
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING l&167- 18 1 (1990)

Intensive Hypercube Communication

Prearranged Communication in Link-Bound Machines *,+

QUENTIN F. STOUT AND BRUCE WAGAR
Department ofElectrical Engineering and Computer Science, University ofMichigan, Ann Arbor, Michigan 48109-2122

Hypercube algorithms are developed for a variety of commun-
ication-intensive tasks such as transposing a matrix, histogram-
ming, sending a (long) message from one node to another,
broadcasting a message from one node to all others, broadcast-
ing a message from each node to all others, and exchanging mes-
sages between nodes via a fixed permutation. The algorithm for
exchanging via a fixed permutation can be viewed as a determin-
istic analog of Valiant’s randomized routing. The algorithms are
for link-bound hypercubes in which local processing time is ig-
nored, communication time predominates, message headers are
not needed because all nodes know the task being performed,
and all nodes can use all communication links simultaneously.
Through systematic use of techniques such as pipelining, batch-
ing, variable packet sizing, symmetrizing, and completing, for
all these problems algorithms which achieve a time with an opti-
mal highest-order term are obtained. o 1990 Academic PISS, IW.

1. INTRODUCTION

This paper gives efficient hypercube algorithms for a vari-
ety of communication-intensive tasks. The emphasis is on
problems where the communication pattern (i.e., which
nodes are sending information and where it is going) is
known in advance by all processors, and all messages are
the same size. This situation is common in SIMD (Single
Instruction Multiple Data) or SCMD (Single Code Multi-
ple Data) applications such as matrix multiplication or in-
version, some database operations, solving PDEs on a regu-
lar grid, image manipulation, and histogramming. By sys-
tematic use of a few basic techniques, we develop
algorithms which are significantly faster than the simplest
or most common ones, and faster than those published pre-
viously. Our algorithms show that these techniques are
quite powerful, and also that it is advantageous to be able

* A preliminary condensed version of this paper appears as “Passing
messages in link-bound hypercubes.” In HypercubeMutiprocessors, 1987.
Heath, M. (ed.), SIAM, Philadelphia, PA, 1987, pp. 251-257.

’ This research was partially supported by the National Science Founda-
tion under Grant DCR-8507851 and by the Digital Equipment Corp.
through an Incentives for Excellence award.

to use all communication links simultaneously when com-
munication becomes a bottleneck.

1.1. Definition of a Hypercube

A d-dimensional hypercube computer is a distributed-
memory multiprocessor consisting of 2d separate process-
ing elements (or nodes), linked together in a d-dimensional
binary cube network (see Fig. 1). Each node is given a
unique d-bit identification number (henceforth referred to
as the node id.) and two nodes are linked if and only if their
node i.d.‘s differ in exactly one bit position. Two nodes in a
hypercube are said to be adjacent or neighboring if they
share a link.

Hypercube networks have some useful properties such as
a logarithmic communication diameter and a totally sym-
metric layout. Because the number of links per node grows
only linearly with the dimension, reasonably sized hyper-
cubes (of, say, dimension 10 or 1.2) can be practically built
with current technology. NCUBE, Intel, Floating Point Sys-
tems, Ametek, and Thinking Machines have already intro-
duced hypercube computers on the commercial market.

1.2. The Link-Bound Model

This paper uses a model of hypercubes in which commu-
nication time is assumed to predominate, and local process-
ing time by the nodes can be ignored. We are interested in
problems where extensive communication is required be-
cause very long messages are being sent, and where all nodes
are available to participate in the task and know the com-
munication task being performed. The latter point helps re-
duce the communication time by ensuring that messages
need not include header information such as message desti-
nation, message route, and packet sequence number. Fur-
ther, we assume that each node can utilize all of its commu-
nication links simultaneously, where the links between
neighboring nodes can be used in both directions simulta-
neously. Thus, a node in a d-dimensional hypercube may
be handling 2d messages simultaneously, receiving d and
sending d. This property we call link-bound, as opposed to
other possibilities such as processor-bound (in which each

167 0743-73 15/90 $3.00
Copyright 0 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved.

168 STOUT AND WAGAR

0

l

0

l-I $qJ

00 10

d=O d=l d=2 d=3

FIG. 1. Some hypercubes for small d.

node can do only one operation at a time) or DMA-bound
(in which there is an upper bound on the number of mes-
sages which can go in and out of a node at one time). While
no hypercube can currently use all of its communication
links simultaneously, several manufacturers are trying to at-
tain such ability. The NCUBE machines apparently come
the closest [41, and the FPS T-Series machines have nodes
capable of four bidirectional communications at the
same time [31. The link-bound model has been studied
in [l, 5-131.

1.3. Message-Passing Problems

Throughout the paper, we will look at various hypercube
communication patterns. Each will involve sending mes-
sages between some known combination of the nodes.
These messages will be the same length m, but their con-
tents may vary between different pairs of communicating
nodes. It will be assumed that messages may be broken
down into packets at any time, while existing packets may
be either recombined or broken down still further, in order
to facilitate sending, so long as the ultimate destination
eventually receives the entire original message. Another key
assumption is that a node receiving a packet must finish
receiving it before any of its contents can be utilized. This is
sometimes called the store-and-forward or packet-switched
model, as opposed to a circuit-switched model. All existing
hypercubes use store-and-forward.

We assume that it takes 7rn + p time for a node to send a
packet of length ~12 to a neighbor, where

l r represents the transfer rate and
l p represents the time for start-up and termination.

In real systems it is generally the case that p 9 7, and hence
it is important to include the effect of start-up costs. Also
note that the total internal I/O bandwidth of the computer
is 2dd~. In general, we treat 7 and fi as constants and ana-
lyze the algorithms as functions of d and m. As in [5-8, 111,
we ignore the effects of rounding or truncating. Further-
more, because special cases arise for various relative values
of the parameters, we will give the exact formulas only for
m sufficiently large. Because we are most interested in pro-
cessing long messages, we will call the term containing the
highest power of m the highest-order term.

Some of the problems studied in this paper, such as
broadcasting a message from one node to all others, have
been considered previously in [5, 9, 111. These papers use
a model similar to the link-bound model but give slightly
slower algorithms. In particular, Saad and Schultz [1 I] con-
sidered a model where communication between nodes can
take place in only one direction at a time, so where this
made a difference, the times of their algorithms have been
divided by 2 so that they can be compared fairly with ours.
For most of the problems, several algorithms are developed,
the last being the fastest (and most sophisticated). In all
problems, simple arguments show that the best versions of
our algorithms have optimal highest-order terms. In some
cases we believe that our algorithms are completely opti-
mal, but we are unable to prove this because our arguments
can bound terms involving T, m, and d, or terms involving
/I and d, but not sums of terms of different types.

1.4. Notation

Several of the patterns considered here are oriented
around one node. For such patterns, it will be assumed
without loss of generality that node 0 is the special node.
The set of all nodes (or their corresponding i.d.‘s, depending
on context) which are distance k from node 0 will be de-
noted by Ck. Note that because of the symmetry of the hy-
percube, any algorithm written for node 0 can be converted
to an identical algorithm for node n E (1, 2, . . . , 2d - 1 >
by exclusive-ORing all node i.d.‘s referenced in the node 0
algorithm with n.

