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Abstract—The effect of coupling on the intensity-response functions for full field and for slit stimuli was
studied by comparing the shapes of the curves obtained from several strongly coupled red cones of turtle
with that of one very weakly coupled cone. The full field V—log/ curves could be fitted by a
Michaelis-Menten relationship, regardless of the strength of the coupling. For the weakly coupled cone
the slit ¥-log I could also be fitted by a Michaelis-Menten curve. For strongly coupled cones a major
portion of the curve (1.2-2 log units of intensity) was better fitted by V' oc I™. For centered slits “m” was
0.5. With increased distance between the slit and the center of the receptive field “m™ was found to increase
slightly. The results were analyzed in terms of a theory in which the shape of the slit intensity-response
curves arises from scattered light progressively recruiting neighboring cone responses. An analytical
formulation of this idea is presented and a plausible light distribution function which supports the
recruitment hypothesis is derived. A numerical model of the cone network, which includes the effect of
scattering and transduction saturation, accounts well for all of the experimental data obtained with single

0042-6989/90 $3.00 + 0.00
Copyright © 1990 Pergamon Press plc

and paired slits.

Retinal cone Phototransduction

INTRODUCTION

In our previous paper (Pluvinage & Green,
1990), we used intracellular responses from
turtle cones to infer the relationship between the
intensity of a small light stimulus and the ampli-
tude of its local neural correlate, which we called
excitation. Over two log-units of intensity, exci-
tation was found to be approximately propor-
tional to the square root of the light intensity,
a result consistent with the intensity coding
inferred from ganglion cell studies in other
animals (Easter, 1968; Levine & Abramov,
1975; Enroth-Cugell & Harding, 1980). The aim
of this paper is to clarify the physiological
mechanisms which lead to the ‘square root’
relationship.

We first present experimental evidence that
the “square root” relationship is intimately re-
lated to photoreceptor coupling. This leads to
the following idea about how the square root
relationship arises. As the intensity of a slit
stimulus centered on an impaled cone is in-
creased, two things happen. The cones in the
geometric image of the slit saturate, and increas-
ing numbers of coupled cones are stimulated by
scattered light. The square root relationship for
small stimuli results from local saturation of
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cones and from the summation of signals from
an ever increasing area of the retina. The evi-
dence for this idea comes from a model incor-
porating light scattering, a Michaelis-Menten
photocurrent transduction, and electrical coup-
ling between cones. Within the model, recruit-
ment of coupled cone responses can account for
all of the experimental findings.

METHODS

The methods are those described in the pre-
vious paper (Pluvinage & Green, 1990).

RESULTS

The effect of coupling on the intensity—response
curves

The effects of photoreceptor coupling are well
illustrated by comparing the intensity—response
curves of a strongly coupled cone and a very
weakly coupled one. According to Baylor and
Hodgkin (1973) and Lamb and Simon (1976)
the strength of the coupling is proportional to
the receptive field space constant measured with
a narrow slit of light. Figure 1 compares the
receptive field profiles for two cells with very
different space constants. The profile of a
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Fig. 1. Receptive field profiles for two cones. The data points
indicate the peak amplitude of responses to a slit stimulus
flashed at various distances from the center of the receptive
field. The receptive field of & strongly coupled cone ([1)is
well fitted by exponential fall off, as shown by the regression
lines on logarithmic coordinates (solidl lines). The receptive
field of a weakly coupled cone (Q) is not adequately ftted
by exponential fall off (the line was drawn by eye).

strongly coupled cone ([1J) was fitted by linear
regression (solid lines) on semi-logarithmic co-
ordinates. The space constants of the exponen-
tials are 29 and 33 um (left and right sides
respectively). The profile of a weakly coupled
cone () was not adequately fitted by exponen-
tial functions (the dashed curve was drawn by
eye). The stecpest segments of the profile have
slopes which correspond to space constants of
10 and 12 um respectively.

