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EXECUTIVE SUMMARY

This report presents results of a study of cryogenic tanker roll
stability conducted by the Highway Safety Research Institute (HSRI) of
The University of Michigan. The study sought to evaluate the roll
stability of the current fleet of tankers operated by the Linde Division
of the Union Carbide Corporation and to determine the safety payoff

deriving from various design changes.

Methods

The primary investigative tool used for evaluating the roll
stability of differing vehicle types was a computerized simulation.
This simulation model has been previously shown to accurately predict
the rollover limits of tractor-semitrailers in full-scale tests. The
simulation requires that input data be provided describing the geometric
layout of the vehicle, the mass of various elements, and the mechanical
properties of the tires, suspensions, and coupling mechanisms. These data
were obtained in this study directly from engineering drawings, by use of
existing "comparable" data available at HSRI, and through laboratory

measurement.

All suspension data were measured directly on four of Linde's
tractor suspensions and three trailer suspensions using a special labora-
tory machine. Additionmally, a set of tractor-semitrailer combinations was
employed in measuring the looseness existing in fifth wheel couplings.
The computer program employed here represents all of the major mechanisms
which HSRI research has shown to influence the roll stability of tractor-
semitrailers. This simulation was developed with the aid of extensive
laboratory measurements on commercial vehicle suspensions, tires, frame,
and coupling elements in order to determine the proper behavior of the
respective components. The simulation's ability to predict the absolute
level of the so-called "rollover threshold" rendered it especially useful

for this study. The "rollover threshold" is expressed in units of "g"



describing the maximum tolerable level of lateral acceleration beyond
which the vehicle rolls over. Computer simulations were run first to
evaluate the range of rollover thresholds resulting from all the possible
combinations of Linde tractors and trailer types. The computed results
serve to describe the stability level of the existing fleet. Subsequently,
various candidate design changes were input to the simulation, so that

prospective future improvements in stability could be evaluated.

An accident rate prediction method was used to relate the inherent
roll stability of individual vehicle types to their likely rate of roll-
over accident involvement in service. This basic scheme was ''calibrated"
to reflect the actual rollover record of the Linde fleet over the last
five years. Having been calibrated, the method is able to predict the
nominal rate of rollovers occurring per 100 million miles of service for

each type of vehicle.

Results

Shown below is a chart of the projected rate of rollovers per 100
million miles of travel for each of four basic types of cryogenic tankers

in the fleet. The chart shows, for each type of tank vehicle, values
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representing the worst and best combinations of tractor and trailer
suspensions currently in use. Thus, for example, Linde's Helium tankers
are predicted to experience from 21 to 26.5 rollovers per 100 million
miles of travel, depending upon the suspensions installed on each tractor

and semitrailer.

Certain design changes in the vehicle were also considered as
possible means of improving roll stability. Three items were identified
as offering minimal (one percent or less) improvement in stability,
namely (a) reduced level of looseness in fifth wheel coupling, (b) reduced
height of fifth wheel mounting on tractor, (c) variation in tire carcass
construction. The two parameters which are known to have the greatest
influence on roll stability are the height of the center of gravity and
the outside width across the tires. The figure below presents rollover
rate projections resulting from simulations of c.g. height and width
variations on an Oxygen tanker. Each of the variation conditions repre-
sented at the right of the baseline case also incorporates the "best" of

the suspension installations for this tanker.
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As shown in the figure, c.g. height reductions were considered in
two~inch increments. It was found that for each two-inch reduction, the
projected rollover rate declined by approximately five percent of the
baseline rate. When the track width measured across the tandem suspensions
of both'tractor and semitrailer is widened from the standard 96 inches to
102 inches, the rollover rate reduces by an additional 20 percent of the

baseline rate.
In summary, the study has revealed the following:

a) The current Linde fleet is low in roll stability compared
to tractor-semitrailers in common freight service in the
U.S. (Rollover thresholds for the current Linde fleet are
seen to range from .26 to .36 g's. By way of contrast,
MC 306 gasoline tankers in the U.S. show rollover thresholds
around .32 g's and tractor-semitrailers in general freight
service are estimated to register '"typical' values around
.37 g.)

b) The Linde fleet is currently suffering a high incidence of
rollover (on the order of 20 rollovers per 100 million
vehicle miles compared to a U.S. average (for tractor-
semitrailers hauling general freight) which is approximately

six).

c¢) The rollover rate can be reduced by 20 percent simply by
using the most favorable of the currently-available

suspensions.

d) Another 25-percent reduction in the rollover rate can be
obtained by lowering the tank center of gravity by 10

inches.

e) An additional 20-percent reduction is achievable, if and
when new legislation permits, by widening the vehicle
track from the currently-legal width of 96 inches to the

expected future allowance of 102 inches.



Recommendations

On the basis of this study, and upon HSRI's understanding of the
Linde transportation operation, it is recommended that Linde take the

following action:

1) Adopt a practice of procuring only those suspensions
which maximize vehicle roll stability. (The text of
the report presents a specific performance criterion to

be applied.)

2) Assure that the height of the fifth wheel plate on Linde
tractors is not above a value of 49 inches, when a

loaded trailer is attached.

3) Explore the design flexibility of Linde tank trailers
to determine whether the conventionally-shaped tank
vessels can be cradled lower in the sub-frame/suspension
assembly. (Each two-inch reduction lowers rollover

incidence by five percent.)

4) Determine whether dramatic reductions in tank c.g.
height (i.e., on the order of 10 inches or greater) can
be practicably achieved through wholesale redesign of

the tank layout.

5) Provide encouragement for Congressional approval of an
increase in the allowable truck width from 96 inches to
102 inches—at least for the sake of carriers hauling .
hazardous commodities, if not for general trucking. If
a 102-inch allowance is granted, Linde should hasten to
apply it on the tandem suspensions of both tractors and

semitrailers.

6) For the long term, support the development of a tilt
table device, such as sketched on the following page,

for directly measuring the overall roll stability of



assembled vehicle combinations. Such a device would
be the best means for Linde to screen newly-developed
tractors and trailers for roll stability. Such screen-

ing, over time, will motivate the heavy vehicle industry

to develop more roll-stable products.

SSSCONS S

The tilt-table test for measuring the static )
rollover threshold of heavy vehicles such as ' S el
loaded tanker- semitrailers.



1.0 INTRODUCTION

This document is the final report of the Highway Safety Research
Institute (HSRI) of The University of Michigan on a research study pro-
curred by the Union Carbide Corporation under P.0. #131-423003-4 CN#1.

