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The dual integral equation approach is employed to determine the diffracted field from a resistive half plane on a dielectric 
interface. A solution is obtained by introducing two Wiener-Hopf split functions, one being inherent to the dielectric interface 
problem and the other characteristic to the presence of the resistive sheet. Uniform asymptotic expressions for the E- and 
H-polarizations are given (with the exception of the branch cut contribution), and numerical computations are included for 
the far-zone and near-zone fields. Also, a convenient integral expression is given in the Appendix for the evaluation of the 
split functions. 

1. Introduction 

The problem of interest is that of plane wave diffraction by a resistive half plane on a dielectric interface, 
shown in Fig. 1. Such a geometry may represent a number of physical situations depending on the chosen 
resistivity, R, of the resistive half sheet. For example, it may represent a small dielectric step discontinuity 
as shown in Fig. 2 [1, 2] or the presence of a thin conducting half sheet of finite conductivity at the surface 
of the interface. 

The solution of the stated diffraction problem is obtained herein via application of the angular spectrum 
method (ASM) set forth by Booker and Clemmow [3, 4]. This method is often referred to as the dual 
integral equation approach and involves the representation of the scattered field by an angular spectrum 
of plane waves emanating from the edge of the half sheet. It is in all respects equivalent to the Wiener-Hopf 
technique, but requires fewer steps since in the ASM all explicit Fourier transformations are avoided. 

Fig. 1. Geometry of the problem. 
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Fig. 2. The simulation of a dielectric step discontinuity using a resistive sheet on a dielectric interface. 

Thus, as in the Wiener -Hopf  technique, the usual factorizations must also be done, an often impossible 
task to accomplish analytically. 

The ASM was initially applied by Clemmow [4] to the problem of  diffraction by an isolated and a pair 
of  perfectly conducting half  planes. More recently, the method was employed for the treatment of  the 
diffraction by thick perfectly conducting [5] and impedance [6] half planes. A solution of  the diffraction 
by a thick metal-dielectric junction has also been obtained by Ricoy and Volakis [7] using the ASM. 
Returning to the problem at hand, Coblin and Pearson [8] obtained an E-polarization solution for the 
special case, of  R = 0 using the Wiener -Hopf  technique. Clemmow [9] also attempted a solution to the 
problem but did not present an expression for the resulting split function for which a convenient integral 
expression is given in [8]. This, and an additional new split function will be encountered in the more 
general case of  R # 0 treated here. 

Below, we first consider the H-polarization case, and a similar analysis follows for E-polarization. In 
either case uniform asymptotic expressions for the total field are presented. These account for the 
geometrical optics and surface wave poles and were used to compute the included diffraction patterns. 
As expected, the computation required a numerical evaluation of  the resulting split functions, and a 
convenient general integral expression (than those available) for accomplishing this is given in the 
Appendix. 

2. /-/-polarization 

2.1 .  A n a l y s i s  

Consider the plane wave 
H i =  £ e jkp c°s~*-~'o) (1) 

incident at an angle ~bo upon the geometry of interest shown in Fig. 1. The resistive sheet comprising this 
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geometry has resistivity R and occupies the half  plane x > 0, y = 0. In addition, the dielectric is assumed 
to be linear, isotropie and homogeneous with relative permeability and permittivity/zr and er, respectively. 
In (1), (p, ~b) are the usual cylindrical coordinates, k is the free space propagation factor and an d °'' time 

dependence has been assumed and suppressed. 
As usual, the dielectric interface alone causes a reflected and a transmitted field. The presence of the 

resistive half  plane, however, will also give rise to an additional scattered field that can be represented 
by [4, 9] 

HS~ = f ph(c0S ix) e -jkp cos(,-,,) dot (2) 
Jc 

in the region y > 0 and by 

st-fc ~ / - ~  sin ~ e-Jk,P c°s(*+'~O da  
Hz - - P"(COS a )  sin at (3) 

in the region y < 0, where kt = Kk~ The integration path is indicated in Fig. 3b, and to ensure continuity 
of  the tangential fields at the interface, we must set k cos a = kt cos at.  Lastly, ph(cos a )  is an unknown 
function related to the angular spectrum of  the current flowing on the resistive half plane. Its evaluation 
is the underlying task in this section. 

