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Intensive Hypercube Communication 

Prearranged Communication in Link-Bound Machines *,+ 

QUENTIN F. STOUT AND BRUCE WAGAR 
Department ofElectrical Engineering and Computer Science, University ofMichigan, Ann Arbor, Michigan 48109-2122 

Hypercube algorithms are developed for a variety of commun- 
ication-intensive tasks such as transposing a matrix, histogram- 
ming, sending a (long) message from one node to another, 
broadcasting a message from one node to all others, broadcast- 
ing a message from each node to all others, and exchanging mes- 
sages between nodes via a fixed permutation. The algorithm for 
exchanging via a fixed permutation can be viewed as a determin- 
istic analog of Valiant’s randomized routing. The algorithms are 
for link-bound hypercubes in which local processing time is ig- 
nored, communication time predominates, message headers are 
not needed because all nodes know the task being performed, 
and all nodes can use all communication links simultaneously. 
Through systematic use of techniques such as pipelining, batch- 
ing, variable packet sizing, symmetrizing, and completing, for 
all these problems algorithms which achieve a time with an opti- 
mal highest-order term are obtained. o 1990 Academic PISS, IW. 

1. INTRODUCTION 

This paper gives efficient hypercube algorithms for a vari- 
ety of communication-intensive tasks. The emphasis is on 
problems where the communication pattern (i.e., which 
nodes are sending information and where it is going) is 
known in advance by all processors, and all messages are 
the same size. This situation is common in SIMD (Single 
Instruction Multiple Data) or SCMD (Single Code Multi- 
ple Data) applications such as matrix multiplication or in- 
version, some database operations, solving PDEs on a regu- 
lar grid, image manipulation, and histogramming. By sys- 
tematic use of a few basic techniques, we develop 
algorithms which are significantly faster than the simplest 
or most common ones, and faster than those published pre- 
viously. Our algorithms show that these techniques are 
quite powerful, and also that it is advantageous to be able 

* A preliminary condensed version of this paper appears as “Passing 
messages in link-bound hypercubes.” In HypercubeMutiprocessors, 1987. 
Heath, M. (ed.), SIAM, Philadelphia, PA, 1987, pp. 251-257. 

’ This research was partially supported by the National Science Founda- 
tion under Grant DCR-8507851 and by the Digital Equipment Corp. 
through an Incentives for Excellence award. 

to use all communication links simultaneously when com- 
munication becomes a bottleneck. 

1.1. Definition of a Hypercube 

A d-dimensional hypercube computer is a distributed- 
memory multiprocessor consisting of 2d separate process- 
ing elements (or nodes), linked together in a d-dimensional 
binary cube network (see Fig. 1). Each node is given a 
unique d-bit identification number (henceforth referred to 
as the node id. ) and two nodes are linked if and only if their 
node i.d.‘s differ in exactly one bit position. Two nodes in a 
hypercube are said to be adjacent or neighboring if they 
share a link. 

Hypercube networks have some useful properties such as 
a logarithmic communication diameter and a totally sym- 
metric layout. Because the number of links per node grows 
only linearly with the dimension, reasonably sized hyper- 
cubes (of, say, dimension 10 or 1.2) can be practically built 
with current technology. NCUBE, Intel, Floating Point Sys- 
tems, Ametek, and Thinking Machines have already intro- 
duced hypercube computers on the commercial market. 

1.2. The Link-Bound Model 

This paper uses a model of hypercubes in which commu- 
nication time is assumed to predominate, and local process- 
ing time by the nodes can be ignored. We are interested in 
problems where extensive communication is required be- 
cause very long messages are being sent, and where all nodes 
are available to participate in the task and know the com- 
munication task being performed. The latter point helps re- 
duce the communication time by ensuring that messages 
need not include header information such as message desti- 
nation, message route, and packet sequence number. Fur- 
ther, we assume that each node can utilize all of its commu- 
nication links simultaneously, where the links between 
neighboring nodes can be used in both directions simulta- 
neously. Thus, a node in a d-dimensional hypercube may 
be handling 2d messages simultaneously, receiving d and 
sending d. This property we call link-bound, as opposed to 
other possibilities such as processor-bound (in which each 
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FIG. 1. Some hypercubes for small d. 

node can do only one operation at a time) or DMA-bound 
(in which there is an upper bound on the number of mes- 
sages which can go in and out of a node at one time). While 
no hypercube can currently use all of its communication 
links simultaneously, several manufacturers are trying to at- 
tain such ability. The NCUBE machines apparently come 
the closest [ 41, and the FPS T-Series machines have nodes 
capable of four bidirectional communications at the 
same time [ 31. The link-bound model has been studied 
in [l, 5-131. 

1.3. Message-Passing Problems 

Throughout the paper, we will look at various hypercube 
communication patterns. Each will involve sending mes- 
sages between some known combination of the nodes. 
These messages will be the same length m, but their con- 
tents may vary between different pairs of communicating 
nodes. It will be assumed that messages may be broken 
down into packets at any time, while existing packets may 
be either recombined or broken down still further, in order 
to facilitate sending, so long as the ultimate destination 
eventually receives the entire original message. Another key 
assumption is that a node receiving a packet must finish 
receiving it before any of its contents can be utilized. This is 
sometimes called the store-and-forward or packet-switched 
model, as opposed to a circuit-switched model. All existing 
hypercubes use store-and-forward. 

We assume that it takes 7rn + p time for a node to send a 
packet of length ~12 to a neighbor, where 

l r represents the transfer rate and 
l p represents the time for start-up and termination. 

In real systems it is generally the case that p 9 7, and hence 
it is important to include the effect of start-up costs. Also 
note that the total internal I/O bandwidth of the computer 
is 2dd~. In general, we treat 7 and fi as constants and ana- 
lyze the algorithms as functions of d and m. As in [ 5-8, 111, 
we ignore the effects of rounding or truncating. Further- 
more, because special cases arise for various relative values 
of the parameters, we will give the exact formulas only for 
m sufficiently large. Because we are most interested in pro- 
cessing long messages, we will call the term containing the 
highest power of m the highest-order term. 

Some of the problems studied in this paper, such as 
broadcasting a message from one node to all others, have 
been considered previously in [ 5, 9, 111. These papers use 
a model similar to the link-bound model but give slightly 
slower algorithms. In particular, Saad and Schultz [ 1 I] con- 
sidered a model where communication between nodes can 
take place in only one direction at a time, so where this 
made a difference, the times of their algorithms have been 
divided by 2 so that they can be compared fairly with ours. 
For most of the problems, several algorithms are developed, 
the last being the fastest (and most sophisticated). In all 
problems, simple arguments show that the best versions of 
our algorithms have optimal highest-order terms. In some 
cases we believe that our algorithms are completely opti- 
mal, but we are unable to prove this because our arguments 
can bound terms involving T, m, and d, or terms involving 
/I and d, but not sums of terms of different types. 