Some of the algorithms utilize somewhat subtle message
routing schemes, for which the following notation will be
useful. Let

@k(n)

denote the node i.d. formed by taking the bit-wise exclusive-
OR of n and 2 k. That is, it is just n with the kth bit flipped.
For example, if d = 5, then 01(01001) = 01011 and
O,(01001) = 00001. Observe then that the neighbors of
nodenarenodesG&(n),@i(n),. . . ,@d-l(n).Let

2 (n)

denote the left circular-shift (rotation) of the d-bit represen-
tationofnbyibits,whereiE{O, l,...,J-- l}andn

E (0, 1, . ..) 2d- l}.Forexample,ifd=5,then&
(01001)=00101.Foreachn~{1,2,..., 2d- l},letIV,
denote the set of all bit positions in the binary representa-
tion of n which are 1. That is, W, is the unique set of integers
such that

n= C 2”.
WE w,

Likewise, let Z,, = { 0, 1, . . . , d - 1 } \ IV, denote the corre-
sponding set of O-bit positions of yt . Define 1, : Z, + IV, as

I min IV, if z>maxW,

min{wE IV,: w> z} otherwise

for each z E Z,. That is, I,(z) is the bit position of the first
1 (in left circular order) after z in n . For example, when d
= 5, then loloo, (1) = 3 and 10,00,(4) = 0.

stage as the single packet in BROADCAST 1, and in general
at the end of stage k each packet has been broadcast to a k-
dimensional subcube. The modular packet routing guaran-
tees that no processor is trying to send two packets along
the same link at the same time.

Analysis of BROADCAST 2

2. SENDING THE SAME MESSAGE FROM ONE The analysis is the same as that for BROADCAST 1, only
NODE TO ALL OTHERS now each stage takes time T(m/d) + p for a total time of

One of the fundamental hypercube communication pat-
terns is broadcasting, in which one node has to send the
same message to all the other nodes in the hypercube. This
problem has been examined previously in [5, 1 I], but our
algorithms are somewhat faster. It is interesting to note that
the NCUBE machine has special hardware instructions to
allow a node to broadcast simultaneously to all of its neigh-
bors, although the current operating system does not make
use of these instructions.

Assume that node 0 is to do the broadcasting. The most
common and straightforward way to broadcast in a hyper-
cube is recursive doubling.

Algorithm: BROADCAST 1 (Recursive Doubling)

There are d stages, numbered 0, 1, _ . . , d - 1. During
stage k, nodes 0, 1, . . . , 2k - 1 send the message to nodes
@k(o), @k(11, . . . , @k(2 k - 1) , respectively (and concur-
rently).

Although much improved from the previous version,
BROADCAST 2 still suffers from the fact that a large per-
centage of the links are idle most of the time. In fact, half of
the links are never used (those which are directed toward
0). A better algorithm would be one in which each link is
always busy sending data to a node which has not yet seen
them. This is impossible to achieve fully, but it provides a
goal to aim for. The next version attempts this in a systolic
fashion, for the message travels across the hypercube in a
“wave” going from one Ck to the next, with every node ac-
tively sending along all of its links when the wave hits it.

Algorithm: BROADCAST 3A

Analysis of BROADCAST I

Each of the stages takes 7rn + p time, so the entire algo-
rithm requires time

There are d + 1 stages, numbered 0, 1, . . . , d. Break up
the message into packets as in BROADCAST 2. During
stage k, only the nodes in Ck actively send along their d
outgoing links, each node sending exactly one packet along
each such link. Every node in Ck receives k distinct packets
from c&r during stage k - 1 and the remaining d - k pack-
ets from Ck+i during stage k + 1.

d(7rn + /3) = -1 .

BROADCAST 1 works on only one dimension at a time
and thus fails to take advantage of the concurrent read/
write channels of the link-bound hypercube. To alleviate
this, it is necessary to symmetrize the algorithm. That is,
break up the problem into d subproblems and run them
simultaneously along separate dimensions.

More specifically, during stage k, each node n E Ck starts
out with P, for every w E IV,. For each such w, it sends P,
to node @,(n) E Ck- r . In addition, for each z E Z,, , it sends
P r,czJ to node O,(n) E C k+, . Figure 2 shows this process for
d = 3. By induction, it is easy to verify that during stage k
- 1, a node n E Ck receives P, for every w E I%‘, , receiving
it from node O,(n) E c&, , where v E I+‘, is such that r,(u)
= W. During stage k + 1 node n receives Pi from Oi(n)
E ck+, for each i$ IV,. Therefore, at the end of stage k + 1,
every node in Ck has received all of the packets.

Algorithm: BROADCAST 2

Symmetrize BROADCAST 1. That is, break up the mes-
sage into d packets PO, P, , . . . , Pd-,,eachofsizem/d.Dur-

ingstagek,nodesA(O),L(l) ,..., 5 (2k - 1) send Pi

Analysis of BROADCAST 3A
The analysis is similar to that of BROADCAST 2, only

now there are d + 1 stages and, thus, a total time of

to nodes @(i+k)mod d(2 (o)), @(i+k)mcd d+ (1 I), . . . ,
(d+ l)(r%+8)=~~~m+(d+ 1)BI.

INTENSIVE HYPERCUBE COMMUNICATION 169

@(i+k)mod d (A (2” - 1)), respectively, for each i in { 0, 1,
. . .) d- l}.

Note that packet PO reaches each processor at the same

STOUT AND WAGAR

of the first g - 1 groups, followed by a BROADCAST 3B
for the last group. These should be done concurrently, but
staggered one stage apart so that no node is working on
more than one at a time. To be more precise, there are d
+ g - 1 stages, numbered 0, 1, . . . , d + g - 2. During stage
k,eachnodeinC,,k-g+ 1 <j<k,executesstagejof
BROADCAST 3 for group k - j.

Analysis of BROADCAST 4

Each of the d + g - 1 stages now takes T(m/dg) + 0 time,
so the whole algorithm requires time

stage 0 stage 1 stage 2 stage 3
(d+g- 1)~

FIG. 2. BROAD-CAST 3A ford = 3.
dg

m+(d+g- 1)/3.

Although slower than the previous broadcast, 3A has the
By simple calculus, it can be shown that this time is mini-
mized when

special property that only nodes in Ck are sending in the kth
stage. This will be exploited later, but first note that the only
purpose of the last stage is to send PO, P,, . . . , Pd-, from
node2d- 1 tonodes00(2d- l),0,(2d- l),. . . ,0d-,(2d
- I), respectively.

