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ABSTRACT : The undamped naturalfrequency CO, and the damping ratio [ can be determined 
from a plot of the jiee motion of the system. If the damping is light, ( < 0.2, the lqqarithmic 
decrement can be used to determine the coeficients. Systems with moderate damping are 
those in the range 0.2 < ( -C 1.2. A methodfor determining vibration parameters for systems 

with moderate damping is presented here. The method is easy to apply and while it is 
approximate, it is extremely accurate throughout the entire range of moderate damping. 

I. Introduction 

The logarithmic decrement is used to determine the vibration parameters w, and 
[ for single degree of freedom systems. This method works very well for systems 
in which the damping ratio ( lies in the range 0 < Y, < 0.3. This range includes the 
vast majority of important situations. 

There are situations of interest in which [ > 0.3. If the system is overdamped, a 
method exists for determining w, and [ (1). The method presented here will 
deal with systems for which 0.2 < [ < 1.2. This range contains systems which 
are underdamped : 0.2 < [ < 1 .O ; critically damped : [ = 1 .O ; and overdamped : 
1.0 < ( < 1.2. In each case, the free motion of the system is used to define the 
vibration parameters. This is worth mentioning here since, from a practical point 
of view, it is very difficult to distinguish the free motion of systems where [ = 0.8,l .O 
and 1.2. While these systems are underdamped, critically damped and overdamped, 
respectively, their free motions are very similar. 

For the sake of discussion, systems in the following ranges are denoted : 

0.0 < [ < 0.2 light damping 

0.2 d [ d 1.2 moderate damping 

1.2 < [ heavy damping. 

For systems with light damping, the logarithmic decrement method is rec- 
ommended. For systems with heavy damping, the method of (1) is recommended. 
Below, a method for systems with moderate damping is developed. 
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II. Systems with Moderate Damping 0.2 d (’ d 1.2 

The differential equation for the free motion of the system is 

jt+2[w,~+w,2x = 0. (1) 

Suppose we take t = 0 to be the time when the solution to (1) has the value x = 0. 
Then the solutions to (1) are 

x= 0 !!Le m~w~i’ sin (udt) O<[<l, 
WCi 

vo 
x = ~ ee"ni' sinh (mdt) 0 l<i 

UC/ 

where CC)~ = o_,/m and v,, = a(O). F’ tgure 1 shows typical plots of the solutions 

(2). 
A number of points and measurements will be used in the calculations. These 

are indicated in Fig. 2. The case shown is of a system with damping ratio [ = 0.75. 

FIG. 1. Typical free motion solutions. 

FIG. 2. Parameters used in the computations. 
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However, all except one of the parameters will be relevant for all cases of moderate 

damping. 
The following points and quantities will be used in the computation : 

M-a maximum point of the curve 
x,-the displacement at the point M 
t,-the time of the point M 
Z-the inflection point after M 

x,-the displacement at the point Z 
t,-the time of the point Z 
tT-the time at which a tangent line through Z crosses the time axis 
T-the time from t, until tr 
P-a point preceding Z at the same displacement as Z 

T,,-the time from P to Z 
rd/2-the half period (for underdamped systems only). 

III. The method 

The method is based upon measurements of x, and xM and the time T (see Figs 

2 and 3). Let 

R = x,/xM. (3) 

Then 

Once c is determined from (4), w, is obtained in 
system is critically damped or overdamped). 

First : 

21 
CO,=-. 

T 

one of three ways (two ways if the 

(5a) 

A second method for estimating o, results from the measurement of T, : 

Finally, if the system under consideration is underdamped and the half cycle time 
rd/2 can be determined, the value of o, is : 

71 

On = (2,/2)Ji7’ 
(54 

IV. A Numevical Example 

Consider the example shown in Fig. 3. Here the (exact) numerical values of R, 
T,, T and zd are : 
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FIG. 3. A numerical example. 

