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ABSTRACT 

WITHIN THE context of the small-strain approach, combined mode I and III near-tip fields of a stationary 
crack in an elastic-plastic solid are obtained by finite element analysis under small-scale yielding conditions. 
To investigate the behavior of the near-tip fields, the normalized stresses ahead of the crack tip are plotted 
as functions of the normalized radial distance to the tip for several combinations of prescribed mode 1 and 
III elastic K fields. The angular variations of the normalized stresses at a fixed radial distance deep within 
the plastic zone are also plotted for several combinations of remote mode I and III elastic K fields. These 
plots show an unmistakeable pattern : the in-plane stresses are more singular than the out-of-plane shear 
stresses. Over a certain distance, the near-tip in-plane stresses can be said to be more singular than r- ’ ‘“+ ‘) 
while the near-tip out-of-plane shear stresses are less singular than r- I’(“+ I), where I is the radial distance 
to the tip and n is the strain hardening exponent of the material. lmpli~tions of these features as they 
relate to three-dimensional engineering fracture analyses are discussed. 

1. INTRODUCTION 

ASYMPTOTIC plane-strain and plane-stress crack-tip stress and strain fields for power- 
law materials and perfectly plastic materials have been obtained under pure mode I 
and pure mode II conditions (HUTCHINSON, 1968a,b ; RICE and ROSENGREN, I968 ; 
RICE, 1968a) and under pure mode III conditions (RICE, 1968b). Cracks in typicai 
engineering structures are generally subjected to combined mode I, II and III loading. 
Thus, asymptotic crack-tip fields for combined mode loadings are essential to the 
fracture analysis of flawed structures. 

The asymptotic crack-tip stress and strain fields for power-law materials and 
perfectly plastic materials under combined mode 1 and II conditions have been 
presented by SHIH (1973, 1974). Further investigations of the combined mode I and 
II crack-tip fields for perfectly plastic materials can be found in NEMAT-NASSER and 
OBATA ( 1984)) SAKA et al. ( 1986) and DONG and PAN (1989a,b). PAN (1990) studied 
the asymptotic crack-tip fields under combined in-plane and out-of-plane loading 
conditions. However, the coupling of the in-plane mode and out-of-plane shear mode 
fields led to highly nonlinear governing differential equations, which did not appear 
to be amenable to the usual separable solutions. Therefore, the governing equations 
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were perturbed. and the perturbed asymptotic crack-tip fields were obtained under 
the assumption that either the in-plane mode or the out-of-plane shear mode is small 
compared to the other. 

Within the small-scale yielding formulation we have obtained finite element solu- 
tions for a complete range of remotely applied combined in-plane and out-of-plane 
elastic K fields. The in-plane and out-of-plane shear stresses are coupled through the 
effective stress in the plastic stress-strain relations. The out-of-plane shear stresses 
therefore affect the in-plane stresses in the plastically deforming region and See versa. 

The purpose of our study is to examine systematically the effect of the coupling on 
near-tip fields. To elucidate the rather complicated nature of the near-tip fields for 
the complete range of combined-mode loadings, a substantial amount of numerical 
solutions must be presented in an appropriately normalized form. Therefore, solutions 
for combined mode I and III problems are discussed in this paper, and solutions for 
combined mode II and III problems and for combined mode I, II and III problems will 
be presented in subsequent papers. It may be noted that for cases where perturbation 

solutions for the crack-tip fields have been obtained (PAN, 1990). 
solutions and the finite element solutions are in good agreement. 

2. HUTCHINSON-RICE-ROSENGREN (HRR) CRACK-TIP 

the perturbation 

FIELDS 

To describe the elastic-plastic behavior of the materials we consider here, we use 
the Ramberg-Osgood law, which is widely employed for fitting uniaxial tensile stress- 
strain relations : 

(2.1) 

where E is the tensile strain, 0 is the tensile stress, co and o0 are the reference strain 
and reference stress (we take co = 0,/E, where E is Young’s modulus), c1 is a material 
constant and n is the hardening exponent. A generalization of (2.1) can be written as 
the sum of an elastic part E> and a volume-preserving plastic part E!, : 

Eij = &:J+EP,, (2.2) 

where 

(l+v) 
&Fj = -s..+ 

(l-W0 _6 

E ‘I 3E kh 'J' 

(2.3) 

where v is Poisson’s ratio, siJ is the deviatoric stress and oe = (3s,,s,,/2) “* is the effective 
stress. 
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FIG. 1. A crack subjected to combined mode I and III elastic K fields along the circumferential boundary. 