1, d= 1

g= d> 2

Algorithm: BROADCAST 3B
which produces a final time of

This algorithm is identical to BROADCAST 3A, but the
last stage is eliminated by sending a second wave right after
the first. During stage 1, node 0 relabels PO, PI, P2, . . . , P+,
asQd-l,QO,Ql,.. . , Qdp2, respectively, and starts a second
BROADCAST 3A, only this time using QO, Q, , . . . , Qd-,
in place ofPO, P,, Pd-, , respectively. This second

1 [;,:;~~mli2+(,v I)& ,:‘::

broadcast is run for only d - 1 stages, after which each node
in Cd-r will have received every packet (and then some). For purposes of comparison, the best broadcast in 15] has

a running time of
Analysis of BROADCAST 3B

The one-stage saving results in a final time of ~m+2~m”‘+d&

d
(1

.;+p =-I, One last observation: BROADCAST 4 is absolutely opti-
mal if all sends have to use fixed-size packets. To see this,

the same as the final time for BROADCAST 2.
suppose the packet size is s. Then each node will have to

BROADCAST 3 can be speeded up significantly through
receive at least m/s of these packets and, since only d pack-

the use of pipelining. Basically, pipelining consists of break-
ets can be sent out at a time from node 0, at least one such

ing up a problem into smaller pieces and sending these out
packet will have to wait (m/ds - 1)(7s + p) time for a free

as separate waves, one after another, in order to keep more
link before it can leave node 0. To reach node 2 d - 1, this

of the nodes busy at the same time. It is a useful tool for
packet will then have to travel d links, which takes time

speeding up asymmetrical communication algorithms.
d(7s + fi), for a total minimum time of

Algorithm: BROADCAST 4 (d+E- l)(u+p).

Pipeline BROADCAST 3. That is, divide the message
into g groups, numbered 0, 1, . . . , g - 1, each of length m/ But this is just what BROADCAST 4 takes when you let g
g. Execute g - 1 separate BROADCAST 3A’s, one for each = m/ds.

INTENSIVE HYPERCUBE COMMUNICATION 171

3. SENDING FROM ONE NODE TO THE OPPOSITE
CORNER NODE

Another important communication pattern is a pattern
in which some node n sends to its opposite corner (o.c.) node
2 d - 1 - n . Obviously, this is similar to, and could be ac-
complished by, broadcasting. Although this might appear
to waste time, the analysis of BROADCAST 4 shows that
that algorithm already performs an optimal O.C. send, if one
is limited to fixed-size packets. This is not to say that vari-
able-sized packets will help much, for at least (~/d)m + 19
time is needed just to send all of the data out of node n.
More important, though, is to cut down on all unnecessary
communication. Assume that node 0 wants to send to node
2d- 1.

Algorithm: O.C. SEND I

There are d stages, numbered 0, 1, . . . , d - 1. During
stage k, node 2 k - 1 sends the message to node @k(2 k - 1) .

Analysis of O.C. SEND 1

Identical to BROADCAST 1:

d(7m + 0) = -1 .

Algorithm: O.C. SEND 2

Symmetrize O.C. SEND 1. That is, break up the data into
dpackets PO, PI,. . . , P&, , each of size m/d. During stage

k, node +!J (2k - 1) sends Pi t0 node @ci+k)md d(& (2k
- l))foreachiE{O, l,..., d- 1).

Analysis of O.C. SEND 2

Identical to BROADCAST 2:

d
(1

.;+p =-I.

These algorithms reduce the total communication
needed in their broadcast equivalents considerably. Unfor-
tunately, they do not save any time. In order to do that, it
is necessary to speed up the intermediate stages.

Algorithm: O.C. SEND 3
There are d stages, numbered 0, 1, . . . , d - 1. The packets

will vary in size depending on the stage. During stage k,
only the nodes of Ck will be sending, while only nodes in
Ck+l will be receiving. At the start of stage k, the data start
out evenly distributed among each of the (f) nodes in Ck.
Each such node then breaks up its data into d - k equal-
sized packets and sends a different one out along each of its
d - k links to Ck+r , at which point the message will be
evenly distributed among Ck+, ‘s nodes.

Analysis of O.C. Send 3

Stage k takes time

so the entire algorithm requires

Kd-17 =-m+dfi ,
d

I

where

d 1
Kd = kFo t;l> .

To help understand Kd, note that its first six values are 1,
2,2$, 2$, 2;, and 2:. Ford >, 5,

2+‘<&<2+‘+ 4 6(d- 5)
d d d(d- 1) +d(d- l)(d-2)

<2+2+ 10
d d(d-1)’

and hence.

The upshot of all this is that O.C. SEND 3 is faster than
BROADCAST 3 by a factor of about d/2. Like BROAD-
CAST 3, O.C. SEND 3 also lends itself well to pipelining.

Algorithm: O.C. SEND 4

Pipeline O.C. SEND 3. That is, break up the message into
g groups of length m/g and execute g separate O.C. SEND
3’s, one for each group. These should be done concurrently,
but staggered one stage apart. Because O.C. SEND 3’s stages
have varying lengths, there will be no synchronization be-
tween the various stages of O.C. SEND 3 being worked on
for each of the groups. Since O.C. SEND 3’s first stage,
which takes time T(m/dg) + /3, is at least as long as its other
stages, it sets the rate at which the groups can be started.
Each node will be able to complete sending the previous
group by the time it has finished receiving the next group.

Analysis of 0. C. SEND 4

Due to the fact that there is no chance of conflict, the time
needed for this algorithm is just the time needed to start the

172 STOUT AND WAGAR

first g - 1 O.C. SEND 3’s, as well as all of the time needed
for the last one. This works out to be

Kd-,r m m
d ;+dO

= g+Kd-1 - 1
&

Tm+(g+d- l)p,

which is minimized when

1,

if-----

d= 1

g= tKd-l - 1)Tm1,2, d> 2
@

A .

This produces a final time of

/I.
I I

Note that this is identical to the time for BROADCAST 4,
except that the coefficient ofthe m ‘I2 term has been reduced
by a factor of approximately m.

A final observation about the O.C. SEND algorithms:
they only use links in one direction (i.e., toward node 2d -
1). Consequently, another O.C. send could be done from
node 2 d - 1 to node 0 concurrently (that is, an opposite
corner exchange) since each would use different links.

4. SENDING MESSAGES BETWEEN TWO
ARBITRARY NODES

One of the more interesting questions that can be asked
is: Given the full use of the link-bound hypercube, what is
the fastest possible time for one node to send to an arbitrary
node distance n away (1 < n < d)? For simplicity, assume
that node 0 is sending to node 2” - 1.

Algorithm: ARBITRARY SEND I

Use O.C. SEND 4 on the n-dimensional subcube con-
tainingnodeso, 1,. . .,2”- 1.

Analysis ofARBITRARYSEND 1

1 \ irn+2\,l(K,-‘i 1)87m1/2+(n- l)& n>2 1’

I I

Like previous algorithms, this algorithm fails to make use
of the tremendous bandwidth available and is slower than
broadcasting for all n < d.

Algorithm: ARBITRARY SEND 2

Use BROADCAST 4, deleting the last d - 2 - n stages if
n < d - 2. These stages were only needed to get the message
to nodes farther than distance n from node 0.

