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Abstract--In the computation of Doppler broadening, the usual assumption used is to ignore the depen- 
dence of F.(j) on the intermediate energy ej of the target atoms. This assumption has been examined for 
ideal gas targets and it was found that the effects of the j dependence are not significant. Here we study 
the j dependence for a target composed of harmonic oscillators. In this paper, we compute the resonance 
line shape, W(E,), for harmonic oscillator targets taking into account the dependence of the neutron level 
width Fn on the intermediate state Fn(j). We compare the resonance line shapes for both constant and 
non-constant neutron level width. Our calculations show that the difference is not significant. Therefore, 
the non-constancy of F, seems to be absolutely not important in calculating the broadening of neutron 
resonances. 

INTRODUCTION 

The commonly used form of the resonance line shape 
was developed by Bethe and Placzek (1937) under the 
assumption that the nuclei have a Maxwellian gas 
distribution of velocities. 

Lamb (1939) was first to discuss and to calculate 
the absorption line shape for an atom which is bound 
in a crystal lattice. The general formula is : 

W(E,) = IMrl 2 Igcl 2 f ,  g(e~) 
i , /  

I<jle'~.Rli)12 
× (En_Eo_~j+~,)2+[r(j)/2]2. (1) 

Where Mr and Me are the matrix elements for radi- 
ation and compound nucleus formation, respectively, 
and g(e,) is the Boltzmann distribution function, ej 
and ~j are the energies of the initial and the inter- 
mediate atomic states li) and I J ) ,  respectively. 

Equation (1) can be written in a time-dependent 
representation (see Van Hove, 1954 ; Singwi and Sjo- 
lander, 1960) : 

2 
W(En) = IMrl 2 IM¢I = ~ ~g (e , )  

i j 

x R e /  =-exp i E . - E o - ~ s + e ~ + i ~  ~ 
dO ~ 

x I < j l e ' U l i ) l  2. (2) 

This Breit-Wigner line shape is usually calculated with 
the assumption of constant  Fn(j).  Shamaoun and 
Summerfield (1989) have computed the effects of the 
ej dependence of the F ( j )  on the resonance absorption 
cross section for an ideal gas and found that the 
approximation of constant  F ( j )  is valid. 

NEUTRON LEVEL WIDTH F.(j)  FOR 

HARMONIC OSCILLATOR 

The equation derived by Breit and Wigner (1936) 
for the neutron level width as a function of the inter- 
mediate state is : 

F , ( j )  = 2rclM¢l = ~ I<lle-'WRIJ>12a(E-E1) , (3) 
1 # j  

where [q~) = 11) and Iqj) = l J )  are the initial and 
intermediate state. 

h2K 2 h2K,2 
E = - ~ - m  +e,, E , - - - ~ m - m  +~ ,. (4) 

For the harmonic oscillator, the energy eigenvalues 
are : 

e.,=hoo(i+½), i =  0 ,1 ,2  . . . .  (5) 

COo is the harmonic oscillator frequency. 
We can write (3) as (see Shamaoun and Summer- 

field, 1989) : 
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" h 2 K , 2 \  F.(J)=IM~i2Zr/~ d---/'exp[-i(E-~)~] 
t K ' . P  x(j exp(i~HA--i~--t) j), (6) 

where HA is the system Hamiltonian and #m is the 
reduced mass. Let us deal with the last term of equa- 
tion (6) which we call d: 

( ( t . K ~ p ) )  
d = j exp iH A ~ - t t j . (7) 

For an isotropic harmonic potential, we get : 

d = (Jl exp [ia)o(a+a+l)t-?,(a-a+)t]  l J ) ,  (8) 

where a and a + are the lowering and the raising oper- 
ators for the harmonic oscillator and 

(9) ?,=\/ 2 M  • 

We can approximate equation (8) as follows : 

d = e a+n '+°~+.  (10) 

The coefficients A, B and C are : 

A = 0, B = iogoz, C = -y2z ,  

where z = j + ½. 
Substituting into equation (6) we get : 

~ dt 
F,(j)  = IMol 2 

K, • oo  

x exp 4 - 7  zt + i / c o o z -  r I E -  - w ~ / / t ? .  
[ L n \ alum I d  J 

(11) 