1.4. Notation 

Several of the patterns considered here are oriented 
around one node. For such patterns, it will be assumed 
without loss of generality that node 0 is the special node. 
The set of all nodes (or their corresponding i.d.‘s, depending 
on context) which are distance k from node 0 will be de- 
noted by Ck. Note that because of the symmetry of the hy- 
percube, any algorithm written for node 0 can be converted 
to an identical algorithm for node n E ( 1, 2, . . . , 2d - 1 > 
by exclusive-ORing all node i.d.‘s referenced in the node 0 
algorithm with n. 

Some of the algorithms utilize somewhat subtle message 
routing schemes, for which the following notation will be 
useful. Let 

@k(n) 

denote the node i.d. formed by taking the bit-wise exclusive- 
OR of n and 2 k. That is, it is just n with the kth bit flipped. 
For example, if d = 5, then 01(01001) = 01011 and 
O,( 01001) = 00001. Observe then that the neighbors of 
nodenarenodesG&(n),@i(n),. . . ,@d-l(n).Let 

2 (n) 

denote the left circular-shift (rotation) of the d-bit represen- 
tationofnbyibits,whereiE{O, l,...,J-- l}andn 

E (0, 1, . ..) 2d- l}.Forexample,ifd=5,then& 
(01001)=00101.Foreachn~{1,2,..., 2d- l},letIV, 
denote the set of all bit positions in the binary representa- 
tion of n which are 1. That is, W, is the unique set of integers 
such that 

n= C 2”. 
WE w, 



Likewise, let Z,, = { 0, 1, . . . , d - 1 } \ IV, denote the corre- 
sponding set of O-bit positions of yt . Define 1, : Z, + IV, as 

I min IV, if z>maxW, 

min{wE IV,: w> z} otherwise 

for each z E Z,. That is, I,(z) is the bit position of the first 
1 (in left circular order) after z in n . For example, when d 
= 5, then loloo, ( 1) = 3 and 10,00,( 4) = 0. 

stage as the single packet in BROADCAST 1, and in general 
at the end of stage k each packet has been broadcast to a k- 
dimensional subcube. The modular packet routing guaran- 
tees that no processor is trying to send two packets along 
the same link at the same time. 

Analysis of BROADCAST 2 

2. SENDING THE SAME MESSAGE FROM ONE The analysis is the same as that for BROADCAST 1, only 
NODE TO ALL OTHERS now each stage takes time T( m/d) + p for a total time of 

One of the fundamental hypercube communication pat- 
terns is broadcasting, in which one node has to send the 
same message to all the other nodes in the hypercube. This 
problem has been examined previously in [ 5, 1 I], but our 
algorithms are somewhat faster. It is interesting to note that 
the NCUBE machine has special hardware instructions to 
allow a node to broadcast simultaneously to all of its neigh- 
bors, although the current operating system does not make 
use of these instructions. 

Assume that node 0 is to do the broadcasting. The most 
common and straightforward way to broadcast in a hyper- 
cube is recursive doubling. 

Algorithm: BROADCAST 1 (Recursive Doubling) 

There are d stages, numbered 0, 1, _ . . , d - 1. During 
stage k, nodes 0, 1, . . . , 2k - 1 send the message to nodes 
@k(o), @k( 11, . . . , @k( 2 k - 1) , respectively (and concur- 
rently ). 

Although much improved from the previous version, 
BROADCAST 2 still suffers from the fact that a large per- 
centage of the links are idle most of the time. In fact, half of 
the links are never used (those which are directed toward 
0). A better algorithm would be one in which each link is 
always busy sending data to a node which has not yet seen 
them. This is impossible to achieve fully, but it provides a 
goal to aim for. The next version attempts this in a systolic 
fashion, for the message travels across the hypercube in a 
“wave” going from one Ck to the next, with every node ac- 
tively sending along all of its links when the wave hits it. 

Algorithm: BROADCAST 3A 

Analysis of BROADCAST I 

Each of the stages takes 7rn + p time, so the entire algo- 
rithm requires time 

There are d + 1 stages, numbered 0, 1, . . . , d. Break up 
the message into packets as in BROADCAST 2. During 
stage k, only the nodes in Ck actively send along their d 
outgoing links, each node sending exactly one packet along 
each such link. Every node in Ck receives k distinct packets 
from c&r during stage k - 1 and the remaining d - k pack- 
ets from Ck+i during stage k + 1. 

d( 7rn + /3) = -1 . 

BROADCAST 1 works on only one dimension at a time 
and thus fails to take advantage of the concurrent read/ 
write channels of the link-bound hypercube. To alleviate 
this, it is necessary to symmetrize the algorithm. That is, 
break up the problem into d subproblems and run them 
simultaneously along separate dimensions. 

More specifically, during stage k, each node n E Ck starts 
out with P, for every w E IV,. For each such w, it sends P, 
to node @,( n) E Ck- r . In addition, for each z E Z,, , it sends 
P r,czJ to node O,(n) E C k+, . Figure 2 shows this process for 
d = 3. By induction, it is easy to verify that during stage k 
- 1, a node n E Ck receives P, for every w E I%‘, , receiving 
it from node O,(n) E c&, , where v E I+‘, is such that r,(u) 
= W. During stage k + 1 node n receives Pi from Oi( n) 
E ck+, for each i$ IV,. Therefore, at the end of stage k + 1, 
every node in Ck has received all of the packets. 

Algorithm: BROADCAST 2 

Symmetrize BROADCAST 1. That is, break up the mes- 
sage into d packets PO, P, , . . . , Pd-,,eachofsizem/d.Dur- 

ingstagek,nodesA(O),L(l) ,..., 5 (2k - 1) send Pi 

Analysis of BROADCAST 3A 
The analysis is similar to that of BROADCAST 2, only 

now there are d + 1 stages and, thus, a total time of 

to nodes @(i+k)mod d( 2 (o)), @(i+k)mcd d+ ( 1 I), . . . , 
(d+ l)(r%+8)=~~~m+(d+ 1)BI. 
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@(i+k)mod d (A (2” - 1 )), respectively, for each i in { 0, 1, 
. . . ) d- l}. 

Note that packet PO reaches each processor at the same 
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of the first g - 1 groups, followed by a BROADCAST 3B 
for the last group. These should be done concurrently, but 
staggered one stage apart so that no node is working on 
more than one at a time. To be more precise, there are d 
+ g - 1 stages, numbered 0, 1, . . . , d + g - 2. During stage 
k,eachnodeinC,,k-g+ 1 <j<k,executesstagejof 
BROADCAST 3 for group k - j. 

Analysis of BROADCAST 4 

Each of the d + g - 1 stages now takes T( m/dg) + 0 time, 
so the whole algorithm requires time 

stage 0 stage 1 stage 2 stage 3 
(d+g- 1)~ 

FIG. 2. BROAD-CAST 3A ford = 3. 
dg 

m+(d+g- 1)/3. 