Analysis ofARBITRARY SEND 2

There are

n+g- 1, O<n<d-2

d+g- 1, d-2<n<d

stages, which produce minimum times when

d= 1

, l<n<d-2

(d- 117 m,,2

43
, Osd-2<n<d.

The corresponding times are then

‘rm+& d=l

~m+2~~m’/‘+(n+ l)&

lcn<d-2

’ im+2dTm’/‘+(d- l)p,

O<d-2<n<d \

Closer inspection of BROADCAST 3 reveals that yet an-
other stage can be saved when df 2 < n < d - 2 and a frac-
tion of a stage saved when 1 < n < d/2, but these only re-
duce the m ‘I2 and /3 coefficients by negligible amounts.
What is needed is a way to combine the link utilization of
BROADCAST 4 with the efficiency of O.C. SEND 4. With
this in mind, it is necessary to look at a new communication
pattern, the extended O.C. (x.o.c.) send. It is similar to a reg-
ular O.C. send, except that the sending and receiving nodes
are connected to opposite corners of an n-dimensional sub-
cube S , and all communication must go through S .

INTENSIVE HYPERCUBE COMMUNICATION 173

Algorithm: X.O.C. SEND 1

This algorithm is identical to O.C. SEND 3, except that
two stages, numbered - 1 and n, are added to send the items
into and out of S .

Analysis ofX.0.C. SEND 1

The first and last stages each take time rm + ,L?, so the
entire algorithm requires

2(7m + p) + K-17 -mm+/3
n

2”+1+2”-1,2”+2through2”+2+2”-1,...,2d~’through
2d-‘+2”- 1).

Analysis ofARBITRARY SEND 3

The d - n + 1 separate sends use different links, so they
can all be done concurrently with no conflicts. Each of the
X.O.C. SEND 2’s of length m/d takes time

irn+2 \:/(n+K,,)i”im’/‘+(n+ l)p

whereas the O.C. SEND 4 of length rim/d requires

n= 1

Algorithm: X.O.C. SEND 2

Pipeline X.O.C. SEND 1 as in O.C. SEND 4. There
im+2dTm112+(n- l)p, 2<n<d.

are still g groups of m/g items apiece, only in this case the
T(m/g) + p time needed to move a group out of the sending Hence, the X.O.C. SEND 2’s will be slower than the O.C.
node sets the pace for the rest of the stages. SEND 4 whenever

Analysis of X. 0. C. SEND 2
n + K,-,

2 K,-, - 1,
n

The analysis is similar to that of O.C. SEND 2. The total
time needed is which is true by inspection for 1 G n < 4 and is false for

larger n since
(2n + K,-,)T m

n g + (n + 2)P

= kn + n + K-,)7 m + (g + n + 1)P, holds for all n > 4. What this all means is that the actual
m time for ARBITRARY SEND works out to

which is minimized when
I-

g= (n + K-h m1,2
no

with a resulting time of

rm+2 \Vmll’+(n+ 1)/3
I n

I

Algorithm: ARBITER Y SEND 3
This compares to the

Break up the data into d - n + 1 packets, d - n of which ,

I. i

’ Trn+P, d=n=l

~m+Z:(n+loPim”i+(n+ l)p,

l<n<4 and n<d-1

(~m+2p7-7ml,2+(n- I)&

5<n<d or n=d>,2 \

contain m/d apiece while the other contains the remaining
rim/d items. Send the larger packet via an O.C. SEND 4
through the subcube T containing nodes 0 and 2” - I as

:m+2 dFrn”‘+(n+ 1)/I, n<d- 1

opposite corners. Send each of the other d - n packets via
an X.O.C. SEND 2 through different d - n n-dimensional
subcubes which both run parallel to T and are distance 1 !

irnf2 $777 m’12 +(d- l)p, n=d

from T (i.e., the subcubes containing nodes 2”+’ through needed in [111.

174 STOUT AND WAGAR

As was the case with O.C. SEND 4, ARBITRARY SEND
3 is only a slight improvement over broadcasting. More im-
portantly, it uses only one link between nodes, so an arbi-
trary exchange is possible between two nodes in the same
amount of time by using the links in the other direction.

5. SENDING DIFFERENT MESSAGES FROM ONE
NODE TO EVERY OTHER NODE

The next communication pattern we look at is a pattern
in which one node needs to send a different message to each
of the other nodes. This operation has no standard name
(it was referred to as “scatter” in [1 I] and “personalized
communications” in [5]), so we will call it distributing. Its
dual operation, collecting, where one node has to receive a
message from each of the other nodes, is exactly the same
operation, only run in reverse. Hence, it suffices to design
and analyze distributing algorithms.

Both of these operations are useful in asymmetrical situa-
tions where one node of the hypercube acts as a master pro-
cessor and the others as its slaves. The master distributes
different data sets to each of the slaves, which in turn per-
form computations on them. Then the master collects all of
the results.

Assume without loss of generality that node 0 is the dis-
tributing node. The following algorithm makes use of O.C.
SEND 2, which is executed on every subcube containing
node 0.

Algorithm: DISTRIBUTE 1

There are d stages, numbered 0, 1, . . . , d - 1. Each node
is sent its corresponding message via a separate O.C. SEND
2 applied to the subcube containing it and node 0 as oppo-
site corner nodes. These 2d - 1 O.C. sends are run concur-
rently, with batching, and are staggered so that the one to
Cd goes first, followed by the ones to C&i, then C-2, etc.
Specifically, during stage k, the (p) nodes in Cj, 0 G j G k,
do their share of the work for the (&) = (kd_/) O.C. SEND
2’s whose destinations are in C&-k.

Analysis of DISTRIBUTE 1

The time for each stage depends on the maximal number
of data being sent out over a single link. For stage k, Cj con-
tains (k~j) messages of length m to be sent out evenly along
its (f)(d - j) = (“7’)d links to C,,, . This means that each
such link sends a packet of length

Ckcj>m

(d;‘)d ’

which is maximized whenj = 0, for

(kd_i) (k-(&l))
m’c:‘r:,

holds for all i E { 0, 1, . . . , k - 11. Consequently, the time
spent by node 0 during each stage is longer than that spent
by nodes in any other C,, so the total time for the algorithm
is

The distribute algorithm in [1 l] had a time of

(2d- l)mz+dfl

and that in [51 had a time strictly greater than ours. The
time in [51 is difficult to represent, but it has the pro-
perty that for fixed d > 1, the coefficient of m is strictly
greater than (zd - 1)/d but tends to (2d - 1)/d as d ap-
proaches cc.

