
Informarron .S.wems Vol. IS. No. 6. pp. 653-662. 1990 0306-4379 90 f3.00 + 0.00

Printed in Great Britain. All rights reserved Copyright (‘ 1990 Pergamon Press plc

BUILDING EFFICIENT AND FLEXIBLE
FEATURE-BASED INDICES

KUEN-FANG JACK JEAt and YUNG-CHIA LEE:

Robotics Research Laboratory, Department of Electrical Engineering and Computer Science.
University of Michigan, Ann Arbor, MI 48109-2122, U.S.A.

(Received 8 August 1989; in revised form I2 February 1990; received for publicarion 26 July 1990)

Abstract-If database management systems are to play an important role in CAD/CAM technologies.
building engineering indices must be a primary task even though it is beyond conventional database
practice. Information regarding design semantics or functionalities is often embedded in the geometric
description of design objects, and is therefore not directly available for indexing. Presented in this paper
is an efficient and flexible indexing mechanism for retrieving design objects that possess similar design
features as described by the user. The underlying database is composed of rotational objects represented
by constructive solid geometry (CSG). Although domain-specific representation schemes and algorithms
are involved, the main objective of this paper is to emphasize the importance of engineering indices and
to illustrate the effort required to build as well as to use such indices.

Key words: Engineering database management, engineering indices, feature extraction, constructive solid
geometry, multiple key access, pattern matching, design retrieval

1. INTRODUCTION

To support efficient retrieval, a successful database
usually relies heavily on a proper indexing mechan-
ism. While selecting an adequate set of indexing
attributes for a conventional business database is
rather straightforward [I+], it is unfortunately very
difficult for an engineering database. Often, values
chosen for indices in an engineering database are
simply not directly available and must be, if possible,
reasoned or computed.

1. I. Importance of engineering indices

Arguably, design retrieval by names or identifiers
should not be the only way for a user to locate an
existing design object from a database. A more useful
retrieving facility should allow its user to retrieve the
designs for all engineering objects which satisfy a
given set of descriptive measures, be they quantitat-
ive. qualitative, or both. W/I_Y are such queries import-
ant? There are many different aspects of concerns
associated with each existing design. The database of
existing designs is always so important that consult-
ing with it would eliminate a great deal of duplication
effort and thus enhance the design productivity,
quality, manufacturability, etc.

However, if there exists no index built on these
descriptive measures, the database management sys-
tem must perform an exhaustive search through the
entire database to locate all desirable objects. Such an
exhaustive search is even worse if those descriptive

Current affiliations: Kell Communications Research; :AT
& T Bell Laboratories.

measures must be matched against each existing
design, those values for these measures are yet to be
computed.

1.2. Problems in constructing engineering indices

There are in fact many problems involved in
building up such indices. First, what are these
descriptive measures to be indexed? For a new design,
a designer usually starts with some rough ideas in
mind. These rough ideas may be an approximate
global shape, some significant secondary shapes, or
some qualitative or quantitative feature descriptions
that are associated with part shapes or design func-
tions. An even more challenging problem is: “How
can these measures be made directly available for each
existing design in the database?” An obvious answer
is to precompute them, or to ask the designer to
assign them when the database is first created. Cer-
tainly, there are problems of efficiency and flexibility.

As far as efficiency is concerned, its solutions are
mostly available through database technologies.
However, if queries are to be specified in various
input formats such as textual descriptions or graphi-
cal sketches, the capability to efficiently compute
index values so as to utilize existing indices become
a new issue related to pattern recognition or, specifi-
cally, feature extraction [5,6]. With regard to flexi-
bility, the question is “How flexible are the existing
indices in adapting to newly defined measures? ” A new
index, once defined, should be constructed automati-
cally. Again, when techniques such as feature extrac-
tion are required to compute index values, multiple
representations may have to be derived in advance
from the principal representation. And, the flexibility

653

654 KLZN-FANG JACK JEA and YUNG-CHIA LEE

will rely heavily on how these representations facili-
tate the extraction of index values [7,8], Figure 1
highlights these two concerns.

This paper consists of tive sections. Described in
Section 2 are the database we have been concerned
with and its problems in supporting engineering
indices. In Section 3, we will describe the various
representation schemes and algorithms that are
needed to build indices based on feature extraction
techniques. Section 4 presents a global view of the
indexing mechanism so as to illustrate how the whole
retrieving mechanism works through the proposed
methods. Section 5 concludes this paper.