R = (0.6104/0.9394) = 0.6498 

T,,, = 0.2763 - 0.0493 s = 0.2270 s 

T= 0.1800s 

q/2 = 0.5659 s. (a) 

The exact values are employed here to demonstrate the potential accuracy of the 
methods proposed. Measured values will not reflect this accuracy, and the results 
obtained using actual measurements will not have the accuracy of this example. 
The inaccuracy in that situation is not the fault of the method. From the values in 
(a), the values of i and w,, are determined from (4) and (5). 

Then 

[ = 0.719 from (4) 

o,! = 7.989 rad/s from (5a) 

o,, = 8.023 rad/s from (5b) 

o,, = 7.988 rad/s from (5~). 

The exact values in this case are [ = 0.72 and o, = 8.0 rad/s. 

V. Proof of the Method 

There are several steps in the proof of (4) and (5) : 

(1) Location of the Points M and I 

The maximum point M is easily determined by inspection. Thus the time tM at 
which M occurs is also determined. It can be shown in all cases that the time at 
which the curve has an inflection point, Z, is exactly twice the time for the maximum 
point: 
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t, = 2t,. (6) 

To establish (6), the solutions (2) are differentiated and set equal to zero. This 
gives tM. If the second derivatives are set to zero, the times t, result. The times tM 
and t, for various levels of damping are shown below. In each case, there are simple 
identities to show that (6) is true. Thus once M is determined, the point Zcan also 
be found from a knowledge of t,. 

(2) Signljicance of the Point I 

At the point Z, the acceleration 2 is zero. Thus the differential equation at t = t, 
becomes : 

0+2&I&&+0,2x, = 0. 

Thus 

21 XI 
. 

0, XI 

From Fig. 2, it is seen that J-?, = -x,/T, and thus 

W, = 2W7 

which proves (5a). 
In order to use (5a), the value of the damping ratio [ must first be determined. 

The value of [ can be obtained from the ratio of x,/xM. In order to show that this 
is possible, it must first be shown that x,/xM is a function of [ only. And second, 
it must be determined if this relation is such that it is effective in determining [ 
from x,/xM. 

(3) The Ratio R = x,/x,,,, 

Suppose [ < 1. By (2) and (6) : 

00 
XM = 0 -- ee’*J’M sin (wdtM) 0 < [ < 1 

WC/ 

x, = 0 2 ee’“~i2*Msin (wd2tM) 0 < [ < 1. 
WCl 

But 

Thus 
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TABLE I 

Damping ratio (’ Time of maximum t,, Time of inflection t, 

O<jcl 
Underdamped 

I 
~ arctan 
W</ 

(=l 
Critically damped 

1 

0, 

O<[<l 
Overdamped 

t Here the root of the arctangent is taken between 0 and n. 

From Table I, 

tan (mdtM) = q. 

Thus 

sin (mdtM) = J1-[’ and cos (codt,,.,) = i, (8) 

and 

WdtM = oJ1- [’ tM = arctan J1-r 

J1-i’ 
w,[t, = yll;: arctan -- i . (9) 

Equations (7), (8) and (9) show that R = X,/X,,,, is a (complicated) function of 
[. The proofs for the critically damped and overdamped cases is very similar. In 

principle, a relationship 

R = f(i) 

has been established. What is desired, however, is the inverse relation c = F(R). 
And, from the point of view of practical applications, what is desired is a relatively 
simple expression from which the vibration engineer can determine [ quickly and 
accurately from a measurement of R. 
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FIG. 4. The ( versus R curves. 

The relationship c = F(R) is shown as the curve [. . . Exact in Fig. 4. The 
following points are worth noting about the exact curve : 

(1) For 0 < 5 < 0.2, the logarithmic decrement is an effective means of determining 
c. In trying to approximate the exact c curve, the range below 0.2 is unimportant 
in the current context. 

(2) Beyond [ = 1.2, the exact [ curve is too steep to be effective in finding [. Small 
errors in R will result in large errors in [. 