For both cones, we systematically measured
the peak amplitude of the responses to full field
and slit stimuli flashed over a wide range of
intensities. Figure 2 shows the intensity-
response curves for the strongly coupled cone.
The data for the full field stimuli (@) were fitted
by a Michaelis-Menten relationship:

vV I

Pl 1

Veas 1 +a;
where V is the peak amplitude (in mV), V,

max IS
the saturating amplitude, 7 is the light intensity,
and ¢ is the intensity which produces a half-
maximum response. The data for the slit stimu-
lus (Q) were obtained for several positions of
the slit with respect to the receptive field center.
Over 1.3-1.6 log units of intensity a straight line
in double logarithmic coordinates fits each set of
data points reasonably well, indicating a power
law relationship. This is in agreement with the
analysis presented in the previous paper
(Pluvinage & Green, 1990). The slope of the
straight lines gives the exponent of the power
law. For this cell, it varies from 0.54 for the
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Fig. 2. munnty—mmfotamonﬂywughdcom
(same as in Fig. 1). The full field data (@; spot diameter:
170 gm) were fitted by a Michaelis-Menten relationship
(solid curve; V. =12mV, X = ~2.3). 'ﬂrtktdﬂl(open
symbok)mﬁtudbypowhws(w&w)

Ppositions on the receptive field: [, —50; O, +40; V, —25;
O, 0pum. mmmrhwexmu(dopeafthenﬁ?nm

lines in logarithmic coordinates) are given in Tal

centered slit to 0.68 for a slit displacement of
50 um (see Table 1). This increase in the
exponent with slit displacement was observed

Table 1. Summary of the intensity-response curves. Slit
position refers to the location of the slit (in am) relative to
the center of the receptive field, “+ " indicating one side snd
“~" indicating the opposite side of center. Range indicates
thenmbaofb;mmotmﬂtymwhﬁamﬁ

line in double logarithmic coordinates fitted the dats.
r? is the regression coefficient for the power law wiich gave
the best fit 4
Cell Slit Power law
no. position exponent Range r?
1 0 0.45 12 097
+30 0.53 1.2 0.96
6 0 0.5 2.0 0.96
+30 0.51 1.2 0.96
+50 0.66 1.0 099
7 0 045 14 0.97
+40 0.49 1.0 0.99
+60 0.55 1.0 096
8 0 0.46 20 099
-~ 30 0.48 1.5 0.99
~40 048 1.8 0.99
~50 049 20 0.99
-~63 0.57 1.0 099
9 0 0.53 1.6 0.98
~15 0.53 1.8 0.98
+15 0.55 20 099
-30 0.55 20 099
+30 0.59 1.8 0.99
+40 0.63 14 0.98
-~ 50 0.58 1.5 0.96
+60 0.7 1.0 092
10 0 0.54 1.6 0.99
~25 0.54 1.5, 099
+25 0.5 1.3 0.99
+40 0.59 1.3 0.99
- 50 0.68 1.3 0.99
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Fig. 3. Intensity-response curves for a weakly coupled cone

(same as in Fig. 1). Both the full field (@) and slit

(open symbols) data were fitted by Michaelis-Menten

relationships. Slit positions: ¢, +10; V, —17; A, +23um
from the center of the receptive field.

consistently in other cells as well (see Table 1).
The responses saturated at high intensities, as
indicated by the curved solid line drawn through
the upper data points of each curve. Those data
points were excluded from the power law fit.