2. A CONSTRUCTIVE SOLID
GEOMETRY (CSG) DATABASE

OF ROTATIONAL PARTS

The database considered in this paper is a data-
base of rotational parts described by CSG. The
CSG scheme is one of the prevailing solid modeling
techniques which completely represents objects as
constructions or combinations, via the regularized
set (Boolean) operators, of solid components [9].
Unfortunately, while the Boolean operations are
concise and flexible in constructing and verifying
objects, they also lead the CSG scheme to an un-
evaluated and nonunique representation scheme.
The CSG scheme is unevaluated in the sense that
geometric entities such as vertices, lines and sur-
faces are not explicitly represented and must be
computed by traversing the whole CSG tree. It is also
nonunique in the sense that a physical object might
be represented by two or more distinct CSG trees.
Consequently, rather sophisticated methods are re-
quired to rebuild CSG trees so as to extract specific
features [10, 1 f J.

2.1. The principal axis representation (PAR) scheme

Recognizing the above problems, an internal rep-
resentation scheme PAR for rotational parts has been
proposed as an internal representation scheme for
CSG [121. The idea of the PAR scheme is to uniquely
represent a rotational object by its principal axis
along with a set of boundary curves. As an internal
~presentation scheme, it is basically a derived data
structure which is more efficient in computing various
geometric properties of objects. In order to justify the
correctness of its derivation from CSG, the PAR
scheme has also been proved to be equivalent to the
CSG scheme as far as rotational objects are con-
cerned. A simple example of PAR will be presented
in the next section.

A slight modi~cation of Fig. 1 is shown in Fig. 2
to highlight this particular environment where a
derived PAR database also exists in parallel to the
CSG database. It is hoped that indices will be built
more efficiently and flexibly from the PAR database.
Yet, there remain problems in using shape features
for the indexing purpose. In the following, a simple

t&wies in various input formats

-F&L-
ProCessor

~. .___--___-..____- _.-.

.----- ‘-;: Index

Derived
representation5

+l Database

I

Fig. 1. Basic diagram for design retrieval.

example is given to describe the PAR scheme and to
illustrate why PAR is still not an adequate scheme for
specifying or extracting shape features.

2.2. Querying rhe CSG database through PAR

In Fig. 3, (a) shows a half circle curve c,,, which
is defined as a shape feature to be indexed. Its
corresponding PAR is (S,, {tit , c,:)I. where Si is the
principal axis segment and ci, and ci! together are
a pair of boundary curves associated with S,. The
PAR repre~ntation for the more complicated object
in Fig. 3(b) is ((S,, fc ,,.c,,3)*& (c:,*c,,c*,,c,‘i).
(S,, {c,,,e,*rc,,,cU))r (S,, fc‘,,cJZ,c,,.c,}). (S,.
(cSI,e52r%e$4)). (S,. {%*%f). G7* IC,,rC7?~)~-

While the half circle in (a) is completely represented
in one segment, the corresponding one in (b) has been
decomposed into four sections, each being associated
with one segment. The reason for different PAR
repre~ntations of the same feature (the half circle, in
this case) is that the set of principaf axis segments are
determined by all the intersecting points between
boundary curves and lines.

To match the half circle in (b) against the one in (a)
for the purpose of feature extraction, we need to scan
through several segments and connect the four pieces
of curves for comparison. Clearly, this complexity in

temfel input f teaturns. CSG tmes 1;
graphical input (skatchs)

Quey L-J Processor

_I__-__

+

INDEX

c3-6
CSG detabase PAR database

Fig. 2. Basic diagram For CSG design retrieval.

Bu~i~ing feature-based indices 655

I c12 b

=,

(4

c
11 c2l e31 %I

i

_A -VP

2244uT;;-I
I ‘32

Fig. 3. The problem of matching two PAR‘s.

matching features at the PAR level arises directly
from the fact that a feature may be decomposed and
represented in several segments. Yet, such a de-
composition is caused by the shape of other portions
which are irrelevant to the feature itself. To overcome
this problem, we need a representation scheme which
can isolate a local feature and prevent it from being
decomposed due to the shape of neighboring por-
tions. Furthermore, it seems quite obvious that, in
each pass, only one feature can be extracted if a direct
match is performed on PAR. It becomes very ineffi-
cient and less desirable when a set of features are to
be extracted for the indexing purpose because mul-
tiple passes of scanning the object’s PAR would be
required.