We consider a crack in a Ramberg-Osgood solid, as shown in Fig. I, where r and 
8 are the polar coordinates centered at the crack tip. As r approaches 0, the linear 
elastic part of the strain is negligible compared to the plastic part. The asymptotic 
crack-tip stress, strain and displacement fields can then be expressed as (HUTCHINSON, 

1968a,b ; RICE and ROSENGREN, 1968 ; SHIH, 1973, 1974) 

J ( > 
1/w+ I) 

LTij=(TO ___ 

aoo~oIr 
g,j(e; 4 W, 

J n,qn+ I) 
&,j = Cl&o ( > croocoIr 

E;i(e ; n+ M), 

J n/F+ 1) 

24,--t& = ceOr ~ ( > craoEoZr 
&(e ; 6 W, (2.4) 

where the dimensionless constant Z and the dimensionless angular functions olij, Eij 
and Iii depend upon the hardening exponent n ; the state of plane-strain, plane-stress 
or anti-plane deformation ; and the mode parameter M (mode I, mode II, mixed- 
mode I and II, or mode III). The constants ti, allow for a possible rigid body motion 
of the crack tip itself. The J-integral (RICE, 1968a) in (2.4) represents the amplitude 
of the singular crack-tip stress and strain fields. Recent studies of the asymptotic 
crack-tip fields for power-law hardening orthotropic materials and for power-law 
hardening pressure-sensitive dilatant materials show the same type of functional forms 
as (2.4) for the asymptotic crack-tip fields (PAN and SHIH, 1986, 1988; Lr and PAN, 
1989a,b). 

3. COMPUTATIONAL MODEL 

We consider the small-scale yielding problem depicted in Fig. 1, where the top half 
of a circular domain is shown. We select the upper half of the domain due to the 
nature of symmetry for in-plane mode I and anti-symmetry for out-of-plane mode III 
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deformation. Along the remote circular boundary, displacement fields based on the 
mode I and mode III asymptotic crack-tip solutions for linear elastic materials are 
applied. The in-plane displacements Ui (i = 1,2) and the out-of-plane displacement uj 
are prescribed as 

and 

(3.2) 

where G represents the shear modulus, and K, and K,,, represent the far-field mode I 
and mode III stress intensity factors. The dimensionless functions Cj(8, v) and z&i(8) 
are the well-known linear elastic asymptotic displacement solutions (e.g. see 
KANNINEN and POPELAR, 1985). 

The finite element model of the half circular domain is constructed using 9-node 
quadrilateral Lagrangian elements. Wedge-shaped 9-node elements are used in the 
immediate crack-tip region. The size of the wedge-shaped elements in the radial 
direction is denoted as ri. These elements are surrounded by semi-circular strips of 
elements ; four strips of elements span each decade of rj/YO, where r0 denotes the radius 
of the half circle as shown in Fig. 1. We take ri/ro = IO-” in this investigation. 
Therefore, 60 strips of elements, which are generated by a logarithmic scale, span the 
domain between r/r,, = 10” I5 and r/r0 = 1. Within each strip, the angular distance 
from 0 to 7~ is spanned by 9 elements of equal size. Therefore. the total number of 
elements is 549. 

The finite element formulation for this work will be discussed briefly here. Our 
displacement vector has an extra degree of freedom in the out-of-plane direction in 
addition to the two degrees of freedom of the in-plane displacements for the usual 
displacement-based plane-strain fo~ulation. We used the B-bar method (HUGHES, 
1980) to construct the strain~isplacemel~t matrix of our 9-node quadrilateral 
Lagrangian elements. This method alleviates the poor performance of our quadri- 
lateral Lagrangian elements in the fully plastic range (NAGTEGAAL et al., 1974). The 
solution to the nonlinear system of equations is obtained by using the parameter 
tracking method (SHIH and NEEDLEMAN. 1984). We begin by obtaining the linear 
elastic solution at a load. This solution is then used as the initial estimate in the 
iteration for a mildly nonlinear problem with. say, n = 2. We then use the convergent 
solution for the mildly nonlinear problem as the initial estimate for a more nonlinear 
problem. In this manner, solutions can be obtained for high-hardening to low-hard- 
ening materials. Generally speaking a convergent solution with a Euclidean error 
norm of about 1 O- ’ is obtained after four to five iterations. 

