook, 1986). For example, if the Ith covariate is perturbed by amount w then 

XI = x,, + ojsj (12) 

defines the perturbed covariate, where sj is a scale factor. The maximum curvature of the influence graph 
is computed as above with A being defined as a (p + 1) X (p + 1)n matrix. If we partition this matrix into 
(p + 1) submatrices, so that A = (A,, . . . , AP+i ), then the Zth submatrix is defined by 

SIXk jP/ 
-- 

. eXP(Zj), k#f, k=l,..., p, j=l,..., n, 

A, = 
/k 

‘/‘.’ I s’(l-x’jli’) exp(zj>, 
a^ a^ 

k=l, j=l,..., n, (13) 

&(S,- exp(z,)) - 2 exp(zj) j=l >.**, n, k=p+l, 

where s=(s~,...,s~+~) is a scale factor used to account for the different measurement units associated 
with the covariate vector x. This diagnostic indicates the effects of data perturbation on the Ith coefficient 
in the regression model by examining I,,, the eigenvector corresponding to the maximum curvature. 

4. Examples 

In order to illustrate the use of these methods several sets of data will be examined. Table 1 presents 
influence diagnostics for Crawford’s (1970) motorette data. This data examines the influence of individual 
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Table 1 
Influence diagnostics for log median lifetime at 130 ’ C and curvature diagnostics for time and temperature for Crawford’s motorette 
data 

Temperature Lifetime 6, No. of One-step Empirical One-step Deletion Curvature Curvature 

“C (hours) observa- GLM influence NR (times) (temp.) 
tions 

220 408 1 2 0.0120 

220 504 1 3 0.0059 

220 600 1 2 - 0.0042 

220 648 1 2 - 0.0108 
220 696 1 1 - 0.0183 

190 408 1 2 - 0.0385 

190 1344 1 2 - 0.0173 

190 1440 1 1 -0.0155 

190 1920 1 1 - 0.0070 

190 2256 1 1 - 0.0007 
190 2352 1 1 0.0012 

190 2596 1 1 0.0062 
190 3360 1 1 0.0460 
170 1764 1 1 - 0.0545 
170 2772 1 1 - 0.0457 

170 3444 1 1 - 0.0402 
170 3542 1 1 - 0.0394 
170 3780 1 1 - 0.0375 
170 4680 1 1 - 0.0295 
170 5196 1 1 - 0.0245 
170 6206 1 1 - 0.0133 
170 7716 0 1 0.0570 
170 7884 0 1 0.0605 
150 11781 0 1 0.0166 
150 12453 0 1 0.0191 
150 13897 0 1 0.0253 
150 14469 0 1 0.0280 
150 15891 0 1 0.0358 
150 17325 0 2 0.0452 
150 17661 0 3 0.0477 

0.0027 
- 0.0079 
- 0.0176 
- 0.0221 
- 0.0261 

0.0082 
- 0.0154 
- 0.0162 
- 0.0169 
- 0.0139 
- 0.0125 
- 0.0077 

0.0562 
- 0.0285 
- 0.0363 
- 0.0386 
- 0.0387 
- 0.0389 
- 0.0375 
- 0.0351 
- 0.0269 

0.0553 
0.0590 
0.0135 
0.0158 
0.0216 
0.0243 
0.0317 
0.0404 
0.0427 

0.0029 
- 0.0079 
- 0.0180 
- 0.0230 
- 0.0280 

0.0146 
- 0.0153 
- 0.0161 
- 0.0166 
- 0.0136 
- 0.0122 
- 0.0075 

0.0703 
- 0.0283 
- 0.0367 
-0.0388 
- 0.0389 
- 0.0390 
- 0.0373 
- 0.0349 
- 0.0169 

0.0624 
0.0673 
0.0140 
0.0164 
0.0227 
0.0256 
0.0339 
0.0443 
0.0471 

0.0030 - 0.0594 
- 0.0084 - 0.1286 
- 0.0191 - 0.1508 
- 0.0240 - 0.1417 
- 0.0286 -0.1174 

0.0096 0.5242 
- 0.0157 0.0829 
- 0.0167 0.0555 
- 0.0176 - 0.0545 
- 0.0145 - 0.1050 
- 0.0131 - 0.1152 
- 0.0081 -0.1132 
- 0.0583 0.0781 
-0.0275 0.3612 

0.0369 0.1957 
- 0.0471 0.1129 
- 0.0403 0.1021 
- 0.0407 0.0770 
- 0.0398 - 0.0041 
- 0.0374 - 0.0417 
- 0.0190 - 0.0970 