3. INDEXING BASED ON FEATURE
EXTRACTION

Thus, as indicated that neither CSG nor PAR are
representation schemes at the right level for support-
ing engineering indices, we need to identify yet
another representation scheme which satisfies the
following:

(I) allows shape features to be properly
defined; it implies that, perhaps, the
new representations should be as close
as possible to profiles;

(2) allows shape features to be efficiently
extracted; it would be best if an efficient
algorithm already exists and is appli-
cable to the new scheme;

(3) as a derived one, the new scheme can be
efficiently transformed from either CSG
or PAR.

Described first in this section is the scheme of
pattern string representation (PS). which we believe
qualifies the criteria above. The PS scheme relies
heavily on Aho and Corasick’s string matching aigor-
ithm (121, which not only extracts desirable features
efficiently but also constructs the pattern matching
machine (i.e. feature extractor) automatically. We
will describe this algorithm only briefly and focus on
how it can be used to extract shape features from a
pattern string. Lastly, we will present an algorithm
which converts a PAR into a pattern string. By then.
all the proposed representation schemes and algor-
ithms are complete and ready for the indexing
purpose.

3.1. Pattern string representation

In the following, the pattern string representation
for rotational parts is defined. The I6 pattern primi-
tives which compose pattern strings are shown in
Fig. 4. Each p~mitive is denoted by a character. and
stands for either a line or an arc segment with a
starting point, an ending point and a direction label.
The first eight primitives (a-h) are line segments.
Except for the horizontal (a and e) and the vertical
(c and g) primitives, each of the rest line segments
(b, d, f and b) may represent any vector (rooted at the
origin) in that quadrant. This leaves room for an
inexact match which will be explained later. However
if two line segments of the same primitive type are
head-to-tail connected, they are treated as two differ-
ent primitives unless they are of the same slope.
In that case, the two line segments are merged
together and treated as one primitive. Accordingly,
the length of a primitive is immaterial, and this leaves
additional room for an inexact match. The other
eight primitives are circular arc segments; rotational
parts constructed from cylinders, cones, and tori have
only circular arcs in their profiles. Similarly, each
primitive may represent any circular arc within a
specific quadrant. Unlike those primitives defined in
Ref. [14] which may be arcs of half circle, all arc

a

d ; b

Fig. 4. 16 Pattern primitives.

656 KLTS-FASG JACK JEA and YUNGCHIA LEE

I

no I

panem rbing = gacopgacaeo

Fig. 5. Pattern string representation.

primitives defined here do not cover more than one
quadrant because a feature or an object may be
otherwise coded by different pattern strings.

A pattern string representation for a rotational
part is defined as a string of pattern primitives which
describes the upper half of the object’s 2-D profile in
a clockwise order starting from the leftmost segment
of the profile. The word clockwise means left-to-right
for external boundary and right-to-left for internal
boundary of the profile. If there is more than one
leftmost segment, the one closest to the principal
axis is selected as the starting segment. Figure 5
illustrates how to derive a pattern string from an
object’s profile. Starting from the leftmost segment g
and proceeding around the upper half of the profile
in a clockwise order, a pattern string “gacopgacace”
can be identified for the object.

Unlike PAR, the pattern string representation is
not intended to completely represent the object’s
geometry. Instead, simplifications are made for the
purposes of efficiency, simplicity and inexact match.
After all, design retrievals are to locate similar

objects. The detailed information associated with
each primitive is, however, recoverable if needed.
Later, in the algorithm which transforms PAR into
PS. such information is used to determine if two
primitives should be merged into one and how two
intersecting edges should be split.

3.2. Extracting features from PS

As indicated earlier, extracting features from PS
becomes an extremely efficient and flexible task due
primarily to the availability of Aho and Corasick’s
string matching algorithm (131. The Aho and
Corasick’s string matching algorithm consists of two
parts. The first part constructs a finite state pattern
matching machine from a set of keywords (in this
case. a set of features to be extracted). The second
part of the algorithm runs the pattern matching
machine against the input string (in this case, the
pattern string of an object) to locate keywords. The
machine signals whenever it has found a match of a
keyword. All keywords embedded in the input string
are located in a single pass of reading the input string.