4. MODE MIXITY 

To specify the far-field completely, we need two stress intensity factors, Ic, and iu,,, . 
Here, we treat the angular functions Gj(B,v) and z$“(@ as the known quantities. 
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Alternatively, we can use another set of two parameters, the J-integral and an elastic 
mixity factor, to specify the elastic far-field. The J-integral is related to Ki and Ku, by 

I--v2 1 
J=-E-K:+ ,,K,:,,. 

The elastic mixity factor M<, for our current small-scale yielding formulation is 
defined as 

According to (4.2), & 3 equals 1 for pure mode I and M; 3 equals 0 for pure mode 
III. The value of IV;, is between 1 and 0 for any combination of mode I and III 
loadings. 

Within the plastic zone, the relative strength of the two modes at a distance r 
directly ahead of the crack tip can be expressed by the plastic mixity factor Mq3, 
defined as 

Here r is smaller than the smallest radial extent of the plastic zone. Thus, &f{, equals 
1 for pure mode I crack-tip fields and MT 3 equals 0 for pure mode III crack-tip fields. 
The value of M$, ranges between 1 and 0 for combined mode near-tip fields. The 
plastic mixity factor M{, is a measure of the mixture of the two modes whereas the 
J-integral is a measure of the amplitude of the near-tip fields. Important features of 
the combined mode I and III near-tip fields at the radial distance r can be conveniently 
expressed by the mixity parameter and the J-integral. 

5. NUMERICAL RESULTS 

The defo~ation plasticity solutions for combinations of modes ranging from pure 
mode I to pure mode III and for hardening exponents n ranging from 1 to 10 are 
obtained by the finite element procedure outlined in Section 3. In these computations, 
we set v = 0.3 and 01 = 0.1. Our finite element solutions produced the correct HRR 
singularities, namely r- I’(‘+ ‘I, for the special cases of pure mode I and pure mode III 
remote loadings. For the elastic problem (a test case}, the numerical solutions pro- 
duced the precise elastic l/G singularity for various combinations of mode I and III 
loadings. Furthermore, for each of the convergent solutions, or J values, as calculated 
by the domain integral method (Lr et al., 1985; SEQH et al., 1986; MORAN and SHRI, 
1987) for each of the semi-circular strips, differed by less than one per cent from the 
prescribed value as determined by (4.1). The path-independence of the computed J 
values and the excellent agreement with (4.1) attest to the quality of four finite element 
solutions. 

By the process of parameter tracking, we have obtained solutions for the full range 
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of n values (1 d n d IO) and mixtures of mode I and III. To keep the paper within a 
reasonable length, only solutions for n = 3 and 10 and for remote displacement 
boundary conditions corresponding to five mixities, namely, M’; j = 1, 0.83, 0.5, 0.17 
and 0, are presented in Figs 2-6. These five cases represent the pure mode I, 
k;,JK, = 0.27, &,/Ki = 1, K,/K,,i = 0.27 and the pure mode III cases. 

To examine the dependence of the near-tip stresses on the radial distance r (at fixed 
ti), we plot the normalized stresses (in the X. 1’ and z coordinates) ahead of the crack 
tip as functions of the normalized radial distance to the tip using a log-log scale. The 
numerically determined stresses are normalized by the HRR singularity such that 

Cl, = o,,/qtro(.Vxo*si$) “tn+l’]. The radial distance is normalized by the length of the 
plastic zone, rP, ahead of the crack tip. The normalized stresses plotted in the figures 
are based on the actual computed values in the X, _r and z coordinates along the central 
column (at 0 = 10c) of the Gauss points in the first wedge strip of the elements 

immediately above the symmetry plane. Comparisons of the solutions at different 8s 
as functions of the normahzed radial distance deep within the plastic zone indicate 
that the nature of the singularity is virtuaffy the same. In order to investigate the 
mathematical structure of the near-tip fields and to reveal the similarities (if any) 
between the combined-mode near-tip fields and the pure mode I and mode III HRR 
fields, it is necessary to examine fields that are well below those that are physically 
relevant. For example, we have plotted the radial variations of the normalized stresses 
for distances as small as r/r, z IO- I3 to 1O-‘4 (depending upon the mixity of the 

modes). In appiying these solutions to the analysis of fracture under combined-mode 
loading, fields within such distances would obviously be disregarded. 