0.0568 -0.0152 
0.0607 - 0.0080 
0.0138 - 0.0409 
0.0163 - 0.0428 
0.0223 - 0.0454 
0.0252 - 0.0458 
0.0330 - 0.0447 
0.0424 - 0.0403 
0.0448 - 0.0387 

- 0.0187 
- 0.1204 
- 0.2740 
- 0.3733 
- 0.4892 

0.0774 
0.0659 
0.0613 
0.0225 

- 0.0240 
- 0.0407 
- 0.0909 
- 0.4067 

0.0788 
0.0788 
0.0759 
0.0752 
0.0732 
0.0606 
0.0491 
0.0158 

- 0.1432 
-0.1553 

0.0005 
-0.0015 
- 0.0076 
- 0.0107 
- 0.0202 
- 0.0329 
- 0.0364 

* 6r = 1 if observation is uncensored and 0 if observation is censored. 

observations on the estimated median lifetime when the motorette is subjected to a temperature of 130 o C. 
The data set consists of 40 observations with 10 motorettes tested at each of the following temperatures: 
220° C, 190°C 170°C and 150” C. The Arrhenius law was used to model this data with the model 

~=b,+b,/t,j+~i, i=l,..., 40, 

where lai is the absolute temperature of the ith observation. The results given in the table are based on the 
difference in the estimated median lifetime at 130 o C when the ith observation is deleted from the data set. 
Each of the methods is looked at; the one-step GLM estimate, the empirical influence curve, the one-step 
Newton-Raphson estimate and the change based on deletion of the observation from the data set. 

The last two columns of Table 1 list the results obtained using the curvature diagnostic based on (11) 
and (13). The first column presents the results obtained when each element in the sum of the likelihood is 
perturbed. These results indicate that the two early failure times of 408 at 190°C are highly influential. 
Due to the masking effect of these observations, this result would not be obtained from single case deletion 
diagnostics since one of these points remain in each computation. In fact, when these points are deleted 
from the data set, the coefficient associated with temperature changes by approximately on third of one 
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standard deviation and the estimated median lifetime at 130” C becomes 55207 hours or 1207 hours 
shorter than the estimated median lifetime of 56414 hours which is based on the whole data set. The first 
failure time at 170°C is also flagged through the use of this diagnostic with deletion resulting in an 
estimated median lifetime that is 1571 hours longer than the estimate based on the whole data set. 

The last column present results that are obtained when the temperature values are perturbed, as defined 
by (12). In this case the largest failure times at 220 o C and 190 o C are flagged rather than the smallest ones 
as was the case when individual elements in the likelihood are perturbed. Deletion of the largest failure 
time at 220°C causes the estimated median lifetime at 130°C to be 1649 hours longer than the estimate 
based on the whole data set, while deletion of the largest failure time at 190 “C causes the estimated 
median lifetime at 130 o C to be 3193 hours shorter than the estimate based on the whole data set. 

Comparison of these methods in this example illustrate the differences obtained when using these 
diagnostics. In general, the deletion methods flagged the same set of observations with the exception of the 
one-step GLM method. The one-step GLM estimate flags the first failure time at 170” C as being 
influential; whereas the other methods do not flag this observation. The relative ordering of observations 
flagged by the GLM method is also different. While the failure time of 1764 at a stress temperature of 
170 o C is flagged as being the first or second most influential observation by the other deletion methods, it 
is flagged as being the fifth most influential by the one-step GLM estimate. It is also of interest to note 
that the order of importance of the first and second observations is reversed when comparing the 
Newton-Raphson method to the results obtained from deletion or the empirical influence curve. In this 
example the empirical influence curve results matched those obtained from deletion so that this method 
may be preferable in this instance. The importance of the curvature diagnostics for flagging points which 
are not flagged with single-case deletion diagnostics is illustrated by the ‘masking’ points which occur at 
the first failure time at 190 o C. 