3.1.1. Constructing a pattern matching machine. The
Aho and Corasick’s algorithm has been well docu-
mented in Ref. (131. In the following. we will briefly
review it through an example constructed by our own

acop OP aca

(a) a SOI of keywords (features)

oaP

&a, 0)

)
(b) go10 kmclion

i 123456769

f(i) 0056001 10

(C) faikxr hmc6on

I X(i)
4 (acop. OPI
6 (OPI
7 (a-1
9 loaPt

(d) OutPul function

Fig. 6. Pattern matching machine: an example.

implementation. In Fig. 6, (a) shows the four features
“acop”, “op”. “aca”, “oap”, and (b) shows the goto
graph (goto function) g that is constructed from
the four given keywords. Each circle in this graph
represents a state and each edge denotes a state
transition as the associated input symbol occurs.
Note carefully that each path in this graph spells out
a keyword. Shown in (c) and (d). respectively, are
the failure f and the output i. functions for each
state i, both computed from the goto function in
(b). The output function for some states (i.e. states
0, I, 2,3,5,8) are missing from (d) because no out-
puts should be generated at those states. From the

Table I. State transition function of the machine in
Fig. 6

Building feature-based indices 657

Algorithm. Pattern Matching (Feature Extractor).
Input. An input string 2 = ~,~~...a,, where each a; is an

input symbol and a pattern matching ma&ii M with
state tmnsition function 6 and output fimcti~n X.

Output. Locations at which keywords occur in z.
Method.

begin
stale - 0;

for i - 1 until n do
begin

state c C(sia!e,ai);
if X(dafe) # 4 then

begin
print i;
print X(slote):

end
end

end

Fig. 7. The feature extractor.

goto and the failure functions, the state transition
function S can be computed as shown in Table 1. The
pattern matching machine is thus constructed. Of the
most importance is the fact shown in Ref. [13] that
the cost of computing g, j, 1 and 6 together requires
an amount of time linear to the sum of keyword
lengths.

3.2.2. Extracting features by the pattern matching
machine. As features and objects are now represented
as keywords and strings, respectively, extracting
features from an object is equivalent to locating
all keywords in an input string. Figure 7 shows in
principle how a pattern matching machine, or a
feature extractor, works. The machine consists of
a finite set of states. Starting at the start state, the
machine processes the input string by successively
reading input symbols in the input string, making
state transitions and producing output. At each new
state, if the output function is not empty, the output
and the position of the current input symbol are
reported. The machine terminates when there is no
symbol left. Overall, the machine makes n state
transitions in processing an input string length n,
which is independent of the number of keywords
as well as the size of each keyword. All keywords

(a) an input object

input sving: hacopgacaco
state transitions: 001234012720

(b) a ssquoncs of state transitions

Maitian sata
5 4 woP0 oP)
9 7 law

(c) features eairwted from input string

Fig. 8. Feature extraction using the machine in Fig. 6.

(i.e. features) are identified and located in a single
pass of processing the input string.

In Fig. 8. (a) shows a rotational object by its upper
half profile, whose pattern string is “hacopgacace”.
(b) Shows the sequence of state transitions as each
input symbol is consumed. (c) Shows the features
extracted and their positions after the input string is
processed.

3.3. Deriving pattern strings from PAR

Remember that one of the criteria for the new

representation scheme is to be derivable from either
CSG or PAR. Described in this section is a one-pass
algorithm which efficiently converts a PAR into a
pattern string. The conversion algorithm consists of
two main steps: first, convert each layer in the PAR
into a pattern substring, and second, merge these
substrings into a complete string.

The first step is to scan through each axis segment
of the PAR and convert every layer associated with
that segment into a pattern substring. Each layer in
the PAR is defined by a pair of curves and bounded
by two vertical line segments (may degenerate to a
point in some cases) at the bound points of that seg-
ment. Thus, the pattern substring for a layer, which
consists of no more than four pattern primitives, can
be easiIy derived according to the types of the curves.
For example, the two layers in Fig. 9(a) can be
converted into two substrings “ghce” and “gice”.