To examine the angular variations of the near-tip stress fields, we plot the nor- 
malized stresses ei, (in the r, 8 and z coordinates) as functions of tI at a radial 
distance of r/r, z 1 O- ‘. The normalized stresses plotted in the figures are based on the 
computed values in the x, +r and z coordinates along the central row of the Gauss 
points in the semi-circular strip of the elements at about P/I;, z 10 ‘. 

As mentioned previously, the first ring consists of wedge-shaped elements where 
one edge of every element is collapsed onto a point which is the crack tip. In most of 
our numerical studies, the three nodes at the edge under discussion are tied together, 
and every node at the crack tip displaces together as a single point. We have also used 
a wedge element where the three nodes at the crack tip can displace independently. 
Displacement gradients associated with the latter element contain terms of order (I/r). 

For the purpose of sorting out the radial dependence and the angular dependence of 
the stresses we used stresses computed from elements which are located at distances 
which are several times larger than the linear dimension of the wedge elements. Thus 
the type of crack-tip elements has little or no effect on the numerical results that are 
presented. In addition, for each problem anaIysed, the magnitude of the far-field 
displacement field is chosen so that the maximum extent of the plastic zone size (as a 
function of 8) is about 10 per cent of r. at the most. Thus, the small-scale yielding 
conditions are not violated and the stresses deep within the plastic zone can be 
investigated. We have carried out computations which resulted in values of r-,/r, 

ranging from 0.1 to 0.001. 
Solutions for each of the five cases in the order of departure from mode I are 

presented below. 
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FE. 2. Case 1 (M; 3 = 1, pure mode I) : the normalized stresses 8, at B = 10” as functions of r/r, plotted 
in a log-log scale for (a) n = 3 and (b) n = 10; the normalized stresses 6, at r/r, z lo-' plotted as functions 

oft? for (c) n = 3 and (d) n = IO. 

Case 1: Mel3 = 1 (pure mode I) 

Figure 2 (a and b) shows the normalized opening stress c?,,~, the notarized hydro- 
static stress tTI, and the normalized effective stress 5, at 6 = IO” as functions of the 
normalized radial distance r/r,, in a log-log scale for n = 3 and 10, respectively. It may 
be noted that for cases l-5 shown in Figs 2-6, outside of the plastic zone 
(tog (r/r,) > 0) the variation of the stresses with the radial distance is in agreement 
with the elastic singularity. Within the plastic zone, the stresses begin to level off at 
about r/r, RS lo- 2 for n = 3 and at about r/r, M 1 O- ’ for n = IO. Since the numericaIly 
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FIG. 2c and d. 

determined stresses are normalized by the HRR singularity, the levelling off means 
that the radial variation of the stresses is in accord with the HRR singularity. Indeed, 
the magnitudes of the computed stresses are equal to those of the HRR singularity; 
furthermore, these computed magnitudes appropriate to the HRR singularity are 
achieved much more rapidly for the lower hardehing (n = 10) material. Although we 
have plotted only the stresses eXY, Ch and rS,, the other three stresses (7,,, r?,,Y and 6,: 
show the same trends. In the case of the n = 10 material. which is a representative of 
the hardening characteristics of typical structural steels, the HRR fields are good 
approximations of the actual stresses and strains for r/r,, < lo- ’ (note that r/r,, = IO- ’ 
is a physically relevant distance). 

Figure 2 (c and d) shows the normalized stresses @, at about r/r,, z IO- 3 as functions 
of 8 for n = 3 and n = IO, respectively. The angular functions of the normalized 
stressesclosely resemble the HRR asymptotic solutions (for example, see the solutions 
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FIG. 3. Case 2 (M;, = 0.83, K~,~lK~ = 0.27) : the normalized stresses a; at B = 10” as functions of r/rP 
plotted in a log-log scale for (a) n = 3 and (b) n = IO; the normalized stresses d, at rjr, x IO-’ plotted as 

functions of 0 for (c) n = 3 and (d) n = 10. 

plotted in PAN, 1990). The solutions for this case serve to check the accuracy of our 
finite element solutions. 