In proceeding with the solution of  ph(cos a) ,  it is necessary to employ the appropriate boundary 
conditions. These are 

A. Continuity of  H~ over x < 0 and y = 0, 
B. Ex=R[Hz(y=O+)-H~(y=O-)] over x > 0  and y = 0  

where H~ and Ex represent total fields and we can write the H~ component as 

i r s _~H~+ H~+ Hz, y > 0 ,  
H~ - [H,+ Hz s t  

(4) 

where H t and H~ are the transmitted and reflected fields, respectively, in the absence of  the resistive half 
Hz + Hz = Hz at y = 0, the application of  condition A yields plane. Since i r t 

f oo Ph(A)e-jkXXdA=0, y = 0 ,  x < 0  (5) / 

in which A = cos a, r 2 = er/~r and Zo is the intrinsic impedance of  free space. Similarly, application of 
condition B yields 

v(cos ) +1 dA- e , y-O,x>O (6) 

with Ao = cos 4~o. The integration path for (5) and (6) is given in Fig. 3a. 
Equations (5) and (6) can be decoupled by invoking Cauchy's theorem. From (5) we find that 

Ph(A) -- G_(A)  U(A)  (7) 
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Fig. 3. Integration contours in the (a) A-plane, (b) a-plane, and (¢) acplane. 

where U(A) is some unknown function free of zeros, poles and branch points (i.e., regular) in the upper 
half of the A-plane. In addition, G_(A) is regular in the lower half of the A-plane, satifying the relation 

G(A) = G_(A) G+(A) = Er l~/'i==-~-~ ~ 2 - 1 - ~ K 2 - -  A 2 (8) 

with G_(A)= G+(-A). Similarly, (6) implies 

[~oo (erX/1-'S'~+x/K2- A'~ ] 1 ~ x/K--2r 2- A2o 1 L(A, (9) 
Ph(A) \ ~ ] + 1  --j,tre,~+--~2_A2oA+AoL(_Ao ) 
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where L(A) is again an unknown function regular in the lower half of the X-plane. To solve for the 
functions U(A) and L(A) in (7) and (9) we must first introduce the function 

J(x ) = J÷(A ) J_(A ) = ~ (~,41- ~ ~ 4K2- A ~ 
Z o \  ~ / ~ S ~  K2x/-~-~--X2 ) + 1  (10) 

with J_(A) = J+(-A) being regular on the lower half of the X-plane. Since U(A ) and L(A) are associated 
with different regions of regularity, by substituting (7) into (9) we obtain 

14i-7~ 4-~ + x 
L(A) = J_(A), (11) 

G_(x)  

implying 

ph(cos a)  j JI+cos4,ox/K+COS4,o~/I+cosa~/K+COSa 1 
(12) 

~r G_(cos a)  G_(cos 4'0) J+(cos ~)  J+(cos 4,0) cos a + c o s  4,0" 

In (12), the split function G_(A) and J+(A) must be evaluated numerically, and a convenient integral 
expression for either of them is given in the Appendix. G_(A) has already been encountered in [8] where 
an equally convenient, but different, integral expression was given there for its evaluation. The function 
J+(A) is characteristic to this problem and reduces to unity when R =0  or to the usual split function 
encountered in [2], [10] in the case of diffraction by an isolated impedance or resistive half plane. 