The project has involved a study of the roll stability of cryogenic tankers

such as are operated by the Linde Division of Union Carbide.

The project grows out of Union Carbide's desire to improve the
safety of its tanker operations, especially in regard to minimizing the
occurrence of rollover. With an average of seven to eight tanker roll-
overs in the Linde fleet each year, there has arisen an interest in
examining the basic stability of these vehicles to determine whether
safety improvements can be made. To this end, the study has pursued three

objectives, namely,

1) To obtain, through computerized simulation, values of
rollover threshold characterizing all of the basic
tractor-semitrailer types operated by the Linde

Division in transporting cryogenic liquids.

2) To employ the rollover threshold information, together
with accident data, in estimating the current rollover
involvement rate, per vehicle mile, of each of the

vehicle types in the fleet.

3) To illustrate the approximate level of reduction in
the rollover rates which might be achieved in the

future through changes in vehicle design.

The research effort has involved direct laboratory measurements
on Linde tractors and semitrailers, and computerized simulation of the
actual rollover-resistance qualities of the various vehicle combinations.
The study has considered not only the various tanker configurations which
carry alternative cryogenic products, but also the variations in selec-
tion of trailer and tractor suspensions. Further, future changes in
vehicle design properties were considered as means to improve the roll

stability of vehicle combinations.



This line of research represents an application of certain
methodologies which have been developed at HSRI in recent years. While
the main engineering tools used here constitute the measurement and simu-
lation items cited above, the key item enabling a projection of rollover
involvement derives from a study of a sample of national accident data.
Using data gathered from regulated carriers by the Federal Bureau of
Motor Carrier Safety (BMCS), it has been possible to relate the inherent
roll stability of a given tractor-semitrailer to the likely involvement
of that vehicle in rollover accidents. Thus, with the evaluation of the
nominal roll stability level of Linde's vehicles, the rollover involvement

rates could be projected.

This report provides, firstly, an overview of the technical aspects
of the investigation, in Section 2.0. The results of the computer-aided
analysis of vehicle roll stability level are presented in Sectiomn 3.0.

The results are categorized as follows:

-the roll stability levels exhibited by the existing fleet
(Section 3.1)

-the improvements in roll stability level achievable through

changes in vehicle design (Section 3.2)

-a projection of the rollover involvement rates pertaining
to both the existing and possible future vehicle con-

figurations (Section 3.3)

Conclusions and recommendations are presented in Section 4.0.



2.0 TECHNICAL DISCUSSION OF METHODS

In this section, the investigative methods will be described and
the results of direct vehicle measurements will be presented. Vehicle
measurements included the use of a laboratory facility for characterizing
suspension parameters as needed for computer simulation. Also, a sample
of tractors and cryogenic tankers was examined for measurement of the
lash space existing between the tractor fifth wheel and the trailer

coupling plate.

Measurements of suspension properties and fifth-wheel lash were
combined with other vehicle parameters which were either measured,
estimated, or obtained from engineering drawings. Parameter sets were
thus assembled for use in simulating each tractor-semitrailer combination.
The parameter sets are discussed below and the simulation model is

described.

2.1 Suspension Measurements

To obtain the parameters necessary for accurate representation of
the vehicle suspension system in a mathematical model, four tractor and
three trailer suspensions were tested on the HSRI tandem suspension
parameter measurement facility. This facility fastens the tractor or
trailer-bogie frame to an overhead structure while the suspension is
exercised by the movable table. Figure 2.1 shows a trailer bogie
equipped with a Chalmers rubber spring walking-beam suspension installed
on the facility. The suspension is exercised by moving the table vertically
and tilting it relative to the fixed frame. Forces and moments at the
tire contact patch are measured with instrumented pads constituting the
tire-table interface. These data, along with measurement of axle vertical
and roll deflection, are used to arrive at the respective stiffness

properties of the suspension.

Measurements were performed on the following tractor suspension

systems:
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~Freightliner four-spring
-Peterbilt four-spring
-Mack (Reyco-manufactured) four-spring

-Kenworth torsion bar
The trailer suspensions tested were:

-Hutchens taper leaf four-spring
-Chalmers rubber spring walking-beam

-Neway air suspension

Each suspension was tested to determine those parameters relevant to the
rollover process, specifically, vertical spring rate, roll stiffness,

and roll center height. In addition to these parameters, the amount of
lash present between spring connection elements was measured directly.
Shown in Figure 2.2 is a photo of the spring lash space existing at the
aft spring slipper of the Freightliner four-spring suspension. Note that
the spring lash constitutes the free space through which the main spring
leaf must pass when the vehicle is approaching rollover, and is thus com-
pletely unloading the springs on one side. The presence of a non-zero
lash space has been shown [1] to reduce the effective stiffness level of

the suspension spring, resulting in a reduced resistance to rollover.

A simplified condensation of the results of the suspension measure-
ment activity are summarized in Table 2.1. We see in the table that large
differences exist in the nominal spring rates and lash space dimensions
distinguishing the various suspensions currently used in the Linde fleet.
Also, it is significant that certain suspensions (most notably, the Kenworth
torsion bar suspension) exhibit very different properties on the leading
versus trailing tandem axles. The study results will show that roll
stability is compromised when the suspension roll rate is low and, also,

when the lash space is relatively large.

The detailed suspension data are presented in Appendix A.

11
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Table 2.1

Vertical Vertical Lash Roll Rate
Suspension Rate (in) (K in+1b/deg)

Vehicle Type (1b/in)  Slipper/Equalizer Leading/Trailing
Freightliner Four Spring 5450 .75/.75 90/90
Peterbilt Four Spring 7740 .75/.75 95/95
Mack Reyco 8420 1.5/2.0 125/150
Kenworth Torsion Bar 5160 nil 80/40
Trailer Four Spring 6670 1.75/2.5 110/120
Trailer Chalmers 4920 .75/.75% 85/85
Trailer Neway Air 1890 nil 80/200%*

*Lash between walking beam and axle/lash between spring and

frame.

**This suspension becomes dramatically stiffer beyond a 2-3°
roll angle, exhibiting nominal roll rates of approximately
250,000 in-1b/deg.

2.2 Fifth Wheel Lash Measurements

The fifth wheel lash dimension of interest is that angle included

between the fifth wheel plate, on the tractor, and the upper coupler plate

on the trailer which becomes "opened up" when a large roll moment is

transmitted from the trailer to the tractor, such as during an impending

rollover condition.

is subtended between tractor and semitrailer.