Case 2: My3 = 0.83 (K,,,/K, = 0.27) 

Figure 3 (a and b) shows the normalized opening stress c?~,,, the normalized hydro- 
static stress Cs,, the normalized effective stress cf,, and the normalized out-of-pIane 
shear stress C.YZ at 8 = IO” as functions of r/r,, in a log-log scale for n = 3 and 10, 
respectively. As shown in the figures, well within the plastic zone B,= and d, decrease 
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whereas & and Ch increase as r/r, decreases. Note that for this case (and for cases 3 
and 4) the two other in-plane stresses, 6,,. and ~7~~~. show the same trend as that of 
G,.,,. and the other out-of-plane shear stress ~7~~ shows the same trend as that of a,.,. 
This suggests that well within the plastic zone and well within the range of r/r,, 

indicated in the figures, the in-plane stresses are more singular than the out-of-plane 
shear stresses. However, 6,,.Y, 6,, and ~7~ have the tendency to level off, which suggests 
that the mode I HRR field is the limiting solution when ~7~: vanishes as r/r, -+ 0. This 
trend is more clear in Fig. 3(b) for n = 10. Since the contribution of the out-of-plane 
shear stresses (relative to the in-plane stresses) to the effective stress vanishes in the 
limit as r/r,, + 0, the singularity of the in-plane stresses, Ch and 6,, must asymptotically 
approach the HRR singularity. 

As shown in the figures, the weakening of the out-of-plane shear stresses as r/rp 

decreases is more pronounced for low-hardening materials (with large n). From the 
figures, the differences of the singularity of I?,.? in r from the HRR singularity are 
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approximately estimated as 0.03 for n = 3 and 0.04 for n = 10 averaged over ten 
decades of r/r,. These values agree with the value of 0.0462 for n = 3 and 0.0472 for 
n = IO from the perturbation analysis of the asymptotic behavior of the crack-tip 
fields (PAN, 1990). 

Figure 3 (c and d) shows the normalized stresses gjj at about r/r, c IO- 3 as functions 
of 0 for n = 3 and 10, respectively. The angular variations of the out-of-plane stresses 
c?,, and c?@._ differ from those of the pure mode III case (Fig. 6c and d). The charac- 
teristics of these functions, however, agree well with those of the asymptotic analysis 
of PAN (1990). The in-plane stresses nearly preserve the angular functional forms of 
the pure mode T HRR fields (Fig. 2c and d) except for a slight drop of rY,, near 180 
due to the large value of 8,. 

The elastic mixity factor Mq3 is about 0.83 (ao,(O = 0)/~&0 = 0) = 0.27). As 
r/r, decreases from unity, the plastic mixity factor M’;, increases. At about 
r/r, zs lo- 3, the plastic mixity factor NP i3 is 0.89 for n = 3 and 0.93 for F? = 10 
(o&f? = O)/~~~(~ = 0) = 0.17 for n = 3 and 0.11 for n = 10). At a very small distance, 
r/r, z IO- i3, the plastic mixity factor Mp r3 increases to 0.96 for n = 3 and 0.98 for 
n = 10 (a,(0 = 0),%&B = 0) = 0.06 for n = 3 and 0.03 for n = 10). This dem- 
onstrates that the near-tip fields approach the pure mode 1 field as r/r,, decreases, and 
this behavior is more pronounced for low-hardening materials (with large n). 

Case 3 : M; 3 = OS (K,,,,‘K, = 1) 

Figure 4 fa and b) shows the normalized stresses c&, 8&, Cs, and ZTZ at 8 = lo” as 
functions of r/r, in a log-log scale for IZ = 3 and 10, respectively. As shown in the 
figures, well within the plastic zone O,.: and Cr, decrease whereas eJlr and 5, increase as 
r/r, decreases. These stress plots indicate that well within the plastic zone, the singu- 
larity of the in-plane stresses is slightly stronger than that of the out-of-pIane shear 
stresses. For the n = 3 case, which is shown in Fig. 4(a), eYY and 5, tend to level off 
to the HRR singularity while E,, and Cc decrease as r/r, decreases. 

The trends noted above are more clearly developed for the n = 10 case, which is 
shown in Fig. 4(b). Well within the plastic zone, the normalized stresses c?):,., 1F,, and 
CC have nearly leveled off and can be said to be in accord with the HRR singularity. 
The vanishing of @,, as r/r,, + 0 is a sufficient condition for the development of the 
HRR singularity. A comparison of Fig. 4 (a and b) shows that the weakening of the 
out-of-plane shear stresses as r/rp decreases is more pronounced for low-hardening 
materials (with large n). The trends of the numerical solutions (for n = 3 and n = IO) 
strongly suggest that asymptotically, as r/r, -+ 0, the in-plane stresses, @h and CC, 
approach those corresponding to the mode I HRR singularity. 