The second step is to, for those neighboring layers
(or compositions of layers) that have intersecting
edges, insert the right pattern substring into the
left one at the position where their edges meet. In

h

B cl C =zt> ghce

e

I

I cl C =I, gice

e

(a) convetl each layer into a pattern string

gice

f-v ==, ghgiceu,

ghcs

W insrrl the right panem wing into the

left one at the position of interssdion

Fig. 9. Two major steps in the pattern string conversion.

IS I5 6-F.

658 KLZS-FANG JACK Jw and YIJNG-CHIA LEE

(4) ou1put- SCZT (5)otiput- SZT (5) anput- Sorr

(71 oulprr= ScZgl (8) cwtwt- SZOT (9) artput- sorOT

Fig. 10. Nine cases of inserting a pattern substring.

Fig. 9(b), for example, the edge c of the left sub-
string meets the edge g of the right substring. The
pattern string for the composition of these two layers,
“ghgicece”, can be generated by inserting the right
substring “gice” into the left one “ghce” at the
position c. Note that the two intersecting edges must
be split appropriately. In general, there are nine cases
in total that must be resolved. Figure 10 shows these
nine cases as well as their solutions. Note that, in
Fig. 10, a left substring is represented by “ScT” and
a right substring is represented by “gz”, where c
(pointed downward) and g (pointed upward) are the
two intersecting edges. The capital letters S, T, and
Z are pattern substrings.

A one-pass conversion algorithm based on the
above two steps is presented in Fig. 1 I. Assume that
a given PAR has n segments and, within each segment
S, (1 ,< i <n), there are m, layers. The algorithm
proceeds as follows: first, each layer in Segment 1
is converted into a pattern string and its rightmost
edge is stored into a queue, called NexrEdgeQueue
(because it may intersect the leftmost edges of the
layers in the next segment); then the algorithm goes
iteratively to the next segment, converts each layer,
stores the rightmost edge, and inserts the pattern
string just converted into the pattern string according
to the cases shown in Fig. IO. As each layer and each
segment is processed only once, the conversion algor-
ithm is a one-pass algorithm.

We have implemented all the representation
schemes and algorithms described in this section. The
next section will illustrate them in terms of several
CSG objects.

4. DESIGN RETRIEVAL THROUGH
MULTIPLE ENGINEERING INDICES

Presented in this section is the proposed mechan-
ism for retrieving CSG objects using multiple

Algorithm PNUPS. CUWeIIPARlOPIUcmSlklg.
Input. a PAR. which has n ~C@WXIU and uch r-1 Si

ha9 Wli layen.
Oulput. 8 paItcm string PS.
Method

Wn
NerlEdgcQucuc - nil;
for j - I until ml do

convett the layer L*j 10 8 pattern nring and
SLOE its righmost edge ttj into Ne+fEdgeQuew:

fur i c 2 until n do

Wn
CurrentEdgcQueue - NetlEdgeQueUe;
NetlEdgcQueue - nil;
z c gel an edge from Curtcn~EdgeQueue;
for j +- 1 until mi do
begin

cawcrl the layer Lij 10 a pattern suing and
store iu righ~nost edge rij into NeztEdgrQueue:
y c the lefunoa edge Of Lij;
while (z.head.height > y.head.height) and

not cmply(CurreniEdgeQueue) do
t c get an edge fmm Curren,EdgcQwue:

if (t n u) # 0 then
insert rhe paucm suing of L,, inlo rhc suing

containing 2:
end

md
PS c the rcmaining pauem suing;

end

Fig. 1 I. A one-pass algorithm which converts PAR lo P!3.

indices. Although some aspects of this mechanism
are rather domain specific, it is in general of interest
to most engineering database management systems.
We will first present a number of test examples
to illustrate all the algorithms and representation
schemes described earlier. We will then explain the
indexing mechanism through a detailed block dia-
gram. Finally, the related issue of multiple-key access
will be discussed.

4. I. illustrative examples

In the following, a number of CSG objects are used
to test the algorithms developed thus far. The profiles
of these examples are shown in Fig. 12. A summary
of various results is listed in Table 2. All examples
follow the same assumptions and procedures listed
below:

1.

2.

3.

All CSG objects are constructed by set
operators union and dtfirence from
primitives including cylinders, cones and
tori. These CSG objects are axis-symmet-
ric and of single principal axis.
The algorithm UC-m-PAR is applied
to each CSG object to generate a PAR.
For an illustrative purpose, some
geometric properties that can be easily
derived from PAR such as length, maxi-
mum diameter and profile are computed.
The algorithm PAR-to-PS is applied to
transform each PAR into a pattern
string.