It is reasonable to seek a curve which approximates the exact curve in the range 
0.2 < [ < 1.2. Since the exact curve becomes infinite as R + 1, it is reasonable to 
try to approximate the curve with a function of the form : 

It is reasonable to pick a so the relation is very good at [ = 0.7. This gives 
a = 0.25. Temporarily, this function is denoted by [,. Subtracting the exact values 
of [ from [,, and performing a linear regression on the result gives the following : 

<,-(x 0.3176-0.4989R. 

Rounding this off to two decimal places gives : 

i z m;GR +OSOR-0.32. 

This is Eq. (4). The accuracy of (4) is shown in Table II. Between 0.3 d [ < 1.3, 
the error of (4) is 1% or less. This is certainly acceptable. 
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TABLE II 

I? Exact [ Exact r (4) Error % 

0.3025 0.2 0. I897 -5.1635 
0.4029 0.3 0.300 I 0.0468 
0.4823 0.4 0.4041 1.0138 
0.5986 0.6 0.6021 0.3533 
0.6784 0.8 0.1966 - 0.4296 
0.7355 I.0 0.9929 -0.7070 
0.7785 1.2 1.1979 -0.1735 
0.7959 1.3 1.3028 0.2184 

(4) Proof’ of (5b) 

Frti. 5. The points M and I. 

Consider the plot in Fig. 5. There are two points of interest in the method 
considered here : A4 and I. At the point M, the velocity _t = 0. At I, the acceleration 
.? = 0. In the neighborhood of I, the solution is that of a first-order system : 

On the other hand, in the neighborhood of M, the plot resembles that of mass- 
spring system : 

.P+O+o;x = 0. (10) 

The solution to (10) is 

x = A sin (q,t-4). 

Thus the width of the plot about M is, primarily, a function of cc),. If T,., is the 
width (time) of the plot from the point P to I, see Fig. 2, it is clear that (0,7’,,,) is 
a function only of <. 
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i o, T,, Exact w, T., Approx. Error % 

0.0 
0.1 

0.2 
0.3 
0.4 
0.5 

TABLE III 

2.;04 
2.553 
2.354 
2.191 
2.054 

0.6 1.937 
0.7 1.835 
0.8 1.745 
0.9 1.665 
1.0 1.594 
1.1 1.529 

3.000 +4.507 
2.752 + 1.858 
2.542 $0.416 
2.362 -0.336 
2.206 -0.661 
2.069 - 0.709 

.948 -0.571 
,840 - 0.305 
.744 + 0.052 
,657 + 0.465 
,579 +0.919 
,508 + 1.404 

1.2 1.470 1.442 + 1.904 
1.3 1.417 I .382 +2.415 

7. 

3 
. . . . . . wnTu exact 

2 5 l \_ - - w,T, awrox 

\ 

l \ 
l \ 
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FIG. 6. The w, T,, versus [ curves. 

The exact values of (o,T,,,) for various values of i are shown in Table III and are 
plotted in Fig. 6. 

The errors in using (5b) are less than 2% in the range: 0.1 d i d 1.2. This 
accuracy is better than one could ordinarily anticipate in making measurements 
on an experimental plot. 

VI. Conclusions 

The determination of [ follows from measurement of R = X,/X,,,, and the use of 
(4). Then o, is determined from the time Tand (5a) or from the time T,, and (5b). 
All computations are easily performed and though the equations are quite simple, 
the results are very accurate. 

It could be argued that the procedure leading to (Sb) could be improved by 
sampling the width of the curve closer to the top at M. It is true that looking at 
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the curve in the immediate neighborhood of M will give a result independent of (. 
The difficulty with this procedure is that the width of the curve near M is poorly 
defined. The width of the curve from P to Zis, on the other hand, very well defined. 

It is also reasonable to question whether the time TJ~ might serve as the best 
way to determine w, once (’ is determined. Again, an examination of Fig. 2 shows 
that the time tJ2 is poorly defined at best. On the other hand, if there are viscous 
effects present, the time 2,,/2 may be not only poorly defined but irrelevant. 
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