As an approximation, we ignore terms of order t 2 in 
( 11 )  (see Appendix). This gives: 

F, ( j )  = 2~lMd2 ~ t ~ ( E - h o % z -  h2K'2~ 2~-m f (12) 

It is convenient to make the transition from discrete 
to continuous variables : 

f --+ 1 d3K ", 
~, ( ) J 
E ~ (13) 

to get 

llMol2 f" ( ~2K'2k F.(j) : 

(14) 

This integral can be done with the following result if 
E~ is much larger than e~ or e s : 

where 

/ 
r.(j) = r." 11 

6 i  

+ - / 7 . )  ' \ 
(15) 

where 

r ( j ) = r  l + 7 p  Eo 7' 

C = F~+C~. (21) 

Using equation (20), taking the inverse and expand- 
ing, we get : 

1 _ 1 r ° a , - e ;  ( 22 )  
F(j)  F 2F z E. 

Substituting equations (20) and (22) into equation (2) 
gives : 

=(2 r ° h=K=  
W(E~) = IMol = IM,] f + F2E. ~ }  

x Re Jo" --h exp - + fiE. - Eo) 

x (e -'rxm eW'X(O))r, (23) 

where 

(2o) 

F. ° = - -  h3 IMc[2V/~., (16) 

h2K'2 
E. = 2 m "  (17) 

Equation (15) displays the neutron level width depen- 
dence upon ej. Since E. is much greater than (ei-ej) 
we can write : 

~ o( 1 
r n ( j ) ~ r °  l + ~  Eo / (18) 

To calculate the effect of the ej dependence of F (j) 
on the scattering cross section for harmonic oscillator, 
we need the total level width F(j)  which is equal to 
the ?,-level width plus the neutron level width : 

F(j)  = F. e + r . ( j ) .  (19) 

Using equation (18), we get: 
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<e -'K~(') e'K~(°)>r = ~ 9(ai) < il e -iK~(') elrX(°)[i>, 
i 

(24) 

• la  z =  1+~ t (25) 

and x(z) is the Heisenberg operator. 
We can express the last term of equation (23) as 

follows : 

<e-igx(" eig~(o) )7" 

where 

- K 2 h  1 
= exp [2--M-~0 coth (2hco0fl) ] 

+ ~  

x ~ exp(ine)oz-½nho)ofl)I.(y), (26) 

m E .  
Y = M hcoo c sech (½htoofl) (27) 

and I.(y) is the modified Bessel function of the first 
kind. 

if we note that I,(y) = I_,(y) and substitute equa- 
tion (26) into (23), we get : 

W(E.) = V ~, exp ( -  ½nhco o fl) I,(y) 
o 

x ~o~ ~texp I _  ( F  F. ° ~t-1 +~nho)oJ~J (28) 

xcos[(E,-Eo+nhtoo)~], 

where 

V=IMo121MA ~+ 

[ m E" coth(½hogofl)] (29) x exp -- ~ t  hr.o----o 

Then, the resonance line shape for non-constant level 
width is : 

W(E,) = V ~ exp (-½nhtoofl) In(y) 
n=0 

r r ° 
+ T~. nhCOo 

r r ° \2 + ~nho~o) + (E~-Eo+nho%) 2 

(30) 

For a constant F the resonance line shape Wc(E.) is : 

+oo 

Wc(E,) = U ~, exp(-½nho%fl) I,(y) 
n=0 

F 

x , (31) 
(F)2+(En-Eo+nhogo)2 

where 

2 [ m~ocoth(½ho~ofl)l. U =  IMcl2lMrl 2 exp M 

(32) 

Equations (31) and (30) give the resonance line shape 
for the constant and non-constant F, respectively. 

CONCLUSION AND RESULTS 

We have done numerical calculations of the res- 
onance line shapes given in equations (31) and (30) 
for two different isotopes with low lying resonances. 
The parameters for these resonances are shown in 
Table 1. 