Although slower than the previous broadcast, 3A has the 
By simple calculus, it can be shown that this time is mini- 
mized when 

special property that only nodes in Ck are sending in the kth 
stage. This will be exploited later, but first note that the only 
purpose of the last stage is to send PO, P,, . . . , Pd-, from 
node2d- 1 tonodes00(2d- l),0,(2d- l),. . . ,0d-,(2d 
- I), respectively. 

1, d= 1 

g= d> 2 

Algorithm: BROADCAST 3B 
which produces a final time of 

This algorithm is identical to BROADCAST 3A, but the 
last stage is eliminated by sending a second wave right after 
the first. During stage 1, node 0 relabels PO, PI, P2, . . . , P+, 
asQd-l,QO,Ql,.. . , Qdp2, respectively, and starts a second 
BROADCAST 3A, only this time using QO, Q, , . . . , Qd-, 
in place ofPO, P,, . . . . Pd-, , respectively. This second 

1 [ ;,:;~~mli2+(,v I)& ,:‘:: 

broadcast is run for only d - 1 stages, after which each node 
in Cd-r will have received every packet (and then some). For purposes of comparison, the best broadcast in 15 ] has 

a running time of 
Analysis of BROADCAST 3B 

The one-stage saving results in a final time of ~m+2~m”‘+d& 

d 
( 1 

.;+p =-I, One last observation: BROADCAST 4 is absolutely opti- 
mal if all sends have to use fixed-size packets. To see this, 

the same as the final time for BROADCAST 2. 
suppose the packet size is s. Then each node will have to 

BROADCAST 3 can be speeded up significantly through 
receive at least m/s of these packets and, since only d pack- 

the use of pipelining. Basically, pipelining consists of break- 
ets can be sent out at a time from node 0, at least one such 

ing up a problem into smaller pieces and sending these out 
packet will have to wait (m/ds - 1 )( 7s + p) time for a free 

as separate waves, one after another, in order to keep more 
link before it can leave node 0. To reach node 2 d - 1, this 

of the nodes busy at the same time. It is a useful tool for 
packet will then have to travel d links, which takes time 

speeding up asymmetrical communication algorithms. 
d( 7s + fi), for a total minimum time of 

Algorithm: BROADCAST 4 (d+E- l)(u+p). 

Pipeline BROADCAST 3. That is, divide the message 
into g groups, numbered 0, 1, . . . , g - 1, each of length m/ But this is just what BROADCAST 4 takes when you let g 
g. Execute g - 1 separate BROADCAST 3A’s, one for each = m/ds. 
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3. SENDING FROM ONE NODE TO THE OPPOSITE 
CORNER NODE 

Another important communication pattern is a pattern 
in which some node n sends to its opposite corner (o.c.) node 
2 d - 1 - n . Obviously, this is similar to, and could be ac- 
complished by, broadcasting. Although this might appear 
to waste time, the analysis of BROADCAST 4 shows that 
that algorithm already performs an optimal O.C. send, if one 
is limited to fixed-size packets. This is not to say that vari- 
able-sized packets will help much, for at least (~/d)m + 19 
time is needed just to send all of the data out of node n. 
More important, though, is to cut down on all unnecessary 
communication. Assume that node 0 wants to send to node 
2d- 1. 

Algorithm: O.C. SEND I 

There are d stages, numbered 0, 1, . . . , d - 1. During 
stage k, node 2 k - 1 sends the message to node @k( 2 k - 1) . 

Analysis of O.C. SEND 1 

Identical to BROADCAST 1: 

d( 7m + 0) = -1 . 

Algorithm: O.C. SEND 2 

Symmetrize O.C. SEND 1. That is, break up the data into 
dpackets PO, PI,. . . , P&, , each of size m/d. During stage 

k, node +!J (2k - 1) sends Pi t0 node @ci+k)md d( & ( 2k 
- l))foreachiE{O, l,..., d- 1). 

Analysis of O.C. SEND 2 

Identical to BROADCAST 2: 

d 
( 1 

.;+p =-I. 

These algorithms reduce the total communication 
needed in their broadcast equivalents considerably. Unfor- 
tunately, they do not save any time. In order to do that, it 
is necessary to speed up the intermediate stages. 

Algorithm: O.C. SEND 3 
There are d stages, numbered 0, 1, . . . , d - 1. The packets 

will vary in size depending on the stage. During stage k, 
only the nodes of Ck will be sending, while only nodes in 
Ck+l will be receiving. At the start of stage k, the data start 
out evenly distributed among each of the ( f) nodes in Ck. 
Each such node then breaks up its data into d - k equal- 
sized packets and sends a different one out along each of its 
d - k links to Ck+r , at which point the message will be 
evenly distributed among Ck+, ‘s nodes. 

Analysis of O.C. Send 3 

Stage k takes time 

so the entire algorithm requires 

Kd-17 =-m+dfi , 
d 

I  

where 

d 1 
Kd = kFo t;l> . 

To help understand Kd, note that its first six values are 1, 
2,2$, 2$, 2;, and 2:. Ford >, 5, 

2+‘<&<2+‘+ 4 6(d- 5) 
d d d(d- 1) +d(d- l)(d-2) 

<2+2+ 10 
d d(d-1)’ 

and hence. 

The upshot of all this is that O.C. SEND 3 is faster than 
BROADCAST 3 by a factor of about d/2. Like BROAD- 
CAST 3, O.C. SEND 3 also lends itself well to pipelining. 

Algorithm: O.C. SEND 4 

Pipeline O.C. SEND 3. That is, break up the message into 
g groups of length m/g and execute g separate O.C. SEND 
3’s, one for each group. These should be done concurrently, 
but staggered one stage apart. Because O.C. SEND 3’s stages 
have varying lengths, there will be no synchronization be- 
tween the various stages of O.C. SEND 3 being worked on 
for each of the groups. Since O.C. SEND 3’s first stage, 
which takes time T( m/dg) + /3, is at least as long as its other 
stages, it sets the rate at which the groups can be started. 
Each node will be able to complete sending the previous 
group by the time it has finished receiving the next group. 

Analysis of 0. C. SEND 4 

Due to the fact that there is no chance of conflict, the time 
needed for this algorithm is just the time needed to start the 
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first g - 1 O.C. SEND 3’s, as well as all of the time needed 
for the last one. This works out to be 

Kd-,r m m 
d ;+dO 

= g+Kd-1 - 1 
& 

Tm+(g+d- l)p, 

which is minimized when 

1, 

if----- 

d= 1 

g= tKd-l - 1)Tm1,2, d> 2 
@ 

A . 

This produces a final time of 

/I. 
I I 

Note that this is identical to the time for BROADCAST 4, 
except that the coefficient ofthe m ‘I2 term has been reduced 
by a factor of approximately m. 