Thus, the lash is defined in terms of an angle which

The desire to obtain measure-

ments of fifth wheel lash did not stem from an hypothesis that this

parameter would be of high importance to roll stability, but rather was

undertaken because very few example data were available.

Also, the measure-

ment became especially desirable since it was observed that the fifth

wheel lash space would definitely be traversed prior to the rollover of

Linde's Hydrogen and Helium trailers, given their high center of gravity

locations.

A simple physical experiment was undertaken, as photographed in

Figure 2.3, to provide the pertinent measurement of fifth wheel lash.

13
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Namely, with the tractor and semitrailer coupled together, the right-side
trailer wheels were brought up a ramp onto an eight-inch step such that
the desired roll moment was transmitted to the tractor. The step height

was chosen such that the available lash space was completely opened up.

Shown in Table 2.2 are the measurements of fifth wheel lash angle
as measured on various combinations. Fifteen separate measurements were
performed using four cryogenic trailers and five tractors. It should be
noted that a variety of vehicles were employed in these measurements simply
to provide multiple samples for characterizing a property which varies
more or less randomly as a function of wear and manufacturing tolerances

in the fifth wheel and trailer kingpin assemblies.

The data show fifth wheel lash values ranging from approximately
two to over four degrees. While the measurements showed some inconsis-
tencies with regard to the relative ranking of the various tractors over
the set of trailers, it was noted that an older Mack tractor (No. 306114)
produced uniformly high amounts of lash while a six-month-old Freightliner

tractor was consistently near the bottom of the scale.

The primary purpose in conducting these measurements was not to
discriminate among specific vehicles which exhibited small or large
amounts of fifth wheel lash, but rather to simply define a reasonably
typical value of lash for use in simulating all of Linde's vehicles. It
was concluded that a value of fifth wheel lash equal to 3-1/4 degrees

would suitably represent vehicles in the Linde fleet.

2.3 Simulation Model Employed

Vehicle roll stability level was evaluated in this study using a
static model of the roll response of tractor-semitrailers. This model
was developed previously and is documented in Reference [2]. Basically,
the model orients the sprung mass of the vehicle (in this case, the tank
body) at each of an increasing sequence of roll angle values, and computes
the level of lateral acceleration needed to sustain each roll attitude.
Eventually, the vehicle arrives at a roll angle beyond which only reduced
levels of lateral acceleration are needed to continue the roll motion.

This point defines the "rollover threshold" in g's of lateral acceleration

15



Table 2.2. Fifth Wheel Lash Measurement.

Trailer Tractor Lash (degrees)
Liquified Helium Freightliner 2.53
Peterbilt 3.53
Mack 306114 4.41
Mack 5588 3.61
Mack COE 5550 3.75
Liquified Nitrogen Mack COE 5550 2.83
(Russel) Mack 5588 3.36
Mack 306114 3.90
Peterbilt 3.40
Peterbilt (repeat) 3.62
Freightliner 3.10
Liquified Oxygen Mack COE 5550 ’ 3.20
Liquified Hydrogen Mack 306114 3.10
Freightliner 2.37
Mack 5588 2.15
Average 3.26

and provides the basic measure of the inherent roll stability of the
vehicle. In real practice, a vehicle would roll over as soon as the

imposed lateral acceleration condition exceeded the rollover threshold.

Features of the model and the assumptions made in the process of

deriving the underlying equations are listed below.

1. The vehicle is assumed to be effectively rigid in torsiom.
The structural compliance of the tractor and trailer sprung masses are
therefore neglected and the sprung masses are lumped together and repre-

sented by a single sprung mass in the roll plane.

2. In order to simplify the calculations, axles with similar
suspension properties are grouped together such that a tractor-semitrailer
is represented by a set of three composite axles. Figure 2.4 shows the
side view of an example tractor-semitrailer, as represented in the roll

model. The composite axles are:

16
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Figure 2.4. Representation of the axles of a tractor-semitrailer
in the static roll plane model.

a) tractor front axle,

b) tractor rear axles (either a single axle or a
tandem) combined and represented by one axle, and

c) all trailer axles, combined and represented as
one axle.
3. The articulation angles are small so that the effect of

articulation angle on the rollover threshold can be neglected.

4. Figure 2.5 shows the representation of axles and suspensions
in the roll plane model. The relative roll motion between the sprung
mass and the axles is assumed to take place about roll centers which are
at fixed distances beneath the sprung mass. The suspension springs are
assumed to remain parallel to the Eui axes of the axles and transmit only

compressive or tensile forces.

The roll centers are permitted to slide freely (with respect
to the axles) along the ﬁui axes. All axle forces which act in a direc-
tion parallel to the Eui are taken up by the suspension springs, while
all axle forces along the §ui axes are assumed to act through the roll

center, Ri.

17



REAR VIEW

b

Figure 2.5.

Fris  FTia

Representation of the axles and suspensions in the
static roll plane model.
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5. Suspension nonlinearities such as backlash and progressively
hardening suspension springs are represented by a tabular load-deflection
input format. The suspension forces and the spring rates at any given
deflection are then compared by linear interpolation. Figure 2.6 shows

the representation of a suspension spring in the roll model.

6. The total vertical load carried by each composite axle is
assumed to remain constant during the rollover process. In order to accom-
modate any pitching motion that might take place during rollover, the
sprung mass is permitted to take up different vertical deflections at each

of the three axle locations.

7. The vertical load carried by the tires is assumed to act
through the midpoint of the tread width. As shown in Figure 2.7, the
effect of camber angle and the effect of the lateral compliance of the
tire tend to have opposing effects on the lateral translation of the
centroid of the normal pressure distribution at the tire-road interface.
Both of these effects are small and tend to cancel out. In order to keep

the analysis simple, the lateral translation of the normal load is neglected.

8. The roll angles of the sprung mass and the axles are small,

such that the small angle assumptions sin (¢) = ¢ and cos (¢) = 1 hold.

Fach vehicle combination is represented in the model by a set of
parameter values covering the following items:

-weights of the axle assemblies and "sprung'' masses for
tractor and semitrailer

-lateral spacing of tires and spring centers at each axle

-height of sprung mass centers

-undeflected radius of the tires

-tire vertical stiffness

-tire lateral and overturning moment stiffnesses

-torsional stiffness of tractor frame

-fifth wheel lash

-roll moment needed to separate the fifth wheel plate
from the trailer's upper coupler plate, thus leading
to traversal of the lash in the tank roll motion

19
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~-force/deflection tables for each suspension set

-auxiliary roll stiffness attributed to each suspension
set

In Appendix B are presented parameter listings for the baseline cases

of vehicles studied here.

