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We present numerical calculations of material gain and threshold current density 
in compressively strained quantum well lasers grown on GaAs and InP. The valence 
bandstructure is obtained from a 4x4 k . p Hamiltonian that includes the effects 
of strain. Calculation of the spontaneous emission rate and optical material gain 
proceeds directly from the bandstructure and we extract the threshold current den- 
sity from the emission rate. We find that incorporating ~2% misfit strain reduces 
the threshold current density by 50% in the GaAs system and by 30% in the InP 
system. We calculate the hole masses in the presence of strain with a 6x6 k. p 
Hamiltonian and use them to determine the effect of strain on Auger processes. 

The performance of quantum well lasers can be dra- 
matically improved by incorporating biaxial strain into 
the well. The strain serves to reduce the threshold cur- 
rent and to improve the time response of these devices 
as theoretical and experimental studies have shown.lm4 
Because all of the performance enhancements resulting 
from strain and quantization are due to changes in the 
bandstructure, it is important to have a modelling tool 
which will calculate the device parameters directly from 
the bands; in this paper we present the results of such 
a model. We calculate the effects of strain on the quan- 
tum well bandstructure and use the results to compute 
the optical properties of the device and the associated 
threshold current. In particular, we evaluate the spon- 
tanteous emission directly from the bandstructure us- 
ing Fermi statistics. We then use this model to opti- 
mize a multiquantum well laser for low threshold current 
density and present results for the optimized structure. 
Lastly, we calculate the effect of strain on the valence 
bandgaps and masses and use the results to predict the 
strain dependence of the CHHS Auger rates. 

To accurately model long-wavelength optical transi- 
tions in III-V semiconductors it is sufficient to include 
only the conduction band, heavy hole (HH, 1 ~,Yc:)), 
and light hole (LH, 1 $, ztf)) states; the split-off (SO, 
1 t,&:)) band does not participate in low energy transi- 

tions. We describe the valence band edge with the 4x4 
k.p Hamiltonian.’ In this formalism, the hole wavefunc- 
tion is given by 

(rh I m,k) = - ei;: ~&(k, zh)u,h(rh) (1) 
Y 

where k is the in-plane two-dimensional wavevector, ph 
is the in-plane radial coordinate, z,, is the coordinate in 
the growth direction, the IJ,” are the zone center Bloch 
functions having spin symmetry v, and m is a subband 
index. The envelope functions gk(k, zh) and subband 
energies E,f,(k) satisfy the Luttinger-Kohn equation in 
a quantum we11.6 The effect of strain is incorporated 
via a splitting 6 between the light and heavy hole di- 
agonal elements. For In,Gar_,As grown on GaAs and 
Ino.ss+ZGan.4r_IAs grown on InP it is given (in eV) by 
6 = -5.966c, where the lattice mismatch c is related to 
the excess In composition z by c = -(0.07)~.~ This split- 
ting reduces the off-diagonal mixing between the HH and 
LH states and changes the effective masses of the holes. 

Figure 1 shows the hole dispersion curves for a 50-A 
a) GaAs/Alo,sGao.rAs and b) Inn.sGas.sAs/Aln.sGas.rAs 
(on GaAs) quantum well. As can be seen quite clearly, 
the strained structure exhibits a much sharper curva- 
ture representing a much lower band edge mass. The 
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Fig. 1 Calculated valence bandstructure along the [loo] 
direction in a 50-w a) GaAs/Als.sGac,rAs (on GaAs) and 
b) Ino.12Gao.sAs/Alo.sG~.~As (on GaAs) quantum well. 

hole masses can be decreased by up to a factor of 3 
by increasing the In content.6 We also note that strain 
forces the LH subbands far below the bandedge which 
makes their occupation negligible at room temperature. 

In the conduction band, the strain serves only to shift 
the band edge and slightly change the effective mass6 
Hence, we use a simple scalar effective mass theory and 
write the electron state 1 n, k) as 

,Jw 
(re I n,k) = - 2* fn(4U,e(re) . 

The envelope functions fn( z,) and subband energies 
E:(k) satisfy the effective mass Schrodinger equation 
which we solve by using finite difference methods. 

We now calculate the optical material gain directly 
from the bandstructure using the Fermi golden rule, the 
result is 

Snm(fiw) = 
4a2e2h 1 

- /AC I ;.Pi’m(k) I2 6 (E;(k) n@rz$Vfiw (2x)2 o 
- E;(k) - hw) [Y+%(k)) - fh(%Jk))] (3) 

where nc is the index of refraction, W is the quantum 
well width, c is the speed of light, ? is the polarization 
of the light, hw is the photon energy, and f” and fh are 
the distribution functions for electrons in the conduc- 
tion and valence bands, respectively. We take f’ and 
f” to be Fermi functions and solve numerically for the 
quasi-Fermi levels as a function of carrier injection. To 
account for the effects of transitions resulting from con- 

tinuum excitons, we multiply Eq. (3) by a quasi two- 
dimensional Coulomb enhancement factor taken from 
Ref. 8. To get the total material gain g we sum over all 
subbands n, m and integrate against a broadening fnnc- 
tion. The optical matrix element P&(k) is obtained by 
multiplying the overlap integral of the electron and hole 
wavefunctions by the momentum matrix elements, i.e. 