Figure 3 shows the same measurements for the
weakly coupled cone. Here, both the full field
data points (@) and the slit data (O, A, V)
were adequately fit by Michaelis-Menten
intensity—response relationships (equation 1).
All the sets of data points have virtually the
same V,... (18.0 mV) and differ only by the value
of o (values obtained by regression: full field:
—2.4; slit, position + 10 um: —1.21; position
~17 pum: —0.85; position +23 yum: —0.62 log
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Fig. 4. Same data as in Fig. 3 (weakly couple cone), but the
slit data were shifted horizontally to illustrate that the
Michaelis-Menten relationships differ only by the value of
the constant 0. For each slit position the amount of
horizontal shift was such that the fitted curves superimposed
at half maximum amplitude.
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Fig. 5. Same data as in Fig. 2, (strongly coupled cone) but

the slit data were shifted horizontally until they superim-

posed at half maximum amplitude. This indicates clearly

that the slit data for the cone are not adequately fitted by

a Michaelis-Menten relationship (solid line).

units). This is illustrated on Fig. 4 by shifting the
slit curves horizontally until they superimpose
with the full field curve. This is in contrast with
the data obtained from the strongly coupled
cone. As seen in Fig. 5, when the slit data are
shifted horizontally, a single Michaelis—-Menten
curve fails to fit all the points.

When a spatially restricted stimulus such as a
narrow slit is used, a strongly coupled cone and
a weakly coupled cone have intensity—response
curves that differ in shape. For the weakly
coupled cone most of the response is due to light
falling directly on the impaled cell’s outer seg-
ment and the relationship is always Michaelis—
Menten. For the strongly coupled cone this is
not the case and the measured relationship,
which is approximately a power law, must reflect
some property of the coupling between cones.

Model of the recruitment mechanism

How might the power law relationships be
due to the summation of signals from non-uni-
formly illuminated coupled cones? For a cen-
tered slit the coupled receptors are stimulated
directly by the slit and indirectly by scattered
light. If photocurrent in each cone is a
Michaelis-Menten function of intensity
(Schnapf & McBurney, 1980), then the cones
illuminated directly by a relatively bright cen-
tered slit could be partially saturated. More
distant coupled cones that receive scattered light
might still be in their linear range. Brighter
stimuli could evoke larger responses by stimu-
lating these yet unsaturated cones. The question
which needs to be addressed is: can the amount
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of scattered light decrease with distance from
the slit in such a way that the amplitude of the
response to centered and displaced slits will
grow with light intensity according to a power
law? To answer this the network of coupled
cones has to be modeled. Appendix | describes
the details of how this was done. Appendix 2
shows that if S(x), the scattered light distri-
bution in the image of a slit, is given by:

S(x)=SO)[1 +yi(l —e )%

then the intensity response curve will be a power
law with a power of 0.5.

Comparison between model simulations and data

The full field and slit intensity-response
curves were simulated numerically using a dis-
crete array of 83 cones whose positions were
obtained from a photomicrograph published by
Hodgkin (1971) and the scattered light function
shown in Fig. 9B. These are compared to the
experimental data in Fig. 6. Three parameters
were adjusted to provide the best fit: V., the
maximum amplitude; o, the full field intensity
which evokes half maximum amplitude; and 4,
the coupling space constant (see Appendix I).

The receptive field profiles were also simu-
lated and compared with the data (Fig. 7). The
response (model: solid line; data: O) and sensi-
tivity (model: dashed line; data: [J) profiles
decay approximately exponentially with
markedly different slopes.

Simulation of two simultaneous slits

The model was further tested by computing
the intensity-response curves for two simul-
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Fig. 6. Comparison between the simulation of the

intensity—response curves for the discrete model (solid lines)

and the data shown in Fig. 2. The simulation procedure is

given in detail in the text. The symbols used are the same
as in Fig. 2.
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Fig. 7. Comparison between the simulated receptive-field
profiles and the data. The response amplitude (O) to 4 fixed
intensity (— I log) slit and the sensitivity ([J; fixed response
amplitude: 3 mv) fall off with very different space constants.
The discrete model was used to numerically simulate both
profiles using the same parameters as used to fit the
intensity-response curves (response profiles: solid line;
sensitivity profile: dashed line). Both decay exponentially
and agree well with the data (the slight depression on the left
of the peak is due to a lower cone density in that region of
the digitized cone array).

taneously flashed slits, one centered and one
displaced by 30 um. The values of the model’s
parameters were those used to fit the data shown
in Figs 6 and 7. The intensity-response curves
for each slit alone and for both slits flashed
simultaneously were calculated.