21






3.0 SIMULATION RESULTS

In this section, the study results will be presented. The simula-
tion was run for cases covering both the existing configuration of vehicles
in the Linde fleet and for cases representing certain changes in vehicle
design which might be made. Following presentation, in Sections 3.1 and
3.2, of the rollover threshold levels computed for both existing and
future configurations, the net rollover accident involvement rate is

predicted for the various cases examined.

3.1 Rollover Thresholds, Existing Fleet

The existing Linde fleet was represented in the analysis of roll-

over threshold by the following specific vehicle and suspension selections:

Semitrailers

-11,000~-gallon Helium trailer configured as an intermodal
shipping container on a sub-frame trailer having a four-

spring Hutchens suspension (see Fig. 3.1).

-13,250-gallon Hydrogen trailer having a Neway Airide

tandem suspension (see Fig. 3.2).

-8,300-gallon Nitrogen trailer (Fig. 3.3) considered to be
equipped with each of the three alternative suspensions

described below:

1) Chalmers rubber
2) Hutchens four-spring

3) Neway Airide

-6,000-gallon Oxygen trailer also considered with each of

the above three suspensions (see Fig. 3.4).

23
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Tractors (distinguished from one another only by the following

tandem suspension varieties)

-Kenworth torsion bar
-Peterbilt four-spring
~Freightliner four-spring

-Mack (Reyco-manufactured) four-spring

Thus the Helium and Hydrogen tankers were considered with the
single trailer suspension types which are commonly employed, while the
Nitrogen and Oxygen tankers were examined for the cases incorporating
alternative trailer suspensions. Of the three alternative trailer suspen-
sions, the Hutchens and Neway variety are in common service in the Linde
fleet, while the Chalmers suspension was included only as a possible

candidate for future use.

Simulations were run with all combinations of tractors and semi-
trailers identified above. Thus, four cases of the Helium and Hydrogen
vehicles were covered in addition to twelve cases (four tractors x three

trailers) representing the Nitrogen and Oxygen vehicles.

For each vehicle combination, the simulation initially produces
a tabular display of the lateral acceleration and roll angle data leading
up to the rollover condition. Examples of such data are shown for the
Helium-Kenworth and Hydrogen-Kenworth combinations in Tables 3.1 and 3.2.
The tables list the lateral acceleration level needed to achieve each of
the roll angle conditions shown at the right. The respective roll angle
values, PHI (S1 through S3), represent the roll attitudes of the tractor

cab, the tractor fifth wheel, and the trailer tank, respectively.

Descending the list of acceleration values, the "rollover threshold"
reasure (representing the vehicle's ultimate roll stability level) is the
peak value listed. In the case of the Helium-Kenworth combination, Table
3.1, a peak value of .260 g's is achieved at the very bottom of the table.
Details of the simulated vehicle response revealed that the rollover
threshold of this vehicle is defined by the point at which wheels have
lifted off the ground at each axle except the steering axle. (Prior

research has shown that liftoff of the tractor steering axle is of no
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consequence to the determination of the roll stability limit.) Thus,

for the Helium-Kenworth combination, the rollover threshold is reached
with the liftoff of the Kenworth's tandem axle. In Table 3.2, however,

we see that the Hydrogen-Kenworth combination reaches a peak value of

.282 g's well before the end of the rum—at a time at which the simulation
shows only the trailer tandem axle to have lifted off the ground. (For a
treatise on the mechanics of rollover and the sequential development of

wheel liftoff on tractor-semitrailers, the reader is referred to Reference

[(31.)

The lateral acceleration condition is plotted against the trailer
roll angle for the above two example vehicles in Figure 3.5. Here we see
that the Hydrogen vehicle reaches its .282-g peak at a considerably
smaller roll angle than that at which the Helium vehicle achieves its
peak value of .260 g. In general, the subtle differences distinguishing
the roll behavior of these two vehicles derive primarily from distinctions
in trailer suspension properties. The Hydrogen trailer's Neway suspension
provides a stiffer and more continuous roll reaction moment such that the
rollover threshold is reached at a lower value of roll angle, yielding a

higher net roll stability level.

Perhaps a more dramatic illustration of the influence of suspen-
sion properties on the lateral acceleration versus roll angle behavior is
shown in Figure 3.6. This figure shows a plot of the lateral acceleration/
roll angle relationship Jfor the Nitrogen/Freightliner combination for each
of the three alternative trailer suspensions. We see that the "early"
peaking of the vehicle response with the Neway suspension produces the
highest rollover threshold value, while the "delayed" peaking behavior of
the Hutchens suspension yields a slightly reduced stability level. The
Chalmers suspension is found to be so soft that it achieves its rollover
threshold only at a high value of roll angle, at which the outboard roll-
ing of the mass center has caused a deteriorated stability level. Accord-
ingly, in data summarizing the overall vehicle set, we find that the
Chalmers suspension cases rate the lowest, and the Neway cases the highest.
Plots of the format seen in Figures 3.5 and 3.6 are shown for all of the

examined vehicle combinations in Appendix C.
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Values of rollover threshold covering the overall set of 'current"

Linde vehicles are shown in Figure 3.7. The bar-charted values are
grouped by trailer type and are distinguished along the horizontal axis
by tractor suspension type and trailer suspension type. For example,
results for the Nitrogen trailer are shown in the third group from the
left. The first (left-most) bar in the Nitrogen group pertains to the
vehicle combination having a Chalmers trailer suspension and a Kenworth

(KW) tractor suspension.

Overall, we see that the Linde fleet exhibits rollover threshold
values which range from .260 g to .358 g. We also find that the differ-
ences in tractor suspension properties introduce substantial changes in
rollover threshold except for the cases involving the Chalmers rubber
suspension on the trailer. 1In these latter cases, the extremely soft nature
of the Chalmers trailer suspension tends to dominate the result, thus
rendering the differences from one tractor suspension to another incon-

sequential.

Although the differences observed in rollover threshold from one
combination to the next may seem to be rather small, the discussion in
Section 3.3 will reveal that the actual influence of the vehicle's rollover
threshold on rollover accident involvement is surprisingly high. Thus, the
influence of tractor and trailer suspension properties on the rollover

threshold of the combination vehicle will be seen to be quite substantial.