2.2. Uniform asymptotic evaluation 

The integral expression (2) with Ph(COS a)  as given in (12) is amenable to an asymptotic evaluation 
via the method of steepest descents. A similar evaluation can also be pursued for (3) and to do so, it is 
useful to invoke the relation cos a = K COS at to rewrite H i  t as 

where 

st_ IC Ph(K COS at) e -jk,° cos(,t,+a~) dat ,  y < 0 Hz - - e r  
t 

(13) 

ph(K COS at) ------ j ~/1 + COS 4,0 ~/K + COS 4,0 ~/1 + K COS at ~/K + K cos at 1 (14) 

G_(,~ cos at) G_(cos 4,0) ./+(K COS at) ./+(COS 4,0) '~ COS at+COS 4,0 

and Ct is illustrated in Fig. 3c. 
The pertinent saddle points for a steepest descent path (SDP) evaluation of (2) and (3) are 

a s=  4,, y > 0 ,  (15) 

ats = 2~r- 4,, y < 0 ,  (16) 

and to derive a uniform expression, it is necessary to consider any poles and branch cuts encountered in 
the deformation of the original path of integration to the SDP. We find that the integrand is associated 
with the geometrical optics poles located at 

± 

aso = or+ 4,o, y > 0 ,  (17) 
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In addition, a surface wave pole may exist in accordance with the relations 

J+(cos O/sw) = 0, y > 0 ,  (19) 

J+(K cos O/tsw) = 0, y < 0. (20) 

Ph(K ¢OS O/t) also exhibits branch point singularities at 

O/tb = COS -l ± , (21) 

implicit in the functions G_(K cos at) and J+(K cos O/t) containing the square root functions ~/1 + K cos at 
and ~/1 - x cos at, respectively. 

Excluding the branch cut contribution, we may employ the procedure given in [11] to obtain 

H~ ~ ph(cos 4>) e -Jk° e j~/4 

1 2V/2-~__; t ~ (a ~o , ~b0) sec(~ b -  O/~o- +~r){ 1 --Fkp[ 2kp cos 2 ( ~b - a~o+ 7r) ] ) e_Jko eJ~/4 
+2  sin ago 2 2 

t,(o/l~o, q~o) q~ -- + ---tr --Fkp e_jk p ej~/4 +2 . + sec O/~o 1 2kp cos 2 ~b- o-~r 
sin O/go 2 

1 ,  2/-~--~rt!(a~w'qb°)sec(flb-o/s~+Tr){1-Fkp[2kpcos2(gb-2~+~r)]}e-JkPeJ~/4 (22) 
- 2  ~/k-pp ~ a - ~ )  2 

for y > 0 and 

HSzt~ -Erl V--~p p ( cos~b)e-J'~gPe j~/4 

see e -JKkp e j'n/4 1 2~r tlt(at~o, t~o ) ~b+ 21~o-'rr ~o-~r  1 2Kkp COS 2 ~b+ . - 
+2  

t,,(aflo, ~o) se c ~) "1" a tl~o '~ 'TI' e--jKkp e.~/4 - . 
, s i n  O/,,o 2 

1 2/--~ tzh,(o/,sw, d ~ o ) [ ~ b  + atsw +'rr'~ l"" Fkp[2Kkpcos2(~b+a,~,,, + seck. ~ ] '~l-  ~r)]}e-J'koej~'/4} (23' 
- 2 ~ / ~ p  J'(cos O/t~w) 2 

for y < 0. In the above 

thl(a, ~bo) = ph(cos a)(COS ~bo+COS O/), 

tht(o/t, ~bo) = Ph(K COS O/t)(COS ffo+K COS at), 

t2h(o/, ~b0) = ph(cos a )  J+( --COS a )  J+(cos a ) ,  
J(cos O/) 

$2ht(o/t, (DO) = Ph( K COS O/t) J+( - / (  cos O/t) J+(K COS at) 
J(K cos a,) 

(24) 

(25) 

(26) 