Table 2 presents results obtained from fitting a Weibull model to the epoxy stress data from Andrews 
and Herzberg (1986). The data consist of 108 vessels which were tested at different levels of stress ranging 
from 68% to 86%. The model fit was 

K=&+&xi+ae,, i=l,_.., 108, 

where xi denotes the level of stress. Interest is focused on the estimate of median lifetime at 50% stress. 
The results from this analysis indicate that each of the diagnostics yield very similar results with the 

one-step GLM and one-step NR being quite similar. These diagnostics flag the large failure times at the 
largest and smallest stress levels as being influential which is to be expected since large or small failure 

Table 2 
Influence diagnostics for log median lifetime at 50% level of stress and curvature diagnostics for time and stress for epoxy vessel data 

Stress Time si One-step Empirical One-step 

GLM influence NR 

68 4000 1 - 0.1652 -0.1741 -0.1745 
68 5376 1 -0.1562 -0.1703 -0.1708 
68 7320 1 -0.1450 - 0.1640 - 0.1648 
86 7552 1 -0.1261 -0.1259 -0.1304 
68 8616 1 -0.1381 - 0.1596 - 0.1606 
86 1108.2 1 -0.1499 - 0.1367 - 0.1427 
86 1148.5 1 - 0.1559 - 0.1392 - 0.1456 
86 1569.3 1 - 0.2171 - 0.1614 - 0.1724 
86 1750.6 1 - 0.2426 - 0.1690 -0.1823 
86 1802.1 1 - 0.2498 - 0.1710 -0.1850 
68 9120 1 - 0.1356 - 0.1578 -0.1589 

* 6, = 1 if observation is uncensored and 0 if observation is censored. 

Deletion 

- 0.1794 
- 0.1758 
- 0.1698 

- 0.1307 
- 0.1654 

- 0.1422 
- 0.1450 

- 0.1690 

- 0.1775 

- 0.1797 

- 0.1637 

Curvature Curvature 

(times) (stress) 

0.0499 - 0.0311 
0.0491 - 0.0321 
0.0475 - 0.0333 
0.2308 0.2665 
0.0464 - 0.0340 
0.2645 0.3000 
0.2729 0.3084 
0.3546 0.3917 
0.3871 0.4255 

0.3960 0.4349 
0.0459 - 0.0342 
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times tend to be most influential in this setting. This may be due to the fact that few observations are 
censored in this data set and the censoring is Type I. 

Results obtained from the use of the curvature diagnostics indicate that the larger failure times at the 
largest stress level were most influential. The small failure times were not flagged as being influential. In 

this case the diagnostics yielded the same results when using perturbation of an element in the likelihood 
and perturbation of the stress level. These results do indicate that the large failure times do not have the 
same impact that they do in the case of the deletion diagnostics, since the deletion diagnostics flagged the 
large failure times at the two extreme levels of stress, while the curvature diagnostics flagged the largest 
failure times in the data set. Although 16 of the vessels subjected to a 68% level of stress were censored at 
9973 hours, this set of observations was not flagged as influential by any of the methods considered. 

5. Summary and conclusions 

These examples illustrate the usefulness of curvature diagnostics and one-step diagnostics in locating 
influential points in data analysis. The curvature diagnostics have the advantage of pointing out some 
cases of masking that will go undetected with standard deletion diagnostics. In the two examples 
considered both large and small observed times had an impact on parameter estimates and functions of 
parameter estimates. Censored observations also tended to be less influential than uncensored observations 
in each of the two examples that were considered. 

References 

Aitkin, M. and D. Clayton (1980), The fitting of exponential, 
Weibull and extreme value distributions to complex 

censored survival data using GLIM, Appl. Statist. 29, 

156-63. 

Andrews, D.F. and A.M. Herzberg (1986), Data: A Collection 

of Problems from many Fields for the Student and Research 

Worker (Springer, New York). 

Cook, R.D. (1986), Assessment of local influence, J. Roy. 

Statist. Sot. 48, 133-155. 

Escobar, L.A. and W.Q. Meeker (1987), Assessing local in- 

fluence in regression analysis with censored data, Paper 

presented at teh 147th Annual Meeting of the American 

Statistical Association, San Francisco, CA, August 1987. 

Escobar, L.A. and W.Q. Meeker (1988), Using the SAS system 

to assess local influence in regression analysis with censored 

data, Proc. Annual SAS User’s Group International Con- 

ference. 

Hall, G.J., W.H. Rogers and D. Pregibon (1982), Outliers 

matter in survival analysis, Rand Technical Report D-6761. 

McCullagh, P. and J.A. Nelder (1983), Generalized Linear 

Models (Chapman & Hall, New York). 

Meeker, W.Q. and L.A. Escobar (1988), Influence diagnostics 

for reliability data, Paper presented at the 148th Annual 

Meeting of the American Statistical Association, New 

Orleans, LA, August 1988. 

Reid, N. and H. Crtpeau (1985), Influence functions for pro- 

portional hazards regression, Biometrika 72, l-10. 

Weissfeld, L.A. and H. Schneider (1988), Influence diagnostics 

for the normal linear model with censored data, Austral. J. 

Statist., to appear. 

73 