A final observation about the O.C. SEND algorithms: 
they only use links in one direction (i.e., toward node 2d - 
1). Consequently, another O.C. send could be done from 
node 2 d - 1 to node 0 concurrently (that is, an opposite 
corner exchange) since each would use different links. 

4. SENDING MESSAGES BETWEEN TWO 
ARBITRARY NODES 

One of the more interesting questions that can be asked 
is: Given the full use of the link-bound hypercube, what is 
the fastest possible time for one node to send to an arbitrary 
node distance n away ( 1 < n < d)? For simplicity, assume 
that node 0 is sending to node 2” - 1. 

Algorithm: ARBITRARY SEND I 

Use O.C. SEND 4 on the n-dimensional subcube con- 
tainingnodeso, 1,. . .,2”- 1. 

Analysis ofARBITRARYSEND 1 

1 \ irn+2\,l(K,-‘i 1)87m1/2+(n- l)& n>2 1’ 

I I 

Like previous algorithms, this algorithm fails to make use 
of the tremendous bandwidth available and is slower than 
broadcasting for all n < d. 

Algorithm: ARBITRARY SEND 2 

Use BROADCAST 4, deleting the last d - 2 - n stages if 
n < d - 2. These stages were only needed to get the message 
to nodes farther than distance n from node 0. 

Analysis ofARBITRARY SEND 2 

There are 

n+g- 1, O<n<d-2 

d+g- 1, d-2<n<d 

stages, which produce minimum times when 

d= 1 

, l<n<d-2 

(d- 117 m,,2 

43 
, Osd-2<n<d. 

The corresponding times are then 

‘rm+& d=l 

~m+2~~m’/‘+(n+ l)& 

lcn<d-2 

’ im+2dTm’/‘+(d- l)p, 

O<d-2<n<d \ 

Closer inspection of BROADCAST 3 reveals that yet an- 
other stage can be saved when df 2 < n < d - 2 and a frac- 
tion of a stage saved when 1 < n < d/2, but these only re- 
duce the m ‘I2 and /3 coefficients by negligible amounts. 
What is needed is a way to combine the link utilization of 
BROADCAST 4 with the efficiency of O.C. SEND 4. With 
this in mind, it is necessary to look at a new communication 
pattern, the extended O.C. ( x.o.c.) send. It is similar to a reg- 
ular O.C. send, except that the sending and receiving nodes 
are connected to opposite corners of an n-dimensional sub- 
cube S , and all communication must go through S . 
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Algorithm: X.O.C. SEND 1 

This algorithm is identical to O.C. SEND 3, except that 
two stages, numbered - 1 and n, are added to send the items 
into and out of S . 

Analysis ofX.0.C. SEND 1 

The first and last stages each take time rm + ,L?, so the 
entire algorithm requires 

2(7m + p) + K-17 -mm+/3 
n 

2”+1+2”-1,2”+2through2”+2+2”-1,...,2d~’through 
2d-‘+2”- 1). 

Analysis ofARBITRARY SEND 3 

The d - n + 1 separate sends use different links, so they 
can all be done concurrently with no conflicts. Each of the 
X.O.C. SEND 2’s of length m/d takes time 

irn+2 \:/(n+K,,)i”im’/‘+(n+ l)p 

whereas the O.C. SEND 4 of length rim/d requires 

n= 1 

Algorithm: X.O.C. SEND 2 

Pipeline X.O.C. SEND 1 as in O.C. SEND 4. There 
im+2dTm112+(n- l)p, 2<n<d. 

are still g groups of m/g items apiece, only in this case the 
T( m/g) + p time needed to move a group out of the sending Hence, the X.O.C. SEND 2’s will be slower than the O.C. 
node sets the pace for the rest of the stages. SEND 4 whenever 

Analysis of X. 0. C. SEND 2 
n + K,-, 

2 K,-, - 1, 
n 

The analysis is similar to that of O.C. SEND 2. The total 
time needed is which is true by inspection for 1 G n < 4 and is false for 

larger n since 
(2n + K,-,)T m 

n g + (n + 2)P 

= kn + n + K-,)7 m + (g + n + 1 )P, holds for all n > 4. What this all means is that the actual 
m time for ARBITRARY SEND works out to 

which is minimized when 
I- 

g= (n + K-h m1,2 
no 

with a resulting time of 

rm+2 \Vmll’+(n+ 1)/3 
I n 

I  

Algorithm: ARBITER Y SEND 3 
This compares to the 

Break up the data into d - n + 1 packets, d - n of which , 

I. i 

’ Trn+P, d=n=l 

~m+Z:(n+loPim”i+(n+ l)p, 

l<n<4 and n<d-1 

( ~m+2p7-7ml,2+(n- I)& 

5<n<d or n=d>,2 \ 

contain m/d apiece while the other contains the remaining 
rim/d items. Send the larger packet via an O.C. SEND 4 
through the subcube T containing nodes 0 and 2” - I as 

:m+2 dFrn”‘+(n+ 1)/I, n<d- 1 

opposite corners. Send each of the other d - n packets via 
an X.O.C. SEND 2 through different d - n n-dimensional 
subcubes which both run parallel to T and are distance 1 ! 

irnf2 $777 m’12 +(d- l)p, n=d 

from T (i.e., the subcubes containing nodes 2”+’ through needed in [ 111. 
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As was the case with O.C. SEND 4, ARBITRARY SEND 
3 is only a slight improvement over broadcasting. More im- 
portantly, it uses only one link between nodes, so an arbi- 
trary exchange is possible between two nodes in the same 
amount of time by using the links in the other direction. 

5. SENDING DIFFERENT MESSAGES FROM ONE 
NODE TO EVERY OTHER NODE 

The next communication pattern we look at is a pattern 
in which one node needs to send a different message to each 
of the other nodes. This operation has no standard name 
(it was referred to as “scatter” in [ 1 I] and “personalized 
communications” in [ 5 ] ), so we will call it distributing. Its 
dual operation, collecting, where one node has to receive a 
message from each of the other nodes, is exactly the same 
operation, only run in reverse. Hence, it suffices to design 
and analyze distributing algorithms. 

Both of these operations are useful in asymmetrical situa- 
tions where one node of the hypercube acts as a master pro- 
cessor and the others as its slaves. The master distributes 
different data sets to each of the slaves, which in turn per- 
form computations on them. Then the master collects all of 
the results. 

Assume without loss of generality that node 0 is the dis- 
tributing node. The following algorithm makes use of O.C. 
SEND 2, which is executed on every subcube containing 
node 0. 

Algorithm: DISTRIBUTE 1 

There are d stages, numbered 0, 1, . . . , d - 1. Each node 
is sent its corresponding message via a separate O.C. SEND 
2 applied to the subcube containing it and node 0 as oppo- 
site corner nodes. These 2d - 1 O.C. sends are run concur- 
rently, with batching, and are staggered so that the one to 
Cd goes first, followed by the ones to C&i, then C-2, etc. 
Specifically, during stage k, the (p) nodes in Cj, 0 G j G k, 
do their share of the work for the (&) = (kd_/) O.C. SEND 
2’s whose destinations are in C&-k. 