Building feature-based indices 659

(a) T30 Shaft

(c) Disk01 (d) Disk02

(b) Bottle

(e) Disk03

Fig. 12. Illustrative examples: (a) T30 shaft [14]; (b) bottle; (c) DiskOl; (d) Disk02 and (e) Disk03 [13].

4. Independent of objects, a set of 13
features is defined, as shown in Fig. 13.
These features are fed into Aho and
Corasick’s algorithm to construct a pat-
tern matching machine.

5. The pattern matching machine is used
to process the pattern string associated
with each object. The extracted features
are reported with their positions on the
pattern string.

4.2. The indexing mechanism

There are two major tasks the indexing mechanism
must achieve: building indices off-line and computing
index values on-line for accessing the database. With
all algorithms ready, let us examine how they can be
used to accomplish these two tasks. A block diagram
is shown in Fig. 14.

To build indices off-line, each CSG object in the
database is processed first by the algorithm CSG-ro-
PAR. From PAR, geometric properties which are to
be indexed are computed. Meanwhile, the algorithm
PAR-to-PS is applied to convert each PAR into a
pattern string, from which shape features previously
defined are extracted. Indices are then built on these
shape features.

To use indices on-line, all index values must be
on-line evaluated regardless of the input format. As
discussed earlier, a user, namely, a designer, could
have asked any of the following:

(1) a simple textual query such as “retrieve
all design objects that have length-to-
diameter ratio between 0.1 and 1 and
possess features pgm and nco “;

(2) a more complicated textual query such
as “retrieve all design objects that pos-
sess similar features as the object
specified in the CSG data file template”;

(3) through some interface such as a draw-
ing pad, the query is to locate all design
objects that possess similar feature as
the object just sketched by the user.

As indicated in Fig. 14, textual input of shape
features and geometrical properties can be used di-
rectly as index values for access; input CSG trees
must go through exactly the same route that builds
indices off-line; and, graphical sketches must be con-
verted into pattern strings before feature extraction
can be performed.

Again, let us examine why Fig. 14 indeed suggests
an efficient and flexible indexing mechanism. The

KCES-FANG her JEA and YWG-CWA LEE

TaMe 2. PS and extracted features of test objecis

Resign mjecl

CSG tree (#nodes)

CSG primitives

Dimension (fenglh)

Dimension (diameter)

Pattern Suing

Features (positions)

7-30 Shaft f Bottle Diskut

53 53 55

27 27 28

Disk@2

79

40

St0

980

8%P=P-
gefgagega-

Cdt%ZXOaC-

encegmncc-

cemedcfe

pm 6)

WffU

age (16)

cnc (30)

cmed (41)

efficiency is in part attributed to Aho and Corasick’s
algorithm. Based on this a~go~thm, the feature
extractor extracts all the features in an object in a
single pass. The efficiency is also dependent on how
indices are maintained. Although not the focus of this
paper, we wiil briefly discuss this issue as a problem
of multiple-key access in the next subsection. As for
the flexibility, note that defining a new feature will be
accommodated by simply reconstructing the feature
extractor and then rebuilding the indices; both may
require sjgni~ca~t ~ornpu~tjo~ effort but can be
automati~a~fy done without human intervention.

Most queries refer to an arbitrary number of
geometric properties andjor features. Therefore, this

we e8gh

th

. . , .
nco COP@ enc %m8d

Fig, 13. A set of I3 features.

Uisk03

115

58

510

980

gaMweg-

apgmefgap-
gegacdenc-

oacoacenc-

egmncecem-

edefe

P= (71

Pgm 03)

enc (27)

nce (28)

enc (36)

emed (47) f

section deals with the problem of muitiple-key access,
as far as the indexing strategy in concerned.

While g~metricai properties are usually associ-
ated with a range of values, shape features are
not necessarily described quantitatively or quahtat-
ivefy. At least within our current focus, queries
are mainly to locate design objects that possess
certain features. In other words, an index on a
particular feature is to determine if the feature
appears in each design object. The index value is
either yfs or no.