An excitation function e(.), was obtained by
applying the excitation method described in
Pluvinage and Green (1990) to the calculations.
The simulated excitation function e(.) is shown
in Fig. 8A and is compared with data from cell
1 of Pluvinage and Green (1990).

The transformation that takes the excitation
variable for a centrally placed spot into the
measured intracellular response is denoted v (.).
The simulated and measured v (.)’s are shown in
Fig. 8B. In order to compare the simulated
function with the measured function v(.)
(Pluvinage & Green, 1990) two rescalings were
necessary. One rescaling takes into account the
differences in amplitudes of the maximum re-
sponse (15.5mV for cell 1 of Pluvinage &
Green, 1990; 12.0 mV for the data from the cell
shown in Fig. 2 and used to determine the values
of the model’s parameters). The other rescaling
brings the model and experimental units of
excitation into registration. The simulated func-
tion shows a progressive saturation although
not as pronounced as the measured function.

The additional transformation needed to
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Fig. 8. Comparison of theoretical curves with experimental

data. Circles obtained from measurements on cell 1 of

Pluvinage and Green (1990) and continuous curve is from

the two-dimensional model simulation. (A) Excitation

functions, e(.). (B) Output functions, v(.). (C) Coupling
functions, n(.).

687

account for the response to the displaced spot is
denoted as n(.) (see Fig. 2 of Pluvinage &
Green, 1989). Finally, the measured and the
simulated coupling function n(.) are compared
in Fig. 8C. Both exhibit a lower range where
excitation can be fitted by a straight line. That
is, the excitation evoked at position 0 is a linear
function of the excitation evoked 30 um away.
The slopes are 0.78 and 0.61 and the intercepts
are —5.3 and 3.2 for the lines fitted by linear
regression to the lower portions of measured
and simulated functions, respectively. Both
functions deviate similarly at highest values of
excitation. The second order agreement between
the simulation and the data was totally unex-
pected and tends to give additional support to
the model presented here.

DISCUSSION

Sensation frequently grows as a compressive
power function of stimulus strength. A sensory
receptor with such behavior would be capable of
handling a considerably larger range of intensi-
ties than one with a Michaelis-Menten trans-
duction function (see Green, 1986). Since power
law responses from vertebrate photoreceptors
have not been reported before, it is useful to
examine in detail how this range expanding
mechanism seems to work.

With a full field stimulus, all the photo-
receptors in the impaled cone’s receptive field
would tend to be equally stimulated. There
would be little or no potential gradient betwen
cells and current would not flow between
coupled cones. Intensity response curves for the
weakly and the strongly coupled cones have
identical shapes which suggests that a
Michaelis—Menten relationship characterizes
the response properties of the cones that are
uncoupled.

This leads us to conclude that the ‘“square
root” relationship for the responses to slits must
in some way be due to the contributions from
coupled cones stimulated by scattered light. A
quantitative model of the combined effects of
scattering, transduction saturation and coupling
has been used to test the notion that the power
law relationship arises from a recruitment phe-
nomena. Figure 6 shows a comparison of mea-
sured and calculated intensity-response curves.
The four solid theoretical curves drawn through
the experimental points (open symbols in Fig. 6)
agree well with the data. It is perhaps not
surprising that the intensity-response curve for



688

a centered slit has the correct shape at lower
intensities since scattered light distribution was
selected to produce the required slope. How-
ever, the progressive saturation at high intensi-
ties, the increase in slope with slit displacement,
and the position of the slit curves with respect
to the full field curve constitute genuine predic-
tions of the model.