In Fig. 4(b) (for n = IO), where this behavior is more readily apparent, the difference 
of the singularity of CYZ from the HRR singularity averaged over ten decades of r/r, 
is estimated at 0.04. This value agrees with the value of 0.0472 for n = 10 from the 
perturbation analysis of the asymptotic behavior of the crack-tip fields (PAN, 1990). 
For n = 3 the contribution of the out-of-plane shear stresses to the effective stresses 
compared to that of the in-plane stresses is not small for the range of r/r, considered. 
Therefore, the ~rturbation results of PAN (1990) cannot be used to estimate the 
singularity difference of the out-of-plane shear stresses from the HRR singularity. 
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FIG. 4. Case 3 (MT, = 0.5, K,,,/K, = 1) : the nomalized stresses 6,, at 0 = 10 as functions of r/r, plotted 
in a log-log scale for (a) n = 3 and (b) n = 10: the normalized stresses 6,, at r/r, 4 10m’ plotted as functions 

of 0 for (c) n = 3 and (d) n = 10. 

Figure 4 (c and d) shows the normalized stresses c?,, at about r/r;, z 10 _ ’ as functions 
of 6 for n = 3 and 10, respectively. The angular functions of the out-of-plane shear 
stresses 5,: and Co._ for n = 3 and 10 resemble those of the pure mode III case (Fig. 6c 
and d). In these figures, the magnitude of the in-plane stresses is larger than or 
comparable to that of the out-of-plane shear stresses. but the contribution of the in- 
plane stresses to the effective stress is actually smaller than that of the out-of-plane 
shear stresses. Therefore, the angular functions of the in-plane stresses shown in 
Fig. 4 (c and d) possess some of the characteristics of the perturbed mode I solutions 
(PAN, 1990). 

The elastic mixity factor M;, is 0.5 (o&e = O)/asn(d = 0) = 1). As r/r,, decreases 
from unity, the plastic mixity factor M< 3 increases. At about r/r,, z lo- ‘, the plastic 
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mixity factor M q3 is 0.65 for tr = 3 and 0.76 for n = 10 (ua(8 = O}j~~*(~ = 0) = 0.62 
for n = 3 and 0.38 for n = IO). At a very small distance, r/r, % 10-‘4, the plastic 
mixity factor Mf, increases to 0.81 for n = 3 and 0.95 for n = 10 (o&S = O)/ 
a&@ = 0) = 0.3 for n = 3 and 0.08 for n = i0). This demonstrates again that the 
near-tip fields approach the pure mode I field as r/r, decreases, and this effect is more 
pronounced for how-hardening materials (with large n). 

Case 4: Mq3 = 0.17 (l&/K,,, = 0.27) 

Figure 5 (a and b) shows the normalized stresses Ir,., (5,,, 5c and 5,“: at 6 = 10” as 
functions of r/r,, in a log-log scale for n = 3 and 10, respectively. Within the plastic 
zone for n = 3 (see Fig. 5a), S,.: and Cr, level off rather quickly (the stresses are well 
approximated by the HRR singuIarity in this interval) and then begin to decrease 
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FIG. 5. Case 4 (M;, = 0.17, K,/K,,, = 0.27): the normalized stresses CT,, at 0 = IO as functions of r/r,, 
plotted in a log--log scale for (a) n = 3 and (b) n = 10: the normalized stresses a,, at r/r,, 2 IO-’ plot&d as 

functions of B for (c) n = 3 and (d) t2 = 10. 

slightly. In contrast, the in-plane stress c?,,:~ and ci, increase monotonically as r/r, 
decreases. In Fig. 5(b), which is for n = 10. cfV, and CC, quickly level off and then begin 
to decrease. The in-plane stress eYI and C,, increase and then show the tendency to 
level off as r/r, decreases. The lower limit of the range of r/r,, shown in Fig. 5(a) for 
II = 3 is perhaps not small enough to reveal the unmistakeable trend shown in Fig. 
5(b) forn = 10. 