3.2 Improvements in Rollover Threshold Achieved by Changing
Vehicle Design

An array of candidate design changes was evaluated for the cases
of the Oxygen and Helium trailers. These two trailers were chosen to span
the range of center of gravity heights represented within the Linde fleet.
Application of results obtained with these two example vehicles to the

other Linde vehicles simply requires interpolation of the data.

Shown in Figure 3.8 are the values of rollover threshold computed

for the Oxygen trailer, given a set of 16 parameter changes. The changes

are numbered along the horizontal axis corresponding to the following

scheme of conditions:
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1

2)

3)

4)

5)

6)

"Worst case" suspension combination found in the existing
fleet—XKenworth tractor and Hutchens trailer suspension.
(Note that the Chalmers trailer suspension, which looks

poorer than the Hutchens suspension, is not considered as

_an item existing in the current Linde fleet.)

Most favorable suspension selections—Neway Airide suspen-

sions on both the tractor and trailer tandems.

Peterbilt tractor (a more-or-less average choice, from a
suspension point of view), represented with fifth wheel
lash reduced from 3.5 degrees to 2 degrees, and with
Neway suspension on trailer. (The indicated improvement
over Case 1 is due almost entirely to the trailer

suspension change.)

Peterbilt tractor, but with Neway suspension on trailer
and fifth wheel height reduced from 48 inches to 46 inches,

thus lowering trailer mass center by one inch.

Improvements 2, 3, and 4, above, all incorporated together.

(Result is similar to Case 2.)

Case 5, above, is represented together with a change to
102-inch width at the tractor and trailer tandem axles.
The tank also nestles one inch lower into the sub-frame

as enabled by the wider suspension layout.

7 through 11) Case 5 is represented with sequential two-inch

reductions in height of trailer mass center. Thus, Cases
7 through 11 simply involved variations on Case 5 as

follows:

Case 7 = Case 5 - two inches in trailer c.g. height
Case 8 = Case 5 - four inches

Case 9 = Case 5 - six inches

Case 10 = Case 5 - eight inches

Case 11 = Case 5 - ten inches
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12 through 16) Case 6 (with the 102-inch track widths)
is represented with sequential two-inch reductions in

height of trailer mass center. Accordingly:

Case 12 = Case 6 - two inches in trailer c.g. height
Case 13 = Case 6 - four inches

Case 14 = Case 6 - six inches

Case 15 = Case 6 - eight inches

Case 16 = Case 6 - ten inches

Figure 3.8 shows that the rollover threshold of the Oxygen trailer
combination can be improved from .322 g to .483 g over the range of con-
sidered improvements. Of course, it should be recognized that substantial
reductions in the height of the trailer c.g. will be very difficult to
obtain. Further, the extension to 102-inch width must await enabling
legislation (which has been sought for each of the last few years in
Washington). Nevertheless, even the improvement from .322 to .358 which
is achievable simply by specifying the most favorable tractor and trailer
suspensions, constitutes a very significant upgrading of roll stability

level.

Shown in Figure 3.9 are the corresponding data representing
improvements in the stability of the Helium trailer combinations resulting
from vehicle design changes. The cases numbered 1 through 16 along the
horizontal axis correspond, identically, to the cases itemized above for
the Oxygen trailer. Again we see that a very substantial improvement,
from .260 g to .301 g, can be attained simply by specifying favorable
tractor and trailer suspensions. Combinations of tank height reduction
and track width expansion provide means of increasing the rollover threshold

up to .410 g.

Plots showing the lateral acceleration versus roll angle behavior

for each of the design-varied cases are presented in Appendix D.

38



LHAHGES

I,

HELIUM TRAILER. DE:

A N I N T N T O T T I
| R L L L D L L L
S B o B e A B B B e e T R O 0 A B e B o B o B o
U ARl R L n N~ ol R B Ry O s N B ol N I
e R R R N L RN A N RN AN AN N R al R al|

¢dr HE3dAHL 4300171049

39

HAHGES

Y
-

DESIGH

Figure 3.9



3.3 Projections of Safety Benefits

The above results indicate that rollover thresholds for Linde

vehicles are:

a) rather widely varying due to differences in tractor

and trailer suspensions currently being procured, and are

b) far below what could be achieved by means of design

changes

In this section, the net influence of the rollover threshold values on
actual rollover accident involvement will be predicted. The Linde roll-
over accident record will be briefly reviewed, and this record will be
placed in the context of the national rollover experience with tractor-
semitrailers. A scheme will be presented for relating rollover threshold
directly to the likely frequency of rollover incidents in service. The
calculated rollover thresholds will then be converted, together with data
on the annual mileage in the Linde fleet, into projected rollover rates
as a "bottomline" assessment of the safety benefits which should follow

from design changes.

Linde's Rollover Accident Record. Shown in Appendix E is a

listing and brief description of each of 36 rollover accidents which have
occurred in the Linde fleet between April 1976 and August 1981. This
record shows the following number of rollovers for each of the nominal

trailer types:

Vehicle No. Rollovers
Nitrogen (or Argon) 21
Oxygen 9
Hydrogen 1
Helium 5
Total 36

Of these 36 events, 34 involved single-vehicle accidents in which no
other vehicle was struck. In the other two accidents, contact with

another vehicle preceded the rollover. This experience establishes that
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the rollover of these vehicles involves primarily single-vehicle accidents
(SVA)—a result which parallels national experience (the national distri-
bution of accidents involving tractor-semitrailers is approximately 80
percent SVA rollovers and 20 percent rollovers involving another vehicle
impact). It is also interesting that five of the rollovers with Linde
vehicles involved virtually zero speed with the vehicle on soft ground—a
classic case in which a heavy load and a low rollover threshold combine

to produce an anomalous incident.

Mileage Exposure of the Linde Fleet. In order to provide a measure

of the rollover rate, in terms of rollovers per 100 million miles, Linde

vehicle mileage data were obtained for projection of the annual mileage
exposure. The average annual mileages accumulated on each of the four

nominal vehicle types cited above were multiplied by the number of each
vehicle type in service to obtain annual mileage by vehicle type. These

figures are shown below.

Annual Number of Total Annual
Vehicle Miles/Vehicle Vehicles Miles
Nitrogen/Argon 84,600 222 18,781,200
Oxygen 90,300 172 15,531,600
Hydrogen 138,000 32 4,320,000
Helium 278,208 21 5,842,368

We see that the more roll-stable Nitrogen and Oxygen vehicles are much
more numerous and accumulate considerably greater total annual fleet miles;
the less stable Hydrogen and Helium vehicles are considerably more exposed,

on a mileage-per-vehicle basis.