(27) 
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Also, J ' (cos asw) and J'(K COS atsw) denote the derivatives of J with respect to a and a,,  respectively, 
evaluated at the location of  the surface wave pole. The Fkp(z 2) function is the Kouyoumjian-Pathak 

transition function [2, 12] defined as 

Fkp(Z 2) = +2jz e j :  e -jr2 dt (28) 
:t:Z 

where the sign is chosen such that total field continuity is maintained at the geometrical optics and surface 
wave field boundaries. Here, choosing the lower sign satisfies this condition. In passing, we note that in 
(22) and (23) the first term is the usual nonuniform diffracted field, while the remaining ones are the 
geometrical optics and surface wave contributions. Consistent with the definition in [ 12], the non-uniform 

diffraction coefficient is given by 

2 ~  v,~hz o h ( ~ ,  ~b0) = ~ / ' ~ - / "  I,K COS q~) e j~r/4, y > 0 ,  (29) 

Dht(dp, dpo) = -er~ /~k  k ph(K COS ~b) e J'~/4, y < 0. (30) 

To perform a uniform evaluation of  the branch cut contribution, it is first suggestive to replace G_(A) 
by G(A)/G+(A) and J+(A) by J(A)/J_(A). Since both G_(A) and J+(A) are evaluated numerically, the 
introduction of  G(A) and J(A) is required to allow a subsequent analytical treatment of  the square roots 
associated with the branch cuts that are likely to cross the SDP. Of these, the one associated with G(A) 
is the most dominant among the two, and its contribution yields the lateral wave that is inherent to the 
interface problem. Further, to employ available techniques for the uniform evaluation of  the branch cut 
contribution, it is necessary to regularize the denominator and to bring the square root to the numerator. 

/ 
"I ~ 3~12 

Fig. 4. The modified branch cut in the a:plane. 
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This procedure yields a pair of  integrand terms, one of  which is regular in the region of  interest and the 
other contains the root exhibiting the branch cut singularity. The first would thus require a non-uniform 
evaluation, whereas the second must be evaluated uniformly, resulting in the introduction of  parabolic 
cylinder functions of  fractional order. 

Although the above appears to be a natural approach, to ensure the cancellation of  a ficticious pole 
introduced in the process of  bringing the square root to the numerator, it is necessary to maintain the 
same order in kp for both evaluations. This demands the inclusion of  high order terms in the non-uniform 
evaluation, a rather tedious task, requiring knowledge of  higher order integrand derivatives [13]. Further, 
our attempt to ensure the pole cancellation via heuristic modifications was not successful because of  the 
rapidly varying nature of  the result near the lateral wave boundary. Therefore, since the lateral wave 
contribution is relatively small and progressively diminishes as kp increases, it was not included in our 
uniform field evaluation. Instead, to avoid complications with the expected crossing of  the branch cuts 
in the region ~b >~r, those associated with the branch points at A = +1 were deformed from their 
conventional path as illustrated in Fig. 4. 

3. E-polarization 

Through parallel analysis, one can arrive at a solution for E-polarization incidence. In this case, the 
incident field is 

E i =  ~ eJkP cos~4,-e%) (31) 

and the required boundary conditions are 

A. Continuity of Hx over x < 0 and y = 0, 
B. Ez =-R[Hx(y=O+)-Hx(y=O-)] over x > 0  and y = 0 ,  
C. Continuity of  Ez over y = 0 

where 

=~Eiz+E;+E~z, y > 0 ,  
E~ [Etz+E~t y < 0  (32) 

is the total field. As before, E r and Etz correspond to the fields reflected from and transmitted into the 
interface, respectively, in the absence of  the resistive half plane. In addition, E~ and E st a r e  the scattered 
fields caused by the presence of  the resistive half plane and can be expressed as 

E~z = fc Pe(c°s a) e - jkp cos (6 -a )da ,  y > 0, (33) 

E~t=K I_  Q(Kcos° t ' )e -Jk tpc°s~*+~' )d° t t '  y < 0  (34) 
dC t 

where the paths C and Ct are as stated previously. Through application of  the boundary conditions, it is 
then found that 

1 /zr sin ~bo sin o~ 1 
PC(cos a )  =j~r N+(cos a)  N+(cos ~bo) M_(cos a)  M_(cos ~bo) cos ~bo+COS ct (35) 
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and 