K,(k) = c / f,(z)sL(k, a)d+,” I P I u,“, . (4) 
” 

We evaluate the momentum matrix elements 
(Ui I p I U,h) as in Ref. 8. Note that f-polarized light 
(TE mode) couples 3 times more strongly to HH states 

than to LH states and that i-polarized light (TM mode) 
couples exclusively to the LH states. 

In order to determine the threshold current density 
we must evaluate the spontaneous emission rate per unit 
area. This is done by evaluating the dipole transition 
rate’ for the quantum-confined carrier states, giving 
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R,, = 
J 

+u)4e2nohw ’ 
.G&T(2*)2 hm o 

- 11 dk c I P:,(k) I* 6 (W) - E;(k) - hw) [f”E$4)lP - fhPi(W] (5) 

The current density can then be determined in the ap- 
proximation that, at threshold, all of the injected cur- 
rent is converted into spontaneous emission. For a multi- 
quantum well structure with N identical wells this gives 

J = eNR,, . (6) 
If the injected electrons and holes obeyed Boltzmann 
statistics the current would be proportional to the square 
of the injected carrier density n. At high injections, how- 
ever, we must use Fermi statistics and the current falls 
off from the n2 curve. 

The laser parameters discussed in the remainder of 
this paper are for a separate optical confinement het- 
erostructure laser. We will not deal explicitly with the 
confinement of the optical mode, but will focus instead 
on the properties that are directly related to the band- 
structure and the associated carrier concentrations in 
the active well region. We assume that the optical con- 
finement factor I is given by 

r=NyW (7) 

where N is the number of quantum wells used in the 
multiquantum well structure, W is the width of each in- 
dividual quantum well, and -y is the optical confinement 
per unit width of quantum well. We assume the typ- 
ical values for y of 2.5 x 10-4A1-’ for GaAs-based and 
2.0 x 10-4A-’ for InP-based lasers; y is smaller in the 
InP system because of the longer optical wavelength. 

To calculate the value of the material gain required 
for lasing we require that at threshold the modal gain 
Ig balance the internal losses, i.e. 

Ig=iIn$+a 

Here g is the material gain, L is the cavity length, R is 
the mirror reflectivity, and cy is the nonradiative absorp- 
tion loss per unit length. For our device we assume that 
R = .32, L = 300pm, and cr = 10 cm-’ which forces 
Ig = 48 cm-‘. 

Note that Ig, the modal gain, does not depend ex- 
plicitly on IV, the quantum well width. It depends only 
indirectly on W in that changing the width affects the 
separation between the subbands and the overlap be- 
tween electrons and holes. We now use our model to 
optimize a multiquantum well structure for low thresh- 
old current density. 

The parameters that one has control over are i) com- 
postion of the quantum wells (strain) ii) width of the 
quantum wells and iii) number of quantum wells and 
the separation between them; we will choose each de 
sign parameter to minimize the threshold current den- 

sity. Population inversion can be maximized, for a given 
carrier density, by minimizing the bandedge density of 
states and thus increasing the separation between the 
electron and hole quasi-Fermi levels. Applying biaxial 
compressive strain will reduce the HH effective mass and 
will increase the separation between the HH and LB sub 
bands; both of these effects reduce the valence bandedge 
density of states. The separation between subbands 
can also be increased by narrowing the quantum wells. 
Hence, to maximize the inversion it is advantageous to 
use large strains and narrow quantum wells. However, 
we note that the gain term also depends upon the over- 
lap P:,(k) between the electrons and holes. Since the 
electron mass is much smaller than the hole masses, this 
function will decrease at small well sizes. Hence, a com- 
promise must be chosen between inversion and overlap 
to maximize the gain as a function of well size while 
remaining below the critical thickness. Another design 
parameter is the number of quantum wells grown and 
the spacing between the quantum wells. If the quantum 
wells are very close together (coupledj then the mix- 
ing between the wells gives a larger bandedge density 
of states and poor inversion. Placing N wells farther 
apart in a multiquantum well structure will give better 
performance. The optimal number of wells will depend 
on the variation with carrier density of the spontaneous 
emission rate and material gain. For the losses we have 
chosen, our calculations show that a single quantum well 
will require the lowest threshold current density. 

Taking into account all of the above considerations, 
we find that the optimal well widths are W=50-A for 
GaAs-based and W=SO-A for InP-based lasers. These 
well sizes are comparable to those which are experimen- 
tally found to give low threshold devices.” The wider 
well size necessary for the InP system is due to the very 
small electron mass which results in a small overlap func- 
tion at smaller well sizes. Hence, the primary constraint 
on well size for the InP system is that it be below the 
critical thickness for the strained layer. 