We have done the computations for T = 4, 100 and 
300 K. We show the results for T =  100 K in Tables 2 
and 3. The differences between the constant and non- 
constant cases are not significant. Therefore, the effect 
of the dependence of Fn(j) on the intermediate state 
of the target is not significant for the harmonic oscil- 
lator as well as the ideal gas and the assumption of 
constant neutron level width is a valid approximation 

Table 1, Parameters of some low-energy resonances 

Isotope E (eV) F~. (meV) F. (meV) F, (meV) 

23SU 6.67 26 1.5 27.5 
24°pu 1.0 34 2.5 36.5 

Table 2. Resonance line shape for 23SU 

Wc(En) W(E.) W~ (En) W(E.) 
En (eV) hw o = 0.01 hw o = 0.01 hw o = 0.05 hwo = 0.05 

6.60 0.029664 0,029698 0.011421 0.011424 
6.63 0.144527 0,144529 0.032275 0.032283 
6.64 0.246001 0.245989 0.052592 0.052603 
6.65 0.408724 0.408678 0.096935 0.096955 
6.66 0.600036 0.599937 0.197245 0.197285 
6.67 0.644537 0.645419 0.301273 0.301333 
6.675 0.536817 0.536741 0,265974 0.266028 
6.68 0.393611 0.393582 0,196885 0.196924 
6.69 0.198897 0.198903 0.0965397 0.096559 
6.70 0.111635 0.111643 0,052177 0.052188 
6.72 0.047721 0.047726 0,021100 0.021104 
6.74 0.026053 0.026056 0,011132 0.011134 
6.76 0.016328 0.001633 0,006824 0.006825 
6.80 0.008103 0.008103 0.003299 0.003300 
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Table 3. Resonance line shape for 24°pu 

W¢ (Eo) W (E.) We (E.) W(E.) 
E (eV) hwo = 0.01 hwo = 0.01 hwo = 0.05 hw o = 0.05 

0 .92 0.009743 0.009745 0.013767 0.013769 
0 .94  0 .016859 0.016862 0.023550 0.023554 
0 .95 0.023651 0.023656 0.032662 0.032668 
0 .96  0.035173 0.035179 0.047784 0.047791 
0 .97 0.055899 0.055900 0.074797 0.074809 
0 .98 0.092993 0.093006 0.125675 0.125695 
0 .99  0 .146246 0.146269 0.212538 0.212571 
0.995 0.168062 0.168095 0.256944 0.256984 
1.00 0 .173506 0.173545 0.276112 0.276155 
1.005 0.157590 0.157627 0.256726 0.256765 
1.01 0 .128877 0.128906 0.212176 0.212209 
1.02 0.075856 0.075871 0.125241 0.125260 
1.03 0.045248 0.045256 0.074395 0.074406 
1.04 0.028667 0.028672 0.047416 0.047423 
1.05 0.019815 0.019818 0.032326 0.032331 
1.10 0.005428 0.005429 0.008826 0.008828 

which can be written in the following form : 

r"(J)='Mo" f+ = 

x exp ( -  72zt 2) [cos (bt) + i sin (bt)], 

where 

(A2) 

~2K'2~ 

The imaginary part o f  this function is zero. The real part is : 

Fn(j) = Incl 2 ~ g exp[-b2/(472z)]. (A4) 

in b o t h  cases.  T h e r e  is an  equal ly  small  effect o f  n o n -  
c o n s t a n t  Fn( j )  fo r  T = 4 a n d  300 K.  
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A P P E N D I X  

We start with equation (11): 

f_ -~ dt F , ( j )  = IMcl 2 
K, • c¢ 

{ [ 1 f h2K'T~-]'~ \ Z ; ~ m J - J J  x e x p - - ] ) Z z t 2 + i  C O o Z - ~ | E _ ~ l l t ~ ,  (A1) 

To solve this equation, it is convenient to change the 
summation over K'  to summation over energy and make the 
transition from discrete to continuous variables : 

--x/ /~ I E~ exp[_b2/(472z)]dE. ' (A5) r.o) - ~ IMol 2 Jx/~ 

Table A 1 

z Equation (A6)  Equation (15) 

5.5 10.904 11.109 
10.5 10.911 10.923 
15.5 10.725 10.738 
20.5 10.546 10.555 
25.5 10.368 10.375 
30.5 10.191 10.194 

where ), is given in equation (9). Numerical calculations of  
the neutron width using equations (A5) and (15) are shown 
in Table A 1. These are very close, which justifies our approxi- 
mation of  neglecting terms of  order t ~ in equation (11). 