1 /~r sin 6o sin at 1 
Q(K COSa,)--j~ N+(K COSat) N+(cOS~o) M_(K COSat) M_(cOS~o)COS6o+K COSat (36) 

in which N+(A)  and M_(A)  are the pertinent Wiener-Hopf split functions satisfying the relations 

M(A) = M+(A) M_(A) =/~, 1 ~ - ~ -  ~2 + K2~-K"~-- ~ 2, (37) 

+___RR (/~ l~L--~_ ~ 2 + K2/-~-~_ ~ 2). (38) 
N ( x )  = N+(x) N_(a)  = 1 ~,Zo 

Their evaluation must again be performed using the integral expression in the Appendix• 
In performing a uniform asymptotic evaluation of (33) and (34) we find that the location of the relevant 

saddle points, geometrical optics poles and branch cuts remain the same as for H-polarization. The only 
difference is the specific location of the surface wave pole, asw, satisfying the relation 

N+(cos asw) = 0, y > 0, (39) 

N+(K cos at~w) = 0, y < 0, (40) 

and the branch point singularities located at ~t = at% are implicit in M_(K cos at) and N_(x cos at). 
Neglecting the branch cut contribution, we find that a uniform expression for the scattered field is given 
by 

. 

E~ = PC( cOs 6) e-Jk" eJ~/4 

2 sin as--o 

tl(ap, 60) 6- o-lr . (41) • + see 1--Fkp 2kpcos 2 6 -  o - l r  e_jk oeJ,~/4 
+ 2  sin a s  o 

1 2/~p t~(a.w,6o) /~b-a .w+ ){  [ ( ~w ) ] }  - -  sec~" ~ ~ 1--Fkp 2kpcos z .6-- 2 N'(cos asw) + I t  
e-Jkp 

for y > 0 and 

E z --  K Q ( K  COS 6)  c--jKkp eJ~r/4 

+ l ~/ ~-kp t~t( a ~°' 6°) sec( 6 + a~°--'tr ) {1- Fkp[ 2Kkp cos2( 6 + ~°-'tr ) ] } e-J.kp eJ~/4 
2 . K sin a~o 

+2 K sin a;o 

Kkp N'(K at~w) j (42) 
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for y < 0. In the above 

t~(a, ¢o)=  PC(cos a)(cos  Co+COS a) ,  

t~t(at, ¢o)=  Q(K COS at)(COS ¢0-{'- K COS at) , 

N+( -cos  a)  N+(cos a )  
t~(a, ¢o) = Re(cos a) 

N(cos  a)  

N+(-K cos at) N+(K COS at) 
/ ~ t ( a t ,  ¢ 0 ) =  Q ( K  c o s  a t )  

N(K cos at) 

R [ 1 sin asw ] 
N' (cos  asw) = - -  cos asw 1 q- . . . .  

Z o  /Ar 4 K  2 --  COS 2 a s w J '  
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(43) 

(44) 

(45) 

(46) 

(47) 

N ' ( r  cos atsw) R rE r sin a tsw +1[ ']  (48) = ~ K COS a t s  w . . . .  , 
Zo x/1 - r 2 cos 2 atsw p,~a 

and the lower sign is always chosen in (28) for the computation of Fkp(z). As before, we observe that the 
first terms in the expressions for the scattered fields is simply the non-uniform result. The non-uniform 
diffraction coefficients are thus given by 

D¢(¢, ¢o) = ~ / ~  P¢(cos ¢)  e j"'/4, y > 0, (49) 

Dt (¢ ,  ¢o) = K Q(K cos ¢)  e j'~/4, y < 0. (50) 

4. Computational results 

In this section, several examples of  the diffraction and total field patterns are presented. Two sets of  
dielectric parameters, along with three different values for the resistivity are considered. We note that if 
the resistive half  sheet is to represent a dielectric step, then R is defined by [1, 2] as 

g - jZo  (51) 
(e ' r -  1)koz 

assuming /~ '= 1, where e~ and g'r are the relative permittivity and permeability, respectively, of  the 
simulated layer, and r is the thickness (height) of  the layer (step). Accordingly, the value of  R/Zo = - j  0.8 
may correspond to a dielectric step having e'r--3, /~'r = 1 and r = 0.1h. 