Note that, as was the case with the O.C. send algorithms,
DISTRIBUTE 1 uses links in only one direction, namely
toward node 2 d - 1. Hence, a DISTRIBUTE 1 from node
2d - 1 can be done concurrently using the opposite set of
links. Also, for m sufficiently large (depending on the values
of 7, 6, and d), it is possible to reduce the p coefficient,
which represents the number of stages or waves of data leav-
ing node 0, by grouping together some of the waves as they
leave node 0 and then breaking them apart in C, . For exam-
ple, using d = 3, first a wave containing messages for C2 and
CX is sent out, taking $rn + p time to leave node 0. When
this wave arrives at the nodes of C, , the portion destined for
C3 is sent, taking &rn + fl time, and then the portion des-
tined for C2 is sent, taking irrn + /3 time. When the portion
destined for C3 reaches the nodes of Cz, it is sent on to C3,
taking $m + p time. Meanwhile, the second wave sent by
node 0 contains messages destined for C, , taking 7rn + p
time. Messages for C, finish arriving at time $m + 2@, mes-
sages for C2 finish at time 2rm + 3& and messages for C3
finish at time $rn + 3p. If m/3 > 6, then all messages
arrive by $m + 20, which has improved upon the coeffi-
cient of /3. This can be shown to be absolutely optimal. This
approach is extended in DISTRIBUTE 2.

Algorithm: DISTRIBUTE 2

Fix d, let k be the smallest integer such that

d(d-l)k-1>2d-1
d-2 ’ ’

and let r be such that

d
rk- 1 -= 2d- 1.
r- 1

INTENSIVE HYPERCUBE COMMUNICATION 175

(Since r may be irrational, in practice one may prefer to use
some rational r’ such that r < r’ < d - 1.) There will be
exactly k waves. Wave k will be those messages destined for
C1, where each link from node 0 carries a message of size
m. Wave k - 1 starts from node 0 with packets of size rm
along each link and will contain all of the messages for C2
and (for large d) portions of each of the messages for C3,
where the portion is chosen to fill the packet size. Wave k
- 2 will start with packets of size r2m, containing the rest
of each of the messages for C3, plus messages for C4, plus
(for sufficiently large d) portions of messages for Cs . Each
wave starts with packets r times larger than the following
wave and contains messages destined for a set of further
C’s. When a wave reaches the nodes of C, it is broken into
wavelets, one for each of the destination Ci in the wave.
These wavelets continue on to their destination, adjusting
the packet sizes at each step as in DISTRIBUTE 1 but not
subdividing into smaller wavelets.

Analysis of DISTRIBUTE 2

Since the bandwidth from C, to C2 is d - 1 times the
bandwidth from 0 to C, , and r < d - 1, for m sufficiently
large each wave can be sent on from C, before the next wave
arrives. The reason m must be sufficiently large is that the
breaking into wavelets introduces additional p terms, but
since r is less than d - 1 there is a slight bit of extra band-
width, which can mask the extra start-up for sufficiently
large m. As in DISTRIBUTE 1, it can be shown that, for
sufficiently large m, all wavelets reach their destination by
the time the last wave reaches C, . Therefore the total time
is determined by the time it takes node 0 to send all k waves,
which is

(2d- 1)r
d

m+kp=i(2dd ‘)‘m+&~~.

This algorithm shows that one cannot obtain a lower
bound by simply adding the bandwidth lower bound, which
determines the optimal coefficient of m, to the start-up
lower bound, which shows that at least do time is needed to
move any message across the hypercube. In general one can
only take the maximum of these two components as a lower
bound, since operations can be overlapped.

6. COMPLETING HYPERCUBE ALGORITHMS

Completing a hypercube operation refers to taking an op-
eration centered around one node and then simultaneously
performing it on all of the nodes. This produces highly sym-
metrical communication patterns which utilize all of the
available bandwidth.

The simplest way to complete an operation is just to run
2d single-node operations concurrently. In terms of algo-

rithms, this amounts to using the same number of stages as
that used by the single-node version. During each stage of
the complete algorithm, however, each node does all the
work necessary for the corresponding stage in all of the sin-
gle-node algorithms. Link conflicts are resolved by
batching, that is, grouping together all of the separate pack-
ets that have to be sent along a particular link during the
same stage and sending them as one big packet. This also
reduces communication overhead (i.e., 0 terms) consid-
erably.

The best single-node algorithms to complete are usually
the simplest versions which still take advantage of the con-
current link capability. Sophisticated techniques such as
pipelining and link balancing are not necessary because the
complete operations are so symmetric. The first operation
to be completed will be the broadcast. This pattern is useful
for various matrix operations as well as vector multiplica-
tion.

Algorithm: COMPLETE BROADCAST

Complete BROADCAST 2. There are d stages, num-
bered 0, 1, d - 1, and during stage k, each node
does its share of the work for the corresponding stage of
BROADCAST 2 for all (p) nodes which are distance k
from it.

Analysis of COMPLETE BROADCAST

During stage k of BROADCAST 2, the total number of
data being sent out is 2 kdm / d = 2 km, so the corresponding
number being sent out in COMPLETE BROADCAST is
2d2 km. Due to the overall symmetry of COMPLETE
BROADCAST, these outgoing data will be evenly divided
among all 2dd links of the hypercube, so each link ends up
sending a packet of size 2km/d. Therefore, the time for the
algorithm is

For purposes of comparison, note that Saad and Schultz
[1 l] produced an “optimal” complete broadcast (which
they referred to as a “total exchange”) with a running time
of

(zd + d*b m + d@
d

The next operation to be completed will be the O.C. send.
A complete O.C. send, henceforth referred to as an inversion,
is another fundamental communication pattern useful for
reversing the order of data which are stored by node i.d. and
for transposing matrices (to be discussed later).

176 STOUT AND WAGAR

Algorithm: INVERSION (Complete Opposite Corner
Send)

Complete O.C. SEND 2 in exactly the same manner as
BROADCAST 2 was in COMPLETE BROADCAST.

Analysis of INVERSION

During each stage of O.C. SEND 2, a total of d packets of
size m/d were being sent over separate links. Now there are
2 dd such packets, but there are also that many links and the
symmetry of the algorithm guarantees that no more than
one packet will be sent along the same link during a stage.
Thus, the time for INVERSION is identical to O.C. SEND
2:

d
(1
.;+p =-I.

Now consider the ultimate communication pattern, the
complete exchange. This is when every node wants to send
(as well as receive) a different message to (from) each of the
other nodes. In other words, it is the same thing as complet-
ing the distributing or collecting operations. The complete
exchange turns out to be useful for matrix transpositions as
well as random communication patterns (both to be dis-
cussed later). In [111, complete exchange was called
multigather/scatter.

Algorithm: COMPLETE EXCHANGE

Just complete DISTRIBUTE 1 in the same manner that
O.C. SEND 1 was completed to produce INVERSION.
There are still d stages, numbered 0, 1, . . . , d - 1.

Analysis of COMPLETE EXCHANGE

As in INVERSION’s analysis, all that has to be deter-
mined is the amount of data each node has to pass along
each stage. Basically, every node starts out with (2 d - 1) m
items which have to be sent out to the other nodes. During
stage k, it starts sending messages to the (i) nodes which are
distance k away. No messages reach their proper destina-
tions until the last stage, which means that a total of

24 ;
j=O (1

messages are being worked on during stage k. Due to the
symmetric pattern of the sends, each of the 2dd links thus
sends a packet of size

;cJ,=;!4-‘,,
j-0 d j=od-j ’

so the algorithm needs time

compared to the

2d--’ drm + do
needed by the corresponding algorithm in [1 I].