Rollover Rates for the Existing Fleet. Although it is recognized

that the above vehicle numbers constitute the current Linde fleet size

and do not account for changes in the fleet which have occurred over the

five years covered by the fleet accident data, we will use these numbers

to obtain a crude measure of the nominal current rollover rate. Additionally,

in the case of the Helium trailer, it was observed that four out of the
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five reported rollovers occurred during the last two years of the accident
sample and that these four all involved the 11,000-gallon vehicle size

of which 12 out of the 14 in the fleet were just brought into service
during this later period. Thus it was apparent that some insight could

be gained by calculating another rollover rate covering the last two years

of usage for this particular subset of the Helium trailers.

Dividing the total number of rollovers for each vehicle type by

the annual mileage for that type, we obtain the following rollover rates:

Rollovers/
Vehicle Type 100 Million Miles
Nitrogen/Argon 22
Oxygen 12
Hydrogen 5
Helium (all) 17
11,000-gal. Helium ('80 & '81) 102

In order to assure a properly balanced view toward these computed
rates, certain precautionary remarks are in order. It must be recognized,
firstly, that the set of 36 Linde rollover accidents is simply too small
a sample to permit any rigorous statistical inferences to be made. The
contrast between the involvement rate of Hydrogen and Helium trailers,
for example, is quite likely the result of an insufficient sampling of the
phenomena—these rates are expected to be nearly equal over the long run.
Indeed, the "102" value of rollover rate for the two-year operation of
11,000-gallon Helium trailers may be as statistically improbable as is the
"S5" value for the Hydrogen trailers. Further, it is certain that substantial
variations in both vehicle numbers and average annual mileage exposures

have occurred over the six years of accident reporting.

For the sake of contrasting the Linde fleet rollover rates with
national experience, accident data from the Bureau of Motor Carrier Safety
(BMCS) have been combined with mileage data from the Truck Inventory and
Use Survey [4] produced by the Bureau of Census. Some adjustments have

been made to normalize these two data sets so as to represent only
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three-axle tractors coupled to two-axle van-type semitrailers in for-hire
interstate service (which constitute the largest single category that can
be identified with some confidence in both data sources). These data show
that the nominal rollover rate involving five-axle tractor/van-semitrailers

across the U.S. for the years 1977 through 1980 is six rollovers per 100

million vehicle-miles.

Accordingly, although there is a substantial level of crudity in
the various figures available, it would appear that Linde vehicles are
generally experiencing a considerably higher incidence of rollover than
are tractor-semitrailers, nationally. Of course, there may be a number of
operational differences contributing to the overinvolvement of Linde
vehicles, such as the class of roads traveled, the topographical and
climate situations in the primary operating locatioms, traffic density
conditions encountered, etc. Nevertheless, a substantial difference
appears to be simply in the inherent roll stability of the vehicles involved.
That is, the Linde vehicles are clearly low in rollover threshold with
respect to tractor-semitrailers in general freight service. For example,
HSRI believes that the typical tractor and van semitrailer has a rollover
threshold around 0.37 g's. Linde vehicles were shown earlier to have
rollover thresholds in the range from 0.26 g to 0.36 g. Also, the
cryogenic tanks are so high in tare weight that Linde vehicles experience
higher likelihood of rollover on both the loaded and empty legs of their

trips.

A Scheme for Relating Rollover Threshold to the Likely Frequency

of Rollover. In recent HSRI research, a data set based on four years of
BMCS accident data was augmented with the results of the computer simulation
of rollover response to produce the plot shown in Figure 3.10. The figure
shows that a remarkable correlation exists between the percent of roll-
overs occurring among single-vehicle accidents with tractor-semitrailers

and the static rollover threshold of each vehicle. The plot represents
21,000 cases of single-vehicle accidents involving three-axle tractors
coupled to two-axle, van-type semitrailers. The plot was produced beginning
with data from the BMCS accident report forms establishing the gross weight

of each accident-involved vehicle. In a computerized determination of the
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vehicle's roll stability, then, payload was placed to represent reasonable
distributions of medium-density freight. Typical values for tires,
springs, and geometric properties were then employed to calculate rollover
thresholds for each increment in gross weight in the accident file. From
the figure, we see that typical empty tractor-semitrailers experience
rollover in approximately five percent of their single-vehicle accidents.
When such vehicles are fully loaded, on the other hand, the reduction in
roll stability due to the higher c.g. location causes an eight- to

ninefold increase in the incidence of rollover.

The figure clearly establishes that the rollover of tractor-
semitrailers is highly sensitive to the vehicle's inherent roll stability
threshold in the lower end of the rollover threshold range. Since it is
in this range that the Linde vehicles are found, we see immediately that
the Linde fleet may be, indeed, paying a high price in rollovers for the

lower rollover thresholds which are present.

The Influence of Design Changes on the Likely Frequency of

Rollover. Using the rollover threshold data shown earlier in Figures
3.8 and 3.9, the influence of design changes on the likely frequency of
rollovers can now be illustrated. Shown in Figure 3.11 is a plot of the
percent rollovers per SVA which are likely given the values of rollover
threshold computed for the various design changes on the Oxygen trailer.
We see that the lowest value of rollover threshold, pertaining to the
baseline case, yields a rollover frequency of approximately 51 percent
rollovers/SVA. Design improvements are seen to sequentially reduce the
rollover frequency according to the prediction curve developed earlier from
the BMCS accident file. Over the range of design improvements considered,
the rollover frequency percentage reduces from 51 percent to 18 percent.
Thus, even the rather small increases in rollover threshold which result
from certain improvements result in very sizable reductions in accident

frequency.

Similarly, Figure 3.12 shows the influence of design changes on the
rollover frequency of the Helium trailer. We see that the baseline cases,

producing 70 percent rollovers/SVA, reduces as far as 30 percent.
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While the above two plots serve to provide continuity in piecing
together the sequence by which computer simulation results were eventually
converted into a prediction of rollover accidents, the following section
provides the final and most easily understood illustration of the net

safety benefits.