Analysis of DISTRIBUTE 1 

The time for each stage depends on the maximal number 
of data being sent out over a single link. For stage k, Cj con- 
tains (k~j) messages of length m to be sent out evenly along 
its (f)( d - j) = (“7’ )d links to C,,, . This means that each 
such link sends a packet of length 

Ckcj>m 

(d;‘)d ’ 

which is maximized whenj = 0, for 

(kd_i) (k-(&l)) 
m’c:‘r:, 

holds for all i E { 0, 1, . . . , k - 11. Consequently, the time 
spent by node 0 during each stage is longer than that spent 
by nodes in any other C,, so the total time for the algorithm 
is 

The distribute algorithm in [ 1 l] had a time of 

(2d- l)mz+dfl 

and that in [ 51 had a time strictly greater than ours. The 
time in [ 51 is difficult to represent, but it has the pro- 
perty that for fixed d > 1, the coefficient of m is strictly 
greater than (zd - 1)/d but tends to (2d - 1)/d as d ap- 
proaches cc. 

Note that, as was the case with the O.C. send algorithms, 
DISTRIBUTE 1 uses links in only one direction, namely 
toward node 2 d - 1. Hence, a DISTRIBUTE 1 from node 
2d - 1 can be done concurrently using the opposite set of 
links. Also, for m sufficiently large (depending on the values 
of 7, 6, and d), it is possible to reduce the p coefficient, 
which represents the number of stages or waves of data leav- 
ing node 0, by grouping together some of the waves as they 
leave node 0 and then breaking them apart in C, . For exam- 
ple, using d = 3, first a wave containing messages for C2 and 
CX is sent out, taking $rn + p time to leave node 0. When 
this wave arrives at the nodes of C, , the portion destined for 
C3 is sent, taking &rn + fl time, and then the portion des- 
tined for C2 is sent, taking irrn + /3 time. When the portion 
destined for C3 reaches the nodes of Cz, it is sent on to C3, 
taking $m + p time. Meanwhile, the second wave sent by 
node 0 contains messages destined for C, , taking 7rn + p 
time. Messages for C, finish arriving at time $m + 2@, mes- 
sages for C2 finish at time 2rm + 3& and messages for C3 
finish at time $rn + 3p. If m/3 > 6, then all messages 
arrive by $m + 20, which has improved upon the coeffi- 
cient of /3. This can be shown to be absolutely optimal. This 
approach is extended in DISTRIBUTE 2. 

Algorithm: DISTRIBUTE 2 

Fix d, let k be the smallest integer such that 

d(d-l)k-1>2d-1 
d-2 ’ ’ 

and let r be such that 

d 
rk- 1 -= 2d- 1. 
r- 1 
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(Since r may be irrational, in practice one may prefer to use 
some rational r’ such that r < r’ < d - 1.) There will be 
exactly k waves. Wave k will be those messages destined for 
C1, where each link from node 0 carries a message of size 
m. Wave k - 1 starts from node 0 with packets of size rm 
along each link and will contain all of the messages for C2 
and (for large d) portions of each of the messages for C3, 
where the portion is chosen to fill the packet size. Wave k 
- 2 will start with packets of size r2m, containing the rest 
of each of the messages for C3, plus messages for C4, plus 
(for sufficiently large d) portions of messages for Cs . Each 
wave starts with packets r times larger than the following 
wave and contains messages destined for a set of further 
C’s. When a wave reaches the nodes of C, it is broken into 
wavelets, one for each of the destination Ci in the wave. 
These wavelets continue on to their destination, adjusting 
the packet sizes at each step as in DISTRIBUTE 1 but not 
subdividing into smaller wavelets. 

Analysis of DISTRIBUTE 2 

Since the bandwidth from C, to C2 is d - 1 times the 
bandwidth from 0 to C, , and r < d - 1, for m sufficiently 
large each wave can be sent on from C, before the next wave 
arrives. The reason m must be sufficiently large is that the 
breaking into wavelets introduces additional p terms, but 
since r is less than d - 1 there is a slight bit of extra band- 
width, which can mask the extra start-up for sufficiently 
large m. As in DISTRIBUTE 1, it can be shown that, for 
sufficiently large m, all wavelets reach their destination by 
the time the last wave reaches C, . Therefore the total time 
is determined by the time it takes node 0 to send all k waves, 
which is 

(2d- 1)r 
d 

m+kp=i(2dd ‘)‘m+&~~. 

This algorithm shows that one cannot obtain a lower 
bound by simply adding the bandwidth lower bound, which 
determines the optimal coefficient of m, to the start-up 
lower bound, which shows that at least do time is needed to 
move any message across the hypercube. In general one can 
only take the maximum of these two components as a lower 
bound, since operations can be overlapped. 

6. COMPLETING HYPERCUBE ALGORITHMS 

Completing a hypercube operation refers to taking an op- 
eration centered around one node and then simultaneously 
performing it on all of the nodes. This produces highly sym- 
metrical communication patterns which utilize all of the 
available bandwidth. 

The simplest way to complete an operation is just to run 
2d single-node operations concurrently. In terms of algo- 

rithms, this amounts to using the same number of stages as 
that used by the single-node version. During each stage of 
the complete algorithm, however, each node does all the 
work necessary for the corresponding stage in all of the sin- 
gle-node algorithms. Link conflicts are resolved by 
batching, that is, grouping together all of the separate pack- 
ets that have to be sent along a particular link during the 
same stage and sending them as one big packet. This also 
reduces communication overhead (i.e., 0 terms) consid- 
erably. 

The best single-node algorithms to complete are usually 
the simplest versions which still take advantage of the con- 
current link capability. Sophisticated techniques such as 
pipelining and link balancing are not necessary because the 
complete operations are so symmetric. The first operation 
to be completed will be the broadcast. This pattern is useful 
for various matrix operations as well as vector multiplica- 
tion. 

Algorithm: COMPLETE BROADCAST 

Complete BROADCAST 2. There are d stages, num- 
bered 0, 1, . . . . d - 1, and during stage k, each node 
does its share of the work for the corresponding stage of 
BROADCAST 2 for all (p) nodes which are distance k 
from it. 

Analysis of COMPLETE BROADCAST 

During stage k of BROADCAST 2, the total number of 
data being sent out is 2 kdm / d = 2 km, so the corresponding 
number being sent out in COMPLETE BROADCAST is 
2d2 km. Due to the overall symmetry of COMPLETE 
BROADCAST, these outgoing data will be evenly divided 
among all 2dd links of the hypercube, so each link ends up 
sending a packet of size 2km/d. Therefore, the time for the 
algorithm is 

For purposes of comparison, note that Saad and Schultz 
[ 1 l] produced an “optimal” complete broadcast (which 
they referred to as a “total exchange”) with a running time 
of 

(zd + d*b m + d@ 
d 

The next operation to be completed will be the O.C. send. 
A complete O.C. send, henceforth referred to as an inversion, 
is another fundamental communication pattern useful for 
reversing the order of data which are stored by node i.d. and 
for transposing matrices (to be discussed later). 
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Algorithm: INVERSION (Complete Opposite Corner 
Send) 

Complete O.C. SEND 2 in exactly the same manner as 
BROADCAST 2 was in COMPLETE BROADCAST. 