Finally, sometimes a situation arises where each node
wants to send to one other node as well as receive from just
one node. This will be termed a permuted send, although in
some ways it is analogous to a complete arbitrary send. An
obvious example is an inversion. Another one is when each
node wants to send to the next higher-numbered node
(mod 2 d), which can be thought of as a rotation.

There are 2d! such permutations, so determining the
most efficient algorithm for each one seems neither possible
nor practical, although recently some papers have appeared
analyzing specific permutations [8, lo]. For arbitrary per-
mutations, however, a deterministic analog of Valiant’s
randomized routing [12, 131 can be employed. It consists of
two complete exchanges: one to disperse all the data evenly
throughout the cube and another to collect them all at the
appropriate destinations. We explicitly use the fact that all
nodes know the permutation being performed so that desti-
nation information need not be sent with the data.

Algorithm: PERMUTED SEND
Each node breaks up its m items into 2 d packets of ml 2 d

items apiece. These packets are distributed throughout the
cube via a complete exchange so that each node has one
packet from every node in the cube. Since the communica-
tion pattern is a permutation, this also means that each
node has a different packet to send to every other node in
the cube. As a result, another complete exchange can be
used to route all of the packets to their correct destinations.

Analysis of PERMUTED SEND
There are two complete exchanges, each involving mes-

sage lengths of m/ 2d items, so the time needed for PER-
MUTED SEND is

2 2d-‘+d+d/3 =l+l.

7. MATRIX TRANSPOSITION

Transposing a matrix in a hypercube is an interesting
communication problem which can make good use of some

INTENSIVE HYPERCUBE COMMUNICATION 177

of the algorithms developed so far. It has been considered
previously in [9, 1 I], but faster algorithms will be devel-
oped here. Suppose you want to transpose an N X N matrix
M stored in a d-dimensional hypercube, with each node
containing N2/2d entries. It is necessary to specify exactly
how M is stored, where the usual ways are either by rows
(columns) or as square submatrices. Storage by rows is the
easier of the two. so it will be considered first.

7.1. Storage by Rows (Columns)

There are many ways of storing by rows (columns),
where we assume that N is evenly divisible by 2 d. For exam-
ple, the rows may be stored by partitioning the rows into
blocks of N/2d consecutive rows, where the assignment of
blocks to nodes may or may not use a Gray code. Or it may
be that a striped pattern is used, partitioning the rows into
sets of rows 2 d apart, again with variations possible on how
the sets are mapped onto the nodes. However, no matter
what method is used to assign rows to nodes (as long as the
assignment evenly distributes the data), to perform trans-
position each node must send exactly N2/ 2 2dentries to each
other node. In other words, a complete exchange has to be
performed with a message length of N2/ 2 2d. This takes time

2d-‘~$d+ d(3 = +, N* + dfi ,

as compared to

*N2+dfi 2d+’

neededin [II].

7.2. Storage by Submatrices

When stored as submatrices, it is convenient to assume
that d is even, say d = 2 c, and that N is evenly divisible by
2’. Assume that M has been partitioned into submatrices
Mx,y,x,~W, I,... ,2’ - 1) , where M,,Y is formed by the
intersection of rows

xN/2’+ 1 through (x + l)N/2’

with columns

yN/2’+ 1 through (y+ l)N/2’.

Let G denote any permutation of (0, . . . ,2” - 1 } , and as-
sume that M,,y is stored in node G(x)2’ + G(y). Typical
choices for G include the identity, in which case this is
known as row-major ordering, or a Gray code, in which case
adjacent submatrices are stored in adjacent nodes. No mat-
ter what G is used, transposition reduces to the problem of

node a2’ + b exchanging its entries with node b2’ + a, for
alla,bE{O,l,... ,2” - 1 } , We provide an algorithm for
this operation.

First observe that this is a permuted send with message
length N2/2d. Hence, it can be accomplished by using PER-
MUTED SEND in time

This is twice as long as when M is stored by rows, yet on
average, each item moves only half as far. Consequently, it
would not be unreasonable to expect there to be an algo-
rithm which works in half the time.

In fact, such an algorithm does exist, but describing and
analyzing it requires examining the bit patterns of the node
i.d.‘s. Consider node a2” + b, where a, b E { 0, 1, . . . , 2’
- 1 } . In their base two representations, a and b differ by,
say, k bits, and agree on the other c - k. Now let Sa,b denote
the set of all nodes whose first c bits of their i.d.‘s differ from
their last c bits in exactly the same k positions that a and
b do.

Observe that Sa,b contains 2 k nodes. By themselves, they
do not form a proper subcube, but something close to one.
The distance between any two nodes of Sa,b is always even,
and if there were links between the nodes that are distance
two apart, then Sa,h plus these new connections would form
a k-dimensional hypercube.

With these thoughts in mind, define a logical link be-
tween two hypercube nodes A and B, which are distance
two apart, to be the four physical links which connect A and
B along the two possible paths of length 2 (see Fig. 3). Let
C and D denote the intermediate nodes connecting A and
B. A logically connected (l.c.) subcube can then be defined
to be a subset of nodes whose logical links connect them
together in a hypercube network.

That said, Sa,b is a l.c. subcube. Furthermore, its interme-
diate node i.d.‘s have the property that their first c bits differ

6-l

A - physical link

----- logical link

FIG. 3. Logical and physical links between two nodes.

178 STOUT AND WAGAR

from their last c bits in precisely k - 1 positions. Finally,
from the definition of Sa,b, every node in the hypercube
belongs to exactly one such l.c. subcube. Combining these
last two statements, it becomes apparent that no two such
subcubes can share the same physical link. As a conse-
quence, algorithms can be run concurrently on all of these
l.c. subcubes without the possibility of link conflict.

Returning to the original problem, node a2’ + b can ex-
change data with node b2’ + a by simply performing an O.C.
exchange in Sa,h. In fact, every node in Sa,h can exchange
data with their corresponding node for the transposition by
performing an inversion in Sa,b. This brings up the need
then for an inversion algorithm for l.c. subcubes.

Inversion in a Logically Connected Subcube

Sending data along a logical link is equivalent to doing
an O.C. send in a 2-dimensional hypercube. Hence, a stan-
dard send (O.C. SEND 4) would take time

to perform, so a l.c. inversion could be accomplished by
performing a regular INVERSION using these logical
sends. For a k-dimensional l.c. subcube, this would require
time

k(f;+? $(:)“‘+/3)

behind the regular nodes. Therefore, kp + 1 send stages are
needed, so the algorithm runs in time

(kp+ U(&y+L?),

which is minimized when

p=l
k

This produces a final time of

Observe that this time is the same time as that needed by
INVERSION for a 2-dimensional cube. Also, it is indepen-
dent of k as long as m is large enough to ensure p 3 2.

Algorithm: MATRIX TRANSPOSITION (Stored by
Submatrices)

With L.C. INVERSION, transposing M becomes trivial.
Just perform it on every l.c. subcube of M .