A straighforward way to maintain all these
indices is presented in Fig. IS. For each shape feature
index, there are two entries; one points to a bucket
containing the identifiers of those designs which
possess the specific feature white the other points
to a bucket for those objects not possessing the
specitic feature. Some may argue that the ntt
bucket should not exist because of space efficiency.
However, it deserves to be there if queries that refer
to nonexistency of features also happen quite fre-
quently. For each geometric property index, there
are multiple entries, each carrying a value or a

f Build in&w f

(off-line) (On-:in*)

Fig. I4 Detailed block diagram of the indexing m~hanis~.

Building feature-based indices 661

teature:

wm

feature:
nco

length

Fig. 15. Multiple indices structures.

range of values and pointing at a bucket which
stores the identifiers of those qualifying objects.
Given a query, the access strategy is then to collect
all qualified buckets and perform adequate set oper-
ations (e.g. intersection, union, not) on their identifier
sets. For simplicity, the intersection might be the only
operation needed.

The operations on identifier sets sometimes
cause great concern on efficiency, particularly when
some of the identifier sets are overwhelmingly
larger than others. The grid structure [3] provides
one of the solutions to this problem by nstruc-
turing the indices. A grid structure is in general
an n-dimensional array with each dimension corre-
sponding to an index. The subscript range of each
dimension is the range of the index values in each
index. Each entry of the array (i.e. the grid structure)
contains identifiers of those objects whose index
values are consistent with the subscript values ad-
dressed to it. For example, if there are two indices
A and B with the possible index values ut , a,, a3 for
A and bl , b,, b3, b4 for B, the corresponding grid
structure is a 2-D array with 3 x 4 = 12 elements. For
the query “find records with A = a2 and B = b,“, the
qualified records can be accessed by the identifiers
stored in the grid element grid (a,, 6,).

Assume that there are n feature indices defined
in the database. Because each feature index has
only two index values, the grid structure for all n
feature indices requires only an n-bit addressing
vector, each bit corresponding to an index, to access
the 2” buckets that are needed. Given a query,
the access strategy is to determine the n-bit address

according to the features specified or extracted.
The advantage is that the retrieval is speeded up
because there are no intersections performed at run-
time. The disadvantage, on the other hand, is the
space overhead attributed to the 2” buckets that
are needed. But, if necessary, the techniques used
in dynamic hash functions [3] that split and
coalesce buckets as the database grows and shrinks
can be adopted to alleviate the problem of space
overhead.

5. CONCLUSIONS

While selecting an adequate set of indexing attri-
butes for a conventional business database is rather
straightfo~ard, it is unfortunately very different and,
in fact, difficult for an engineering database. Often,
values chosen for indices in an engineering database
are simply not directly available and must be, if
possible, reasoned or computed. The objective of this
paper is to illustrate the effort required to build as
well as to use engineering indices in a CAD/CAM
database management system.

Using a CSG database as an example, this
paper identifies the need for deriving intermediate
representation scheme and for extracting shape fea-
tures. Both efficiency and flexibility have been taken
into account when building and using indices.
Regarding efficiency, the pattern matching machine
extracts all features from an input pattern string in a
single pass (independent of the total number of
predefined features), and the algorithm deriving a
pattern string from PAR has a linear time complexity
with respect to the number of axis segments in PAR.
As for the flexibility, Aho and Corasick’s algorithm
automatically constructs the pattern matching ma-
chine for any new features, and the pattern matching
machine extracts multiple features and builds mul-
tiple indices automatically. Accordingly, the indexing
mechanism proposed in this paper is both efficient
and flexible.

There are a number of limitations specifically
related to the representation schemes and algorithms
described in this paper for the CSG database.
The CSG database is composed of 3-D, rotational
design objects. The database stores nothing but part
geometries in CSG representations. The objects
shown in this paper are constructed by cones,
cylinders and tori only. As such, their derived, 2-D
representations consist of straight line segments and
circular arcs. Obviously, other CSG primitives such
as blocks or more complicated free-form solids can
not be handled directly. To overcome such limi-
tations, many algorithms are needed and some of
them have recently been described elsewhere [l I].
Note, however, that the proposed feature extraction
techniques are much more suitable for rotational
parts than those based on boundary representations
(B-reps). First, deriving from CSG to B-rep is very
time-consuming and, second, extracting arbitrary

662 KL’EN-FANG JACK Ju and YUNG-CHIA LEE

features from B-rep, if possible, is not trivial at all
[8, IS]. As for the features illustrated in this paper,
we have made no attempt to select them from a list
of most commonly used features. Nevertheless, if any
feature is to be used in a database, the same indexing
mechanism can be adopted. As long as the desirable
features are specified in CSG trees, sketches or even
pattern strings, their corresponding indices will be
efficiently and automatically constructed against
the whole database. It is also not mentioned in this
paper whether the database should be a relational
database or an object-oriented database. We would
rather consider this issue less significant because the
main difficulty lies in the unavailability of design
semantics rather than in the way each design object
is physically stored and managed.