Prediction of the Rollovers per 100 Million Miles of Travel for

Linde Vehicles with Design Changes. Using the relationship illustrated

in Figures 3.11 and 3.12, the reductions in rollover rate achievable
through design changes in Linde vehicles can be predicted. So as to
obtain some reasonable estimate of the absolute rollover rates which might
apply, we have chosen to normalize the overall Linde fleet to the actual
rollover rate experienced by the Nitrogen/Argon vehicles during the 1976
through 1981 time period. This vehicle type was chosen since it is the
most numerous and thus provides the most statistically satisfying sample
of accident data. Further, choosing to reference the projection of roll-
over rate to the actual rate of the most-populous Linde vehicle serves to
scale the results to account for whatever special factors actually deter-
mine Linde's overall exposure (such as road classes, topography, etc., as

mentioned above).

The previously presented rollover rate of 22 per 100 million miles
was taken as the baseline rate for the Nitrogen trailer. From the original
BMCS data curve, illustrated earlier in Figure 3.10, a value of 59 percent
was identified as the percent rollover/SVA applying to the Nitrogen trailer's
.287-g rollover threshold (assuming a Kenworth/Hutchens combination of

suspensions).

Rollover rates (R-0/100 M—miles)x were then computed for the other

vehicle types, x, using the relationship:

( 220 ) _ (R-0/SVA)_ ( R0 >= (R-0/SVA) _ o)
100 M-miles < (R-O/SVA)N2 100 M-miles N2 (.59)

where (R-O/SVA)X = Rollovers per SVA for individual vehicle, x

(R-O/SVA)N2 = Rollovers per SVA for basic Nitrogen trailer
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By this approach, we obtain rollover rate projections which are "calibrated"
to the absolute rate of Linde vehicle rollovers, while also factoring in
the sensitivity of rollover frequency to the rollover threshold value for

individual vehicle types.

Shown in Figure 3.13 are the rollover rates predicted for the
various configurations of Oxygen trailer considered. Again, note that
design changes are coded 1 through 16 as defined earlier in Section 3.2.
We see that rollover involvement is reduced by 20 percent from 20 to 16
rollovers per 100 million miles by optimal selection of suspensions. A
total of 35 percent improvement is made (to a value of 13 rollovers/100
million miles) if the vehicle incorporates 102-inch track width, as well.
In general, we see that for each two-inch reduction in tank c.g. height,
the rollover rate reduces by one rollover/100 million miles, or approxi-
mately five percent of the baseline rate. This result is observed whether
96-inch or 102-inch track widths are being considered. Note that the
complete set of design improvements on the Oxygen trailer yields a total
rollover involvement which is very near to the six rollover/100 million

miles value that occurs in general freight trucking in the U.S.

Shown in Figure 3.14 are the corresponding data for the various
configurations of Helium trailer which were considered. We see that the
Helium trailer has a projected baseline rollover rate of 27 rollovers/100
million miles. A 22-percent reduction in rollovers is predicted to accrue
from optimal selection of suspensions, and an additional 15 percent (to a
total value of 17 rollovers/100 million miles) from extension of track width
to 102 inches. Again, each two-inch reduction in tank c.g. height yields a

nominal reduction of one rollover/100 million miles.

Moreover, the design changes which were considered are seen to offer
as much as a 50-percent reduction in rollover rate, although regulatory
allowance of the 102-inch track width would be required, and substantial
changes in tank geometric layout would have to be developed. More modest,
yet still very significant, improvements can be made through suspension

selection and, perhaps, less dramatic reductions in tank c.g. height.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The executive summary presented brief statements of the conclusions
which were documented in the Results section, above. Essentially, these
results establish a generally low level of roll stability in Union Carbide
vehicles and illustrate that these stability characteristics can be
directly interpreted as having strong influence on the rollover accident

rate.

Insofar as Linde may conclude that reductions in its current roll-
over rate warrant efforts toward improvement in vehicle stability, certain
candidate improvements are suggested. Of most immediate utility as an
area of possible improvement is the selection of suspensions assuring
higher levels of roll stability. It is recommended that Linde adopt a
practice of "qualifying" suspensions on the basis of a suitable set of roll
moment versus roll angle properties. The suggested concept for implement-
ing this approach is illustrated in Figure 4.1. The figure shows a plot
of the roll moment reaction at each axle of a tandem pair versus the roll
angle subtended between the sprung mass and the axle. The plot illustrates,
by cross-hatched areas, the range of measurements which were made in this
study on tractor and trailer suspensions, respectively. It is recommended
that suspensions be carefully selected in the future so that only the

stiffer ends of each indicated performance range be employed.

In particular, it is recommended that Linde cite the point labeled
"A" as the "target value" establishing a criterion for tractor suspensions,
and the point labeled "C" as the "target value" establishing a trailer
suspension criterion. The criterion for tractor suspensions would be

stated as follows:

"Each axle of the tractor tandem suspension must pro-
duce a roll moment exceeding 500,000 in-lbs when a
roll angle of six degrees is subtended between the

sprung mass and the axle, for both polarities of roll
angle."
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Likewise, the trailer suspension would be qualified by reference to point

"C" with the following criterion:

"Each axle of the trailer tandem suspension must
produce a roll moment exceeding 500,000 in-1bs
when a roll angle of four degrees is subtended
between the sprung mass and the axle, for both
polarities of roll angle."

One additional proviso seems to be needed if certain of the avail-
able suspensions which are nominally suitable are to satisfy the criteriom.
Namely, there must be an allowance that the roll moment reacted at each

of the two tandem axles can be averaged together in arriving at the

requirement (since it was noted that considerable differences are often
seen between the leading and trailing axles in a tandem pair). If such

a "relaxed" interpretation is allowed, Linde should stipulate that at no
value of roll angle below the four-degree or six-degree criterion condi-
tions can the roll moment produced at one axle differ by more than 150,000
in-1bs from the moment produced at the other axle. This stipulation
would guard against potentially deficient arrangements in which all of the

roll moment is lumped on one axle.

Figure 4.1 also shows a point labeled "B" which is seen as the
future target condition to be satisfied by tractor tandem suspensions.
This point defines a 500,000 in-1b and five degree condition as a pre-
ferable performance level for a tractor tandem. This performance level is
attainable, even in the relatively near term, by suspensions such as the
Mack-Reyco four-spring tested in this study simply by means of reducing

the unnecessary level of spring lash.