Analysis of MA TRIX TRANSPOSITION

Since the l.c. inversions can all be done concurrently
without overlap, and all take the same amount of time, the
transposition is completed in time

=Im+2 + k@ d-0 ,
(3~ N2 “2+B - -
2 2d I

As long as the number of packets sent out along each physi-
cal link in a logical send is at least 2, however, then there is
no point in waiting for all of the incoming packets to arrive
before starting to pass them along. That is, after all, the
whole idea behind pipelining.

Algorithm: L.C. INVERSION

Perform a regular INVERSION along the logical links of
the l.c. subcube, making sure to pipeline the stages together
and breaking the data up into at least four packets so that
incoming packets start arriving no later than when the last
of the outgoing packets are being sent out.

Analysis of L.C. INVERSION

Let p denote the number of packets to be sent out along
each outgoing physical link (note that p has to be at least
2). Then the packet size for each send is m/2kp. With pipe-
lining then, it takes a total of kp sends for each node to pass
along its data, with the intermediate nodes being one send

= 7N2+2
2d+l

which is nearly the same time needed when M was stored
by rows. This is approximately half of the

$,yz+(d- 1)~

time required in [91, where it is assumed that fl is zero.

8. HISTOGRAMMING

The same techniques used previously can be applied to
the problem of histogramming. We consider a simple vari-
ant in which there are m different “bins,” each node starts
with a value for each of the bins, and the goal is to find the
sum of the values for each bin. The sum for bins im/2d
through(i+ l)m/2d- lwillbeinnodei.(Ifitisdesired

INTENSIVE HYPERCUBE COMMUNICATION 179

that all nodes contain all sums, then a complete broadcast
can be used at the end.) We assume that each value and sum
is of unit length.

Algorithm: HISTOGRAM

First consider the algorithm where the data are ex-
changed one dimension at a time, using recursive halving
to decrease the number of subtotals in each node. During
the first stage, nodes in the bottom half of the subcube send
up their values for the second half of the bins to their neigh-
bors in the upper half, which are concurrently sending
down their values for the first half of the bins. Each node
adds the values received to its own, and recursively contin-
ues on to the next stage. The final HISTOGRAM algorithm
is just the symmetrized version of this simple algorithm.

Analysis of HISTOGRAM

For the unsymmetric algorithm, stage k, 1 < k < d, takes
(~/2 ‘)m + p time, so for the symmetric algorithm it takes
(7/d2k)m + p time. The total time is

9. OPTIMALITY OF THE ALGORITHMS

As was mentioned earlier, the coefficients of the high-or-
der terms are the least possible. In all cases, a proof can be
given based on a simple counting argument. The easiest
such approach is

pick a subset S of links,
show that the total message load that must be sent over
S is at least some amount a, and
conclude that at least one link sends at least a/ 1 S I and,
thus. takes at least

%rn+p
ISI

time doing so.

For example, in BROADCAST, O.C. SEND, ARBI-
TRARY SEND, DISTRIBUTE, and HISTOGRAM, let S
be the d outgoing links of node 0. Then a is m, m , m , (2 d
- 1) m , and (1 - 2 -d) m , respectively. In the case of COM-
PLETE BROADCAST, pick S to be the d incoming links
to node 0 and set a to (2 d - 1) m , since node 0 receives a
different message from each other broadcast. For INVER-
SION and COMPLETE EXCHANGE, consider S to be the
2d links connecting nodes 0, 1, . . . , 2d-’ - 1 in the “lower”
subcube L with nodes 2d-1, 2d-’ + 1, . . . , 2d - 1 in the
“upper” subcube U . Then a is 2dm and 2d2d-‘m, respec-
tively, since every node in L sends one and 2d-’ messages,

respectively, to the nodes in U (and vice versa). PER-
MUTED SEND is optimal since it is slower than the special
case INVERSION by only an additive d@ Finally, for MA-
TRIX TRANSPOSITION, when the matrix is stored by
rows or columns the problem is just COMPLETE EX-
CHANGE, which was shown to be optimal. When the data
are stored as submatrices, let S be all d2d links. Then a is
dN*/ 2 since the total distance traveled by all messages, each
of size N2/2d is d2”l.

The lower bound for the permutation reflection, where
every node in L exchanges with its corresponding neighbor
in U , has the same highest-order term as does inversion (by
the same argument). This occurs despite the fact that re-
flection is a fixed-point free permutation with the smallest
total message distance, while inversion has the greatest total
message distance. Given this, and the fact that PER-
MUTED SEND shows that all permutations can be routed
with this highest-order term, one might guess that all fixed-
point free permutations require the same highest-order
term. (If permutations with fixed points are considered,
then the identity can be completed in zero time.) However,
it has been shown that some fixed-point free permutations
can be routed with a highest-order term smaller than that of
reflection [lo], and therefore PERMUTED SEND is only
worst-case optimal among fixed-point free permutations.

Beyond the highest-order term, we believe that some of
the algorithms herein are absolutely optimal. Unfortu-
nately, we have generally been unable to prove this because
of the difficulty in finding good lower bounds which go be-
yond the highest-order term. Such bounds must incorpo-
rate both bandwidth considerations and an accounting of
start-up times, but, as we noted in Section 5, one cannot
simply add these components together to obtain a correct
lower bound.

We can, however, prove absolute optimality for DIS-
TRIBUTE 2 for any d, if m is sufficiently large. Note that
at least one of node O’s neighbors must receive at least (2d
- 1)m/d items, and all except perhaps m of these items
need to be forwarded. Therefore it suffices to show that if a
node 0 is connected to a node 1, which in turn is connected
to d - 1 additional nodes, and if node 0 starts with m items
destined for node 0, and (2d - 1) m/d - m items destined
for the additional nodes, then the time needed is at least the
time taken by DISTRIBUTE 2. We assume that we have
complete freedom in deciding which additional node to de-
liver a specific item to.

Without increasing the time, we can alter any algorithm
so that the items destined for node 1 are the last items sent
from node 0. Suppose the first packet to arrive at node 1 has
size p, and the second packet has size q, and both are des-
tined for the additional nodes. If p < (d - 1)q, then the
items cannot finish arriving at the additional nodes until
time (pr + 0) + (q7 + /3) + (qT/(d - 1) + ,6). By moving
some of the items from the second message to the first,

180 STOUT AND WAGAR

creating new messages with lengths p’ and q’, where p’

= (d - 1)q’ and p’ + q’ = p + q, the messages can finish
arriving at the additional nodes at time (~‘7 + ,d) + (q’7

+ /3) + (q’T/(d - 1) + /3). Since q ’ < q, this is faster. A
similar argument applies if p > (d - 1)q, and therefore
without increasing the time, we can assume that the first
packet is d - 1 times as long as the second.