The numerical solutions support the observation made in connection with the 
preceding cases: well within the plastic zone the in-plane stresses are more singular 
than the out-of-plane shear stresses. Note that 6,.,., c?,, and gf,, tend to level off at values 
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appropriate to the WRR singularity as IY~: decreases with the decrease of r/r,. This 
tendency is more pronounced for low-hardening materials, as shown in Fig. 5(b) for 
n = 10, This trend suggests that as r/r, + 0, the relative contribution of the out-of- 
plane shear stresses to the effective stress vanishes, and the in-plane stresses, CT!, and 
(T, must asymptotically approach the HRR singularity. From the figures, the differ- 
ences of the singularity of d!.,. in r from the HRR singularity are approximately 
estimated at 0.03 for n = 3 and 0.06 for n = 10 averaged over ten decades of r/r,. 
These values agree with the values of 0.0263 for n = 3 and 0.0709 for n = 10 from the 
perturbation analysis of the asymptotic crack-tip fields (PAN, 1990). 

For both n = 3 and n = 10, the magnitude of the in-plane stresses becomes large 
compared to that of the out-of-plane shear stresses as r/r, decreases. For n = 3, the 
contribution of the in-plane stresses to the effective stress is smaller than that of the 
out-of-plane shear stresses for the range of r/pP considered here. Therefore, the results 
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of the singularity difference from the HRR singularity of the finite element com- 
putations agree well with the results of the perturbation analysis of PAN (1990). For 
n = 10, the contribution of the in-plane stresses to the effective stress is still smaller 
than that of the out-of-plane shear stresses within most of the range of r/r, considered 
here. Close to the lower limit of r/r, shown in the figure the contribution of the in- 
plane stresses to the effective stress becomes comparable to that of the out-of-plane 
shear stresses. However, the results of the singularity difference from the HRR singu- 
larity of the finite element computations agree well with the results of the perturbation 
analysis of PAN (1990). 

The results that have been presented show that the near-tip plasticity has the effect 
of increasing the magnitude of the in-plane stresses relative to the out-of-plane shear 
stresses. This effect is clearly revealed by the curves in Fig. 5(b). Here a small amount 
of remote mode I loading added to a dominant mode III loading leads to in-plane 
stresses and hydrostatic stress that are much larger than the out-of-plane shear stresses 
as r/r, decreases. The rather high hydrostatic stresses in the near-tip region may 
provide an explanation for the experimental results obtained under combined mode 
I and III loading conditions by MIGLIN tt al. (1984). The surfaces of their fractured 
test specimens showed the ductile processes of void initiation, growth, and coalescence, 
which are usually associated with high hydrostatic stresses. 

Figure 5 (c and d) shows the normalized stresses ~,j at about r/r, z 1 O- ’ as functions 
of 8 for I? = 3 and 10, respectively. In these figures, the contribution of the in-plane 
stresses to the effective stress is small compared to that of the out-of-plane shear 
stresses. The angular functions of the in-plane stresses, therefore, agree well with the 
perturbed mode I solutions of PAN (1990). The angular functions of the out-of-plane 
shear stresses 6,: and ce, resemble those of the pure mode III case (Fig. 6c and d). 

The mixity factor M’,, is about 0.17 (o&Q = O)/G&C) = 0) = 0.27) at the remote 
elastic far-field. As r/r, decreases from unity, the plastic mixity factor M$.7 increases. 
At about r/r, z 10a3, the plastic mixity factor Mj, is 0.27 for n = 3 and 0.45 for 
n = 10 (a&8 = 0)/a+{@ = 0) = 0.45 for n = 3 and 0.84 for n = 10). At a very small 
distance, r/r, rr, 10-14, the plastic mixity factor M 1, increases to 0.43 for n = 3 and 
0.85 for n = 10 (a,@(0 = 0)/o&0 = 0) = 0.8 for n = 3 and 4.3 for n = IO). This 
demonstrates that the near-tip fields approach the pure mode I field as r/r, decreases, 
and this effect is more pronounced for low-hardening materials (with large n). As 
shown in Fig. 5(b) for I? = 10, the dominant mode switches from mode III at r.ir, = 1 
to mode I at about r/r,, x IOv4. 