The proposed mechanism employs Aho and
Corasick’s string matching algorithm to construct
feature extractors. Although this algorithm is very
efficient, there is still room for impro~ng its perform-
ance. Algorithms presented in Refs [16, 171 are
such examples. However, the performance gains in
Ref. (161 (with the same order of time complexity as
Ref. 113) are compromised by the more complex and
larger (feature extractor) construction algorithm.
And the algo~thm in Ref. [lfl does not allow the
modification of keywords (i.e. features) and, thereby,
results in the loss of flexibility in accommodating new
features.

The retrieving mechanism described, albeit
domain-specific, suggest in general how feature ex-
traction and multipIe-key access can be brought
together for more efficient and flexible design re-
trieval. Though beyond the practice of conventional
database design, building engineering indices is an
important task in engineering database design.

Ac&nowIedgemenrs-Many thanks to the referees for their
useful suggestions.

REFERENCES
[If C. J. Date. An Introduction to Database S_utems,

3rd edn. Addison-Wesley, Reading, Mass. (1981).
121 C. J. Date. An Introduction to Database &stems.

Vol. II. Addison-Wesley. Reading, Mass. (1982).
[3] H. F. Korth and A. Silberschatz. Database Sysrem

Concepts. McGraw-Hill. New York (1986).
[4] J, D. Uilman. Principles of Database Systems. 2nd edn.

Computer Science Press. Rockville, Md (1982).
[S] J. Earley. An efficient context-free parsing algorithm.

Communs ACM 1312). 94-102 (19701. , I-

[6] K. S. Fu. Syntactic Pattern deco&ion and Appli-
cations. Prentice-Hall, Englewood Cliffs. N.J. (1982).

[7] R. Jakubowski. Syntactic characterization of machine
parts shapes. Cybernetics Systems U(1). 1-24 (1984).

IfI] S. M. Staley, M. R. Henderson and D. C. Anderson.
Using syntactic pattern recognition to extract feature
information from a solid geometric data base. Comput-
ers Mech. Engng. 2(2), 61-66 (1983).

[9] A. A. 0. Requicha and H. B. Voelcker. Solid modeling:
a historical summary and contemporary assessment.
Computer Graph. Applic. t(2), 9-24 (1982).

[IO] Y. G. Lee and K. S. Fu. Machine unde~tanding
of CSG: extraction and unification of manufactu~ng
features. Conmnrer Gruoh. At&c. 7(I). 20-32 (19871.

(I I] K. F. Jea. .& efficient and ’ flexible.design-retrieval
mechanism for CAD/CAM databases. Ph.D. Thesis,
The University of Michigan, Ann Arbor, Mich.. Nov.
(1989).

[I21 Y. C. Lee and K. F. Jea. PAR: a representation scheme
for rotational parts. IEEE Trans. &terns Man, Cyber-
netics SMC-llfllk 1039-1049 11987).

[13) A. V. Aho and‘M1.J. Corasick. ‘E&Lent string match-
ing: an aid to bibliographic search. Communs ACM
18(6), 333340 (1975).

(141 R. K. Li. A part-feature recognition system for ro-
tational parts. Ini. J. Prod. Res. 26f9). 1451-1475
(1988). -

(1Sj H. P. Wang and R. A. Wysk. AIMSI: a prelude to
a new veneration of integrated CAD CAIM systems.
fnt. J. &od. Res. 26(l), ii9431 (1988). _

[la] J. Aoe, Y. Yamamoto and R. Shimada. A method for
improving string pattern matching machines, IEEE
Trans. Sflwre Ettgng lo(l), 116-120 (1984).

[17] 1. Aoe. An efficient implementation of static string
pattern matching machines. IEEE Trans. Sfiwre Engttg
15(8), fOIO-1016 (1989).