This argument can be applied inductively, showing that
we may assume that each packet sent from node 0 is
(d - 1) as long as the following one. (Temporarily ignore
the fact that this argument does not apply to the last pack-
ets, since some of the items in them are not forwarded.)
Suppose node 0 sends k packets, with sizes x(d - 1)k-‘, x(d
- 1)k-2, . . .) x, where x is such that the sum of the message
sizes is (2d - 1)m/d. The time for node 1 to receive these
messages and send on the items destined for the additional
nodes is at least

(2d- 1)7
d

m + kp + (xd-py)T + p,

where the last two terms are included only if x > m. For
fixed d, 7, and p, and sufficiently large m, this is minimized
whenk=flogd_,[l +(d-2)(2d- l)/d]l,whichgivesthe
time taken by DISTRIBUTE 2. To be correct, this argu-
ment must be modified to deal with the sizes of the last
packets, since the argument showing each packet must be d
- 1 times as long as the following one assumed that all items
were destined for the additional nodes. An analysis by cases
shows that the same time bound holds.

10. CONCLUSION

We have shown that link-bound hypercubes can make
effective use of all of their communication links to perform
some common communication-intensive tasks. Since a
lower bound for some of these tasks is the time needed to
send out the data from an originating node, such tasks
would take longer on more restricted machines in which
nodes cannot use all of their communication links at one
time. Thus our algorithms provide support for the belief
that it is useful to build machines where all communication
links can be used simultaneously.

By systematically applying a few techniques such as pipe-
lining, symmetrizing, and completing, we were able to de-
velop a collection of algorithms giving efficient solutions to
a wide range of problems. We concentrated on communica-
tion problems that are rather fundamental and have not
tried to develop all of their uses. However, we note that sev-
eral additional matrix manipulation problems can be
solved by our algorithms. For example, if a matrix is stored
by rows or columns, then switching between blocked and
striped storage, or rotating by a quarter-turn, is an example
of complete exchange. If a matrix is stored via submatrices,

and the G function used in the assignment is either the iden-
tity or a reflexive Gray code, then rotation via quarter-turns
or half-turns can be accomplished by algorithms closely re-
lated to MATRIX TRANSPOSITION. Since the initial an-
nouncement of our results in [141 and the submission of
this paper, additional papers which pursue the use of such
techniques for matrix problems have appeared [6, 8, 91.
These papers include experimental results on Intel and
Thinking Machines hypercubes, showing that our tech-
niques do indeed result in faster message transmission.

Although our algorithms are deterministic, this paper has
ties to Valiant’s work on randomized routing [12, 13 1. He
showed that indivisible unit-length messages in a link-
bound hypercube could be routed in 0(d) expected time,
no matter what the permutation, by routing each message
to a random intermediate destination and then on to its
original destination. For long divisible messages and a
known permutation (so that header information need not
be attached), PERMUTED SEND eliminates the random
destination by sending a portion of the message to every
processor. Further, in [12] he used four “bad” examples to
empirically show the usefulness of randomization. One of
these is equivalent to matrix transposition for a matrix
stored as submatrices, and the worst one was inversion.
MATRIX TRANSPOSITION and INVERSION show that
there are efficient deterministic routing schemes for these
permutations.

Finally, despite the intense interest in hypercube commu-
nication [1,2, 5- 13 1, still little is known about optimal hy-
percube performance on communication-intensive tasks
such as sorting, routing, data balancing, database opera-
tions, and image warping. For example, it is not known if a
d-dimensional hypercube, starting with one item per node,
can sort the items in 0(d) worst-case time. Additional open
questions include extending analyses to processor-bound
and DMA-bound hypercubes and to problems where the
communication pattern is not known in advance and/or
the message lengths are not uniform.

1.

2.

3.

4.

5.

REFERENCES

Baru, C. K., and Frieder, 0. Implementing relational database opera-
tions in a cube-connected multicomputer system. Proc. 3rdInt. Conf
on Data Engineering, 1987.

Cybenko, Cl. Dynamic load balancing for distributed memory multi-
processors. Department of Computer Science, Tufts University, Tech.
Rep. 87-l) Jan. 1987.
Gustafson, J. L., Hawkinson, S., and Scott, K. The architecture of a
homogeneous vector supercomputer. Proc. I986 Int. ConJ on Parallel
Proc., IEEE, 1986, pp. 649-652.
Hayes, J., Mudge, T., Stout, Q. F., Coley, S., and Palmer, J. A. micro-
processor-based hypercube supercomputer. IEEE Micro 6 (1986), 6-
17.

Ho, C.-T., and Johnsson, S. L. Distributed routing algorithms for
broadcasting and personalized communications in hypercubes. Proc.
1986 ht. Conf: on Parallel Proc., IEEE, 1986, pp. 640-648.

INTENSIVE HYPERCUBE COMMUNICATION 181

6. Ho, C.-T., and Johnsson, S. L. Algorithms for matrix transposition
on boolean n-cube configured ensemble architectures. Proc. 1987 Int.
Cant on Parallel Proc., IEEE, 1987, pp. 62 I-629.

7. Ho, C.-T., and Johnsson, S. L. Optimal algorithms for stable dimen-
sion permutations on boolean cubes. Proc. 3rd Conf on Hypercube
Concurrent Computers anddpplic., ACM, 1988, pp. 725-736.

8. Ho, C.-T., and Johnsson, S. L. Expressing boolean cube matrix algo-
rithms in shared memory primitives. Proc. 3rd Conf on Hypercube
Concurrent Computers anddpplic., ACM, 1988, pp. 1599-1609.

9. Johnsson, S. L. Communication efficient basic linear algebra compu-
tations on hypercube architectures. J. Parallel D&rib. Comput. 4
(1987). 133-172.

10. Livingston, M., and Stout, Q. F. Good permutations for hypercube
communication, in preparation.

Il. Saad, Y., and Schultz, M. H. Data communications in hypercubes.
Department of Computer Science, Yale University, Res. Rep.
YALEU/DCS/RR-428, 1985.

12. Valiant, L. G. Experiments with a parallel communication scheme.
Proc. 18th Allerton Conf on Communication, Control, and Comput-
ing, 1980, pp. 802-8 11.

Received July 14, 1987; revised October 9, 1988

13. Valiant, L. G. A scheme for parallel communication. SIAM J. Com-
put. I1 (1982), 350-361.

14. Wagar, B., and Stout, Q. F. Passing messages in link-bound hyper-
cubes. In Heath, M. (Ed.). Hypercube Multiprocessors. 1987. SIAM,
Philadelphia, PA, 1987, pp. 251-257.

QUENTIN F. STOUT is Associate Professor of Electrical Engineering
and Computer Science, and a member of the Advanced Computer Archi-
tecture Laboratory, at the University of Michigan. He received a B.A. from
Centre College (1970) and a Ph.D. from Indiana University (1977). He
has been on the editorial board of Journal ofParalleland Distributed Com-
puting and currently serves as an editor of Information Processing Letters
and on the advisory board of Frontiers in Computing Systems Research.

BRUCE WAGAR is currently a Ph.D. student in computer science at
the University of Michigan. His research interests include algorithms and
parallel processing. Mr. Wagar received a B.S. degree from the State Uni-
versity ofNew York at Binghamton in 1983.