Analysis of INVERSION 

During each stage of O.C. SEND 2, a total of d packets of 
size m/d were being sent over separate links. Now there are 
2 dd such packets, but there are also that many links and the 
symmetry of the algorithm guarantees that no more than 
one packet will be sent along the same link during a stage. 
Thus, the time for INVERSION is identical to O.C. SEND 
2: 

d 
( 1 
.;+p =-I. 

Now consider the ultimate communication pattern, the 
complete exchange. This is when every node wants to send 
(as well as receive) a different message to (from ) each of the 
other nodes. In other words, it is the same thing as complet- 
ing the distributing or collecting operations. The complete 
exchange turns out to be useful for matrix transpositions as 
well as random communication patterns (both to be dis- 
cussed later). In [ 111, complete exchange was called 
multigather/scatter. 

Algorithm: COMPLETE EXCHANGE 

Just complete DISTRIBUTE 1 in the same manner that 
O.C. SEND 1 was completed to produce INVERSION. 
There are still d stages, numbered 0, 1, . . . , d - 1. 

Analysis of COMPLETE EXCHANGE 

As in INVERSION’s analysis, all that has to be deter- 
mined is the amount of data each node has to pass along 
each stage. Basically, every node starts out with (2 d - 1) m 
items which have to be sent out to the other nodes. During 
stage k, it starts sending messages to the (i) nodes which are 
distance k away. No messages reach their proper destina- 
tions until the last stage, which means that a total of 

24 ; 
j=O ( 1 

messages are being worked on during stage k. Due to the 
symmetric pattern of the sends, each of the 2dd links thus 
sends a packet of size 

;cJ,=;!4-‘,, 
j-0 d j=od-j ’ 

so the algorithm needs time 

compared to the 

2d--’ drm + do 
needed by the corresponding algorithm in [ 1 I]. 

Finally, sometimes a situation arises where each node 
wants to send to one other node as well as receive from just 
one node. This will be termed a permuted send, although in 
some ways it is analogous to a complete arbitrary send. An 
obvious example is an inversion. Another one is when each 
node wants to send to the next higher-numbered node 
( mod 2 d), which can be thought of as a rotation. 

There are 2d! such permutations, so determining the 
most efficient algorithm for each one seems neither possible 
nor practical, although recently some papers have appeared 
analyzing specific permutations [ 8, lo]. For arbitrary per- 
mutations, however, a deterministic analog of Valiant’s 
randomized routing [ 12, 131 can be employed. It consists of 
two complete exchanges: one to disperse all the data evenly 
throughout the cube and another to collect them all at the 
appropriate destinations. We explicitly use the fact that all 
nodes know the permutation being performed so that desti- 
nation information need not be sent with the data. 

Algorithm: PERMUTED SEND 
Each node breaks up its m items into 2 d packets of ml 2 d 

items apiece. These packets are distributed throughout the 
cube via a complete exchange so that each node has one 
packet from every node in the cube. Since the communica- 
tion pattern is a permutation, this also means that each 
node has a different packet to send to every other node in 
the cube. As a result, another complete exchange can be 
used to route all of the packets to their correct destinations. 

Analysis of PERMUTED SEND 
There are two complete exchanges, each involving mes- 

sage lengths of m/ 2d items, so the time needed for PER- 
MUTED SEND is 

2 2d-‘+d+d/3 =l+l. 

7. MATRIX TRANSPOSITION 

Transposing a matrix in a hypercube is an interesting 
communication problem which can make good use of some 



INTENSIVE HYPERCUBE COMMUNICATION 177 

of the algorithms developed so far. It has been considered 
previously in [ 9, 1 I], but faster algorithms will be devel- 
oped here. Suppose you want to transpose an N X N matrix 
M stored in a d-dimensional hypercube, with each node 
containing N2/2d entries. It is necessary to specify exactly 
how M is stored, where the usual ways are either by rows 
(columns) or as square submatrices. Storage by rows is the 
easier of the two. so it will be considered first. 

7.1. Storage by Rows (Columns) 

There are many ways of storing by rows (columns), 
where we assume that N is evenly divisible by 2 d. For exam- 
ple, the rows may be stored by partitioning the rows into 
blocks of N/2d consecutive rows, where the assignment of 
blocks to nodes may or may not use a Gray code. Or it may 
be that a striped pattern is used, partitioning the rows into 
sets of rows 2 d apart, again with variations possible on how 
the sets are mapped onto the nodes. However, no matter 
what method is used to assign rows to nodes (as long as the 
assignment evenly distributes the data), to perform trans- 
position each node must send exactly N2/ 2 2dentries to each 
other node. In other words, a complete exchange has to be 
performed with a message length of N2/ 2 2d. This takes time 

2d-‘~$d+ d(3 = +, N* + dfi , 

as compared to 

*N2+dfi 2d+’ 

neededin [II]. 

7.2. Storage by Submatrices 

When stored as submatrices, it is convenient to assume 
that d is even, say d = 2 c, and that N is evenly divisible by 
2’. Assume that M has been partitioned into submatrices 
Mx,y,x,~W, I,... ,2’ - 1) , where M,,Y is formed by the 
intersection of rows 

xN/2’+ 1 through (x + l)N/2’ 

with columns 

yN/2’+ 1 through (y+ l)N/2’. 

Let G denote any permutation of ( 0, . . . ,2” - 1 } , and as- 
sume that M,,y is stored in node G(x)2’ + G(y). Typical 
choices for G include the identity, in which case this is 
known as row-major ordering, or a Gray code, in which case 
adjacent submatrices are stored in adjacent nodes. No mat- 
ter what G is used, transposition reduces to the problem of 

node a2’ + b exchanging its entries with node b2’ + a, for 
alla,bE{O,l,... ,2” - 1 } , We provide an algorithm for 
this operation. 

First observe that this is a permuted send with message 
length N2/2d. Hence, it can be accomplished by using PER- 
MUTED SEND in time 

This is twice as long as when M is stored by rows, yet on 
average, each item moves only half as far. Consequently, it 
would not be unreasonable to expect there to be an algo- 
rithm which works in half the time. 

In fact, such an algorithm does exist, but describing and 
analyzing it requires examining the bit patterns of the node 
i.d.‘s. Consider node a2” + b, where a, b E { 0, 1, . . . , 2’ 
- 1 } . In their base two representations, a and b differ by, 
say, k bits, and agree on the other c - k. Now let Sa,b denote 
the set of all nodes whose first c bits of their i.d.‘s differ from 
their last c bits in exactly the same k positions that a and 
b do. 