We note that as excess In is added to the quantum 
well the bandgap changes and thus the emission fre- 
quency will change; we have neglected this effect in our 
calculations for the InP-based system. If the emission 
frequency is to be fixed, one may need to add excess Al in 
the well (i.e. use quaternary wells). Since the changes in 
the bandstructure are primarily strain related, this will 
not change the results reported here. 

We will now present our results for the optimized 
device structures. In Fig. 2 we show the TE mode (?- 
polarized) material gain in the GaAs system at 3OOK 
for various carrier concentrations. Figure 2(a) shows 
the lattice-matched results and Fig. 2(b) gives the re- 
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Fig. 2 TE mode material gain in a 50-A a) GaAs/ 
Als.sGas,-;As (on GaAs) and b) Ins.isGao.sAs/ 
Als.sGas.TAs (on GaAs) quantum well at 300K for vari 
ous carrier injections. Injections are given in 
(10’2 carriers/cm’) in steps of .5 x 10’2/cmZ. 
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Fig. 3 TM mode material gain in a 50-A a) GaAs/ 
Als.sGas.,As (on GaAs) and b) Ins.rsGas.sAs/ 
Als.sGas.TAs (on GaAs) quantum well at 300K for vari- 
ous carrier injections. Injections are given in 
(1012 carriers/cm’) in steps of .5 x 10’2/cmZ. 

sults with 20% In added to the well. We see that the hole subbands far below the band edge which greatly 
strained well exhibits much higher gain for the same car- reduces their occupation. Since the TM mode gain re- 
rier injections because of the smaller heavy hole mass. In sults exclusively from light hole transitions, it is much 
contrast, Fig. 3 shows the TM mode (i-polarized) gain reduced by the application of strain. The material gain 
for the same structures. Here the strain pushes the light CJ required for TE mode lasing is obtained from Eq. (8) 
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Fig. 4 Threshold current density verses (x). 

and the corresponding carrier concentration can be read 
from Fig. 3. Evaluating the spontaneous emission rate 
at this carrier concentration gives the threshold current 
density. Figure 4 shows the threshold current density 
as a function of In added for the GaAs- and InP-based 
systems. We see that adding 30% excess In (correspond- 
ing to 2.1% strain) reduces the threshold by 50% in the 
GaAs system and by 30% in the InP system. The InP 
system exhibits a smaller improvement with strain be- 
cause the electron effective mass is lower. Hence, the 
quasi-Fermi level split is, to a greater extent, dominated 
by the electron quasi-Fermi level. Since the effect of 
strain is primarily to shift the hole quasi-Fermi level we 
see a lesser performance improvement as the strain in- 
creases in the InP system. 

We calculate the effect of strain on Auger processes 
by modifying the threshold conditions of Beattie and 
Landsberg” to account for different masses in the initial 
and final states. Because of the large spin-orbit splitting 
in InGaAs, we assume that transitions from the heavy 
holes to the split-off holes (CHHS) will be the dominant 
Auger mechanism. We use the 6 x 6 k.p Hamiltonian and 
the deformation potential theory to calculate the heavy 
hole. light hole, and split-off bands in the presence of 
strain;” the bands are calculated for bulk material. We 
find that the heavy and light hole masses change dramat- 
ically with the application of strain, as described above, 
but that the split-off mass changes very little. The 
bandgap and the split-off gap, however, change signfi- 
cantly and we use them in the threshold conditions to 
obtain the electron (E’) and hole (Eh) energies for the 
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Fig. 5 Occupation factor [l - f”(E”)]‘[f’(E”)] for 
In,Gai_,As (on GaAs) and In0.5s+zGas.47_zAs (on InP) 
as function of (x) on a linear and log scale. 

most probable transition. We then compute the proba- 
bility that the initial state is full and the final state is 
empty by evaluating the Fermi functions f’ and fh at 
the lasing carrier density. In Fig. 5 we plot the resulting 
occupation factor of [l - f h(Eh)]“[f”(E’)] as a function 
of the excess In mole fraction. We see that adding 30% 
In reduces the occupation by 5 orders of magnitude for 
devices grown on GaAs and by a factor of 3 for those 
based on InP; the Auger recombination rates should ex- 
hibit a similar behavior. 

In conclusion, we have calculated the optical proper- 
ties and threshold current density of a strained quantum 
well laser directly from the bandstructure. We find that 
strain signficantly reduces the threshold current den- 
sity and Auger recombination rates and dramatically in- 
creases the ratio of TE to TM mode material gain. The 
structure requiring the lowest threshold current density 
is found to be a single quantum well that is -50-A wide 
for devices grown on GaAs and -80-A wide for those 
grown on InP. The model presented is very general and 
could be extended to predict the time response of these 
devices. 
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