It is recognized that if Linde choses to pursue this recommenda-
tion with vigor, they will encounter opposition and dismay on the part of
vehicle and suspension suppliers. This resistance will stem primarily
from an unfamiliarity with the suggested types of suspension specification,
and partly because a large number of currently available products will not

satisfy the criterion.
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In addition to the initiative on specifying roll-stability-
enhancing suspensions, it is recommended that Linde review tank trailer
design practices and determine the maximum practicable reduction in trailer
c.g. height which can be implemented—either as a modification during the
normal rehabilitation of existing equipment, or as a design approach in
purchasing new vehicles. It is suggested that the results of this study
should serve to scale the very high importance which otherwise "minor"
adjustments in c.g. height have upon the ultimate rollover involvement rate.
Thus, future efforts toward lowering trailer c.g. height should be
focused upon even the small height reductions which might be feasible with
otherwise conventional tank constructions, as well as the "dramatic"
reductions in height achievable only by means of wholesale redesign of

cryogenic tanks.

Finally, the savings in rollover involvement implied by widening
track width have been shown to be, indeed, large. Thus it is recommended
that Linde adopt a policy favoring national adoption of a 102-inch width
allowance. It is HSRI's conviction, all things considered, that such a
step would constitute the single most significant adjustment in truck size
and weight constraints which is feasible to make in behalf of trucking
safety. If such an allowance were adopted, nationwide, it is recommended
that the 102-inch dimension be implemented as the width across the outside

of the tires on both the tractor and trailer tandems.
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APPENDIX A

DETAILED SUSPENSION DATA

This appendix contains suspension data collected on the HSRI

tandem suspension'parameter measurement facility. The data describe

vertical and roll stiffness properties of the following suspensions:

D)
2)
3)
4)
5)
6)

7)

Freightliner four-spring

Peterbilt four-spring

Mack (Reyco-manufactured) four-spring
Kenworth torsion bar

Hutchens taper leaf four-spring
Chalmers rubber spring walking-beam

Neway air suspension

For detailed discussion of the measurement methodology and inter-

pretation of these data, the reader should consult the SAE paper cited

in Reference [6].
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A.1 Freightliner Four-Spring
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A.2 Peterbilt Four-Spring
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A.3 Mack (Reyco-Manufactured) Four-Spring
|
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A.4 Kenworth Torsion Bar
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A.5 Hutchens Taper Leaf Four-Spring
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A.6 Chalmers Rubber Spring Walking-Beam
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A.7 Neway Air Suspension
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APPENDIX B
EXAMPLE LISTING OF VEHICLE PARAMETERS

(See Reference [2] for reference to the details
of this computer model)
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8300 GAL NITROGEM TAHKER WITH WEWAY, PETERBUILT TRACTOR

WUl = 1200. WU2 = 4600. WU3 = 3000. HWAXL1 = 12000. MAXL2 = 30000. WAXL3 = 34000.
Tl1 = 40.50 Al = 0.0 T2 = 29,00 A2 = 13.00 T3 = 29.00 A3 = 13.00 S1 = 16.00 S2 = 19.00 S3 = 19.00
251 = 44,00 252 = 495,00 ZS3 = 90.21 Z1 = 20.0022 = 20,00 Z3 = 20.00

HR1 = 22.00 HR2 = 28,00 HR3 = 17.00 Z5 = 48.00 ZFR = 35.00

KT11 = 5000.0 KT21 = 16000.0 KT31 = 10000.0 KRS1 = 0. KRS2 = 25000. KRS3 = 200000.
MER = 9000.0 COULFR = 10000.0 M5 = 1000000.0 MOMSEP = 495000.0

LASIS = 3.3 W5 = 27500.0 WS2 = 1000.0

KYT1 = 3000.0 KYT2 = 6000.0 KYT3 = 6000.0

KOVI1 = 1000.0 KOVT2 = 2000.0 KOVT3 = 2000.0

DELPH = 0.02 XPRINT = 0.50

SPRING TABLE: 1
NO. OF DATA POINTS IN TABLE : 2

FORCE DEFLECTION
-15000.000 ~-10.000
15000.000 10.000

SPEING TABLE: 2
NO. OF DATA POINTS IN TABLE : 10

FORCE DEFLECTION
-11900.000 -4.527
0.0 -1.627
0.0 -1.127
2200.000 -0.752
4300.000 -0.502
9400.000 -0.125
14600.000 0.0
19000.000 ~0.125
20700.000 0.2u8
36700.000 1.248

SPIFTNG TABLE: 3
NO. OF DATA POINTS IN TABLE : 2

FCRCE DEFLECTION

-16000.000 -8.000

16000.000 8.000
DATA FROU:

0.0 0.0 0.0 0.C 0.0 n.0 0.0 0.850 0.850 0.850 0.850 0.850 0.850



16

000 GAL OXYSEHN TAHKER WITH CHALMERS,

wu1 = 1200,
T1 = 40.50 A1

t1 = uu8.00 72S2
HR1 = 22.00 HR2
KT11 = 5000.0
FER = 9000.0
LESHS = 3.3 WS
KYT1 =

KOVT1 =

CELPH =

SPRING TARLE:

NO. OF DRTA POINTS IH TADLE

FORCE
-1%000.0CO0
1000.000

CPPING TRBLE:

NO. OF DRTA POINTS IN TADLL

FORCF
-16000.000

0.0

0.0
1200.000
2700.000
74¢€0.0C0
149C0.000
168C€0.000
17600.000
3469C0.000

CPIING TABLE:

NG. (F DRTA POINTS

FCRCE
-1£000.0¢C0

0.0

0.0
3900.000
€630.0C0
13600.0C0
1£500.000
178€¢0.0CO
19440.000
319000.000
DATA FROVM:

0.0 0.
0.03u 0.

= 4600.

0.0 T2

40.900

32.20 HR3
KT21 =
COULFR
= 28500.0 WS2
3000.0 KYT2 =

1000.0 KOVT2
0.02 XPRINT =

DEFLECTION
-10.000

10.000

DEFLECTION

-3.325
-1.9825
-1.275
-1.200
~0.750
-0.250
0.9
0.7613
0.100
0.7u0

I TADLLE

DEFLECTION

-6.125
-n.125
-2.500
1.500
-1.000
-0.125
0.2
0.125
0.220
0.890

MACK TRACTCR

up.00 ZFR

10000.0 KT31 10000.0 KRS1

n

10000.0 M5 1000000.0 MOMSEP

6000.0 KYTJ

2000.0 KOVT3

-

)

.

-e
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APPENDIX C

COMPUTER PLOTS OF LATERAL ACCELERATION VERSUS TRAILER
ROLL ANGLE FOR VEHICLES IN THE CURRENT FLEET
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APPENDIX E

DESCRIPTIVE ROLLOVER ACCIDENT SUMMARIES COVERING LINDE FLEET OPERATIONS
DURING THE PERIOD 4/25/76 THROUGH 8/16/81
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