Observe that Sa,b contains 2 k nodes. By themselves, they 
do not form a proper subcube, but something close to one. 
The distance between any two nodes of Sa,b is always even, 
and if there were links between the nodes that are distance 
two apart, then Sa,h plus these new connections would form 
a k-dimensional hypercube. 

With these thoughts in mind, define a logical link be- 
tween two hypercube nodes A and B, which are distance 
two apart, to be the four physical links which connect A and 
B along the two possible paths of length 2 (see Fig. 3). Let 
C and D denote the intermediate nodes connecting A and 
B. A logically connected ( l.c. ) subcube can then be defined 
to be a subset of nodes whose logical links connect them 
together in a hypercube network. 

That said, Sa,b is a l.c. subcube. Furthermore, its interme- 
diate node i.d.‘s have the property that their first c bits differ 

6-l 

A - physical link 

----- logical link 

FIG. 3. Logical and physical links between two nodes. 
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from their last c bits in precisely k - 1 positions. Finally, 
from the definition of Sa,b, every node in the hypercube 
belongs to exactly one such l.c. subcube. Combining these 
last two statements, it becomes apparent that no two such 
subcubes can share the same physical link. As a conse- 
quence, algorithms can be run concurrently on all of these 
l.c. subcubes without the possibility of link conflict. 

Returning to the original problem, node a2’ + b can ex- 
change data with node b2’ + a by simply performing an O.C. 
exchange in Sa,h. In fact, every node in Sa,h can exchange 
data with their corresponding node for the transposition by 
performing an inversion in Sa,b. This brings up the need 
then for an inversion algorithm for l.c. subcubes. 

Inversion in a Logically Connected Subcube 

Sending data along a logical link is equivalent to doing 
an O.C. send in a 2-dimensional hypercube. Hence, a stan- 
dard send (O.C. SEND 4) would take time 

to perform, so a l.c. inversion could be accomplished by 
performing a regular INVERSION using these logical 
sends. For a k-dimensional l.c. subcube, this would require 
time 

k(f;+? $(:)“‘+/3) 

behind the regular nodes. Therefore, kp + 1 send stages are 
needed, so the algorithm runs in time 

(kp+ U(&y+L?), 

which is minimized when 

p=l 
k 

This produces a final time of 

Observe that this time is the same time as that needed by 
INVERSION for a 2-dimensional cube. Also, it is indepen- 
dent of k as long as m is large enough to ensure p 3 2. 

Algorithm: MATRIX TRANSPOSITION (Stored by 
Submatrices) 

With L.C. INVERSION, transposing M becomes trivial. 
Just perform it on every l.c. subcube of M . 

Analysis of MA TRIX TRANSPOSITION 

Since the l.c. inversions can all be done concurrently 
without overlap, and all take the same amount of time, the 
transposition is completed in time 

=Im+2 + k@ d-0 , 
(3~ N2 “2+B - - 
2 2d I 

As long as the number of packets sent out along each physi- 
cal link in a logical send is at least 2, however, then there is 
no point in waiting for all of the incoming packets to arrive 
before starting to pass them along. That is, after all, the 
whole idea behind pipelining. 

Algorithm: L.C. INVERSION 

Perform a regular INVERSION along the logical links of 
the l.c. subcube, making sure to pipeline the stages together 
and breaking the data up into at least four packets so that 
incoming packets start arriving no later than when the last 
of the outgoing packets are being sent out. 

Analysis of L.C. INVERSION 

Let p denote the number of packets to be sent out along 
each outgoing physical link (note that p has to be at least 
2). Then the packet size for each send is m/2kp. With pipe- 
lining then, it takes a total of kp sends for each node to pass 
along its data, with the intermediate nodes being one send 

= 7N2+2 
2d+l 

which is nearly the same time needed when M was stored 
by rows. This is approximately half of the 

$,yz+(d- 1)~ 

time required in [ 91, where it is assumed that fl is zero. 

8. HISTOGRAMMING 

The same techniques used previously can be applied to 
the problem of histogramming. We consider a simple vari- 
ant in which there are m different “bins,” each node starts 
with a value for each of the bins, and the goal is to find the 
sum of the values for each bin. The sum for bins im/2d 
through(i+ l)m/2d- lwillbeinnodei.(Ifitisdesired 
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that all nodes contain all sums, then a complete broadcast 
can be used at the end.) We assume that each value and sum 
is of unit length. 

Algorithm: HISTOGRAM 

First consider the algorithm where the data are ex- 
changed one dimension at a time, using recursive halving 
to decrease the number of subtotals in each node. During 
the first stage, nodes in the bottom half of the subcube send 
up their values for the second half of the bins to their neigh- 
bors in the upper half, which are concurrently sending 
down their values for the first half of the bins. Each node 
adds the values received to its own, and recursively contin- 
ues on to the next stage. The final HISTOGRAM algorithm 
is just the symmetrized version of this simple algorithm. 

Analysis of HISTOGRAM 

For the unsymmetric algorithm, stage k, 1 < k < d, takes 
(~/2 ‘)m + p time, so for the symmetric algorithm it takes 
(7/d2k)m + p time. The total time is 

9. OPTIMALITY OF THE ALGORITHMS 

As was mentioned earlier, the coefficients of the high-or- 
der terms are the least possible. In all cases, a proof can be 
given based on a simple counting argument. The easiest 
such approach is 

pick a subset S of links, 
show that the total message load that must be sent over 
S is at least some amount a, and 
conclude that at least one link sends at least a/ 1 S I and, 
thus. takes at least 

%rn+p 
ISI 

time doing so. 

For example, in BROADCAST, O.C. SEND, ARBI- 
TRARY SEND, DISTRIBUTE, and HISTOGRAM, let S 
be the d outgoing links of node 0. Then a is m, m , m , ( 2 d 
- 1) m , and ( 1 - 2 -d) m , respectively. In the case of COM- 
PLETE BROADCAST, pick S to be the d incoming links 
to node 0 and set a to (2 d - 1) m , since node 0 receives a 
different message from each other broadcast. For INVER- 
SION and COMPLETE EXCHANGE, consider S to be the 
2d links connecting nodes 0, 1, . . . , 2d-’ - 1 in the “lower” 
subcube L with nodes 2d-1, 2d-’ + 1, . . . , 2d - 1 in the 
“upper” subcube U . Then a is 2dm and 2d2d-‘m, respec- 
tively, since every node in L sends one and 2d-’ messages, 

respectively, to the nodes in U (and vice versa). PER- 
MUTED SEND is optimal since it is slower than the special 
case INVERSION by only an additive d@ Finally, for MA- 
TRIX TRANSPOSITION, when the matrix is stored by 
rows or columns the problem is just COMPLETE EX- 
CHANGE, which was shown to be optimal. When the data 
are stored as submatrices, let S be all d2d links. Then a is 
dN*/ 2 since the total distance traveled by all messages, each 
of size N2/2d is d2”l. 