Defining the echowidth tr as 

= 2~rlD(¢, ¢0)[ 2, 

Figs. 5 and 6 present E~ and H,  echowidth patterns. Each figure contains curves corresponding to the 
resistive half  planes having R = 0, - j  0.8, and 0.25 and in the presence of  dielectric interfaces having either 
er = 2, /~r = 1 or er = 5 --j 0.5, /-~r = 1.5 - j  0.1. When compared to the echowidth of  an isolated perfectly 
conducting half  plane, a scattering reduction is observed in all cases. 

To illustrate the effect of  the branch cut singularity, Fig. 7 shows the magnitude of  the Ez non-uniform 
diffracted field (first terms of  (41) and (42)) observed at p = 1.6A. The slope discontinuities near ¢ = 225 ° 
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in Fig. 7a are due to the function M _ ( x  cos at)  and occur at the point where the steepest descent path 
crosses the branch cut. We note that this behavior has already been seen in [8] for R = 0. Since a branch 
cut is also associated with the split function N+(A), a similar but less distinct slope discontinuity occurs 
near 0 = 315 °, where the appropriate branch cut is crossed. Referring to the patterns in Fig. 7b, the losses 
in the dielectric region are quite significant yielding nearly zero diffracted field in that region. In Fig. 8, 
the total field patterns given by (41) and (42) are shown for p = 1.6A. The slope discontinuity at ~b = 225 ° 
in still seen in Fig. 8a. However, the one near ~b = 315 ° is not visible. A similar slope discontinuity in the 
total field is also observed at ~ = 180 ° for all patterns, and this is clearly due to the rapidly varying nature 
of  the diffracted field as can be ascertained from an examination of  the patterns in Fig. 7. It is expected 
that all of the above slope discontinuities would disappear upon performing a uniform evaluation of the 
branch cut contribution. 

5. Summary 

The problem of diffraction by a resistive half sheet on a dielectric interface was treated via the angular 
spectrum method, otherwise referred to as the dual integral equation approach. Both E- and H-polarizations 
were considered. The solution required the introduction of the two Wiener-Hopf split functions, one 
generic to the dielectric interface and another characteristic to the presence of the resistive half plane. 
For their evaluation we resorted to a convenient numerical procedure given in the Appendix. 

A uniform asymptotic evaluation was performed for the resulting scattered field integral accounting for 
the presence of the geometrical optics and surface wave poles. Unfortunately, a uniform evaluation of 
the branch point singularity was not possible using traditional techniques. Because of this, a slight slope 
discontinuity was observed in the computed near zone total field patterns. 

Acknowledgment 

The authors wish to thank Mark A. Ricoy for helpful comments and suggestions. 

Appendix 

The factorization of G, J, M, and N herein is accomplished by using a recently derived integral 
expression [7]. If  F(A) denotes the function to be factorized such that F(A) is regular in the strip 
¢ - <  Im(A)< ~'+ (~-~ can generally be arbitrarily small) and F ( A ) ~  1 uniformly as IAI~ oo, then F(A) can 
be factorized as [14] 

F(A) = U(A) L(A) (A.1) 

where U(A) is regular in the region Im(A) > ¢-, and L(A) is regular in the region Im(A) < T +. From [7], 

U(A) = L( -A)  = e H~), Im(A) > 0 (A.2) 

where 

H(A)=½1n[F(A)]+ o ,ln[F{eJO tan~v/2}]-ln[F(A)] 
~jfosin2~rv/2eJ2°-a2cos2~v/2 dv (A.3) 
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in which 0 <  0 <½.rr, and should be chosen such that F(z,) exhibits a rapid decay as u increases from 0 
to 1. We note that (A.3) was derived from the formal factorization expression given in [14] and is therefore 
exact. 
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