Case 5: n/l:, = 0 (pure mode III) 

Figure 6 {a and b) shows the normalized stresses rY,.: and rS, at H = 10” as functions 
of rJr, in a log-log scale for n = 3 and 10, respectively. As shown in the figures, within 
the plastic zone the stresses begin to level off at r/r,, z lo- ’ for n = 3 and at about 
r/r;, 2 10-l for n = 10. In other words, the HRR singularity dominates over these 
distances. Although we have plotted the behavior of the two representative stresses, 
the trend of the other shear stress 5,: is identical. It may be noted that for low- 
hardening materials (with large n), the HRR singularity is approached much more 
rapidly. 
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Figure 6 (c and d) shows the normalized stresses eij at about r/rp x 10e3 as functions 
of 9 for n = 3 and n = 10, respectively. The angular functions of the normalized 
stresses closely resemble HRR asymptotic solutions (e.g. see the solutions plotted in 
PAN, 1990). The solutions for this case serve as a check for the accuracy of our finite 
element program. 

Plastic zones 

Figure 7 (a and b) shows the plastic zone size and shape for Cases l-5 in the 
normalized coordinates 1 (= xai/JE) and J (= ycri/JE) for n = 3 and n = 10, 
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respectively. The results of the plastic zone sizes and shapes for the pure mode I case 
(M‘;, = 1) agree with the results of SHIH (1973, 1974). The plastic zone sizes and 
shapes for MT, = 1 and 0.83 and for N’;, = 0 and 0.17 are close to each other. As 

shown in the figures, when the mode III contribution increases, the plastic zone size 
increases. Also, as the hardening exponent n increases, the plastic zone shifts to the 
front of the tip. This trend agrees well with those of the pure mode I and the pure 
mode III cases. 

6. CONCTLUSIONS 

We have obtained numerical solutions for a crack in a power-law hardening material 
under smafl-scale yielding conditions and for a rather complete range of loadings 
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FIG. 7. The plastic zones for Cases l-5 plotted in the normalized coordinates P (= xo~/JE) and J 
(= .w$,/JE) for (a) n = 3 and (b) n = 10. 

between pure mode I and pure mode III. Our computational results show that within 
the plastic zone, the in-plane stresses are more singular than the out-of-plane shear 
stresses. The qualitative nature and quantitative results for the angular functions and 
the singularity differences of either the in-plane stresses or the out-of-plane shear 
stresses from the HRR singularity under either large M’;, or small MT3 conditions 
agree well with the results from the perturbation analysis of PAN (1990). 

Within the plastic zone, the plots of the normalized in-plane stresses or the nor- 
malized out-of-plane shear stresses as functions of r/rp in a log-log scale in Figs 3-5 
resemble straight lines when one or the other is more dominant. But when the 
contributions of the in-plane stresses and the out-of-plane shear stresses to the effective 
stress are comparable, these lines are curved. In the interval where the in-plane and 
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out-of-plane stresses are comparable, the stresses cannot be expressed in separable 
forms of r and 0. as can those of the HRR fields under either pure in-plane or pure 
out-of-plane shear loading conditions. 

In this paper, we have investigated the stress fields at distances ranging from rjr,, = I 
to r/r, z 10.. I3 to IO- 14. For typical structural steels, finite deformation effects should 
be taken intoconsideration at radial distances to the crack tip smaller than r/r, 2 IO- ‘. 
As mentioned previously, we investigated fields over distances that are well below 
those that are physically relevant in order to study the mathematical structure of the 
plastic near-tip fields. Of course, in applying these solutions to the analysis of fracture 
under combined-mode loading, fields within such physically irrelevant distances would 
be disregarded. 

Within the small-scale yielding formulation. our numerical solutions suggest that 
the out-of-plane shear stresses are less singular than the in-plane stresses. Thus, the 
out-of-plane shear stresses (reiative to the in-plane stresses) become vanishingly 
small as r/r, -+ 0. Nevertheless, the out-of-plane shear stresses may not be negligible 

over length scales that are physically relevant; this can be seen in Figs 3-5. An estimate 
can be made of the magnitude of the stresses at a microstructurally relevant radial 
distance from the crack front using the results presented here and in the perturbation 
analysis of PAN (1990). Finally, under combined mode I and III loadings and small- 
scale yielding conditions, it appears that linear elastic fracture mechanics analysis 
may possibly overestimate the effect of the near-tip out-of-plane shear stresses and 
underestimate the relative magnitude of the near-tip in-plane stresses. 
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