The lower bound for the permutation reflection, where 
every node in L exchanges with its corresponding neighbor 
in U , has the same highest-order term as does inversion (by 
the same argument). This occurs despite the fact that re- 
flection is a fixed-point free permutation with the smallest 
total message distance, while inversion has the greatest total 
message distance. Given this, and the fact that PER- 
MUTED SEND shows that all permutations can be routed 
with this highest-order term, one might guess that all fixed- 
point free permutations require the same highest-order 
term. (If permutations with fixed points are considered, 
then the identity can be completed in zero time.) However, 
it has been shown that some fixed-point free permutations 
can be routed with a highest-order term smaller than that of 
reflection [ lo], and therefore PERMUTED SEND is only 
worst-case optimal among fixed-point free permutations. 

Beyond the highest-order term, we believe that some of 
the algorithms herein are absolutely optimal. Unfortu- 
nately, we have generally been unable to prove this because 
of the difficulty in finding good lower bounds which go be- 
yond the highest-order term. Such bounds must incorpo- 
rate both bandwidth considerations and an accounting of 
start-up times, but, as we noted in Section 5, one cannot 
simply add these components together to obtain a correct 
lower bound. 

We can, however, prove absolute optimality for DIS- 
TRIBUTE 2 for any d, if m is sufficiently large. Note that 
at least one of node O’s neighbors must receive at least ( 2d 
- 1 )m/d items, and all except perhaps m of these items 
need to be forwarded. Therefore it suffices to show that if a 
node 0 is connected to a node 1, which in turn is connected 
to d - 1 additional nodes, and if node 0 starts with m items 
destined for node 0, and ( 2d - 1) m/d - m items destined 
for the additional nodes, then the time needed is at least the 
time taken by DISTRIBUTE 2. We assume that we have 
complete freedom in deciding which additional node to de- 
liver a specific item to. 

Without increasing the time, we can alter any algorithm 
so that the items destined for node 1 are the last items sent 
from node 0. Suppose the first packet to arrive at node 1 has 
size p, and the second packet has size q, and both are des- 
tined for the additional nodes. If p < (d - 1 )q, then the 
items cannot finish arriving at the additional nodes until 
time (pr + 0) + (q7 + /3) + (qT/(d - 1) + ,6). By moving 
some of the items from the second message to the first, 
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creating new messages with lengths p’ and q’, where p’ 

= (d - 1 )q’ and p’ + q’ = p + q, the messages can finish 
arriving at the additional nodes at time (~‘7 + ,d) + (q’7 

+ /3) + (q’T/(d - 1) + /3). Since q ’ < q, this is faster. A 
similar argument applies if p > (d - 1 )q, and therefore 
without increasing the time, we can assume that the first 
packet is d - 1 times as long as the second. 

This argument can be applied inductively, showing that 
we may assume that each packet sent from node 0 is 
(d - 1) as long as the following one. (Temporarily ignore 
the fact that this argument does not apply to the last pack- 
ets, since some of the items in them are not forwarded.) 
Suppose node 0 sends k packets, with sizes x( d - 1 )k-‘, x( d 
- 1 )k-2, . . . ) x, where x is such that the sum of the message 
sizes is ( 2d - 1 )m/d. The time for node 1 to receive these 
messages and send on the items destined for the additional 
nodes is at least 

(2d- 1)7 
d 

m + kp + (xd-py)T + p, 

where the last two terms are included only if x > m. For 
fixed d, 7, and p, and sufficiently large m, this is minimized 
whenk=flogd_,[l +(d-2)(2d- l)/d]l,whichgivesthe 
time taken by DISTRIBUTE 2. To be correct, this argu- 
ment must be modified to deal with the sizes of the last 
packets, since the argument showing each packet must be d 
- 1 times as long as the following one assumed that all items 
were destined for the additional nodes. An analysis by cases 
shows that the same time bound holds. 

10. CONCLUSION 

We have shown that link-bound hypercubes can make 
effective use of all of their communication links to perform 
some common communication-intensive tasks. Since a 
lower bound for some of these tasks is the time needed to 
send out the data from an originating node, such tasks 
would take longer on more restricted machines in which 
nodes cannot use all of their communication links at one 
time. Thus our algorithms provide support for the belief 
that it is useful to build machines where all communication 
links can be used simultaneously. 

By systematically applying a few techniques such as pipe- 
lining, symmetrizing, and completing, we were able to de- 
velop a collection of algorithms giving efficient solutions to 
a wide range of problems. We concentrated on communica- 
tion problems that are rather fundamental and have not 
tried to develop all of their uses. However, we note that sev- 
eral additional matrix manipulation problems can be 
solved by our algorithms. For example, if a matrix is stored 
by rows or columns, then switching between blocked and 
striped storage, or rotating by a quarter-turn, is an example 
of complete exchange. If a matrix is stored via submatrices, 

and the G function used in the assignment is either the iden- 
tity or a reflexive Gray code, then rotation via quarter-turns 
or half-turns can be accomplished by algorithms closely re- 
lated to MATRIX TRANSPOSITION. Since the initial an- 
nouncement of our results in [ 141 and the submission of 
this paper, additional papers which pursue the use of such 
techniques for matrix problems have appeared [ 6, 8, 91. 
These papers include experimental results on Intel and 
Thinking Machines hypercubes, showing that our tech- 
niques do indeed result in faster message transmission. 

Although our algorithms are deterministic, this paper has 
ties to Valiant’s work on randomized routing [ 12, 13 1. He 
showed that indivisible unit-length messages in a link- 
bound hypercube could be routed in 0(d) expected time, 
no matter what the permutation, by routing each message 
to a random intermediate destination and then on to its 
original destination. For long divisible messages and a 
known permutation (so that header information need not 
be attached), PERMUTED SEND eliminates the random 
destination by sending a portion of the message to every 
processor. Further, in [ 12 ] he used four “bad” examples to 
empirically show the usefulness of randomization. One of 
these is equivalent to matrix transposition for a matrix 
stored as submatrices, and the worst one was inversion. 
MATRIX TRANSPOSITION and INVERSION show that 
there are efficient deterministic routing schemes for these 
permutations. 

Finally, despite the intense interest in hypercube commu- 
nication [ 1,2, 5- 13 1, still little is known about optimal hy- 
percube performance on communication-intensive tasks 
such as sorting, routing, data balancing, database opera- 
tions, and image warping. For example, it is not known if a 
d-dimensional hypercube, starting with one item per node, 
can sort the items in 0(d) worst-case time. Additional open 
questions include extending analyses to processor-bound 
and DMA-bound hypercubes and to problems where the 
communication pattern is not known in advance and/or 
the message lengths are not uniform. 
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