The model was used to compute the response
to a centered slit over a range of intensities. The
relative contribution of the cells in 10 um wide
bands on either side of the impaled cell is
illustrated. At low intensities the cones lying in
the Oth band (i.e. the ones having an abscissa—
S5um < x; < 5um) contribute approx. 85% of
the response, and only 15% is due to responses
from light scattered to neighbors. As the inten-
sity is increased, the cones in the central band
progressively saturate because of the nonlinear
Michaelis-Menten transduction function and
the relative contributions from the coupled
neighbors increase.

The excitation analysis presented in Pluvinage
and Green (1990) suggested that a power law
transformation occurs before the spatial interac-
tions mediated by the cone network. The experi-
ments illustrated in Figs 2 and 3 show that the
shape of the intensity-response curve for a slit
stimulus, but not for a full-field one, depends on
the strength of the coupling. This seems to
contradict this interpretation of the excitation
experiment. The origin of the contradiction can
be traced back to two implicit assumptions of
the excitation analysis. We assumed that the
narrowness of the slits was such that their
responses were from a single “row” of equally
stimulated photoreceptors. In fact, “excitation”
reflects the properties of a collection of cones.
Our analysis suggests that it is not a change in
a neural signal but rather changes in the size of
the collection of cells with stimulus intensity
that underlies the power law intensity—response
transformation. The second assumption was
that two slits could be used simultaneously and
independently to increase the total excitation.
The scattering function used in our model has
tails that extend over an appreciable distance.
Consequently, at high stimulus intensities, the
collection of excited cells with slits separated by
30 um would overlap significantly. Because the
Michaelis-Menten transduction relationship is
a compressive function, the transduction signal
generated by two simultaneous slits would then
be less than the sum of their individual signals.
It is the nonindependence of the slit stimuli that
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Fig. 9.(A) Effect of intensity on the relative contribution to
the response from cones at various distances from the
impaled photoreceptor. The cone array was divided in
vertical bands, 10 um wide. The band 0 is centered on the
x-axis (axis of the centered slit); band | extends from
x=+5um to x=+15um; etc. Symbols: solid
curve = band 0, dotted curve =bands | and —1, dashed
curve = bands 2 and —2. For each slit intensity, the discrete
model was used to compute the impaled cone’s response,
which is the sum of the contribution from all the bands in
the cone array. (B) Light distribution in the image of a slit
stimulus that was used in calculating theoretical curves
shown in Figs 6-9 (y =1, 4 = 25).

leads to saturation of the output function shown
in Fig. 8B.

The model fits the data but is it reasonable?
The first building block, the shape of the slit
distribution, S(x), plays a major role in the
recruitment hypothesis. The precise pattern of
illumination determines the pattern of stimula-
tion levels across the pool of cones that produce
the response. This in turn determines the shape
of the intensity-response. curve. Before we
derived the analytical solution presented in
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Appendix 2, we unsuccessfully tried several
arbitrary light distributions (inveérse squate de-
cay, exponential decay, etc.), none of which led
to an appreciable power law range. The ques-
tion that naturally arises then is: how critically
does the fit of the model to the data depend on
the inferred function S(x)? The power law
relationship was observed in many cones in
different retinas. Thus the explanation should be
robust enough to maintain its main characteris-
tics despite variations in anatomical distribution
of cones, retinal scattering, coupling, strength,
etc.

We believe that the concrete form of S(x) is
just one example of a class of scattering func-
tions which will yield an appreciable “square
root” range. Two observations are relevant
here. First, although S(x) depends mathemati-
cally on the strength of coupling, changing the
value of 4 in equation 1.7 from 15 to 40 um has
very little on the shape of S(x) and of the
intensity-response curves. Second, the simula-
tion of the excitation analysis using parameters
for one cell agreed surprisingly well with the
results of the analysis conducted using data
from another cell.

The presence in the light distribution of long,
slowly decreasing “‘tails” extending over the
whole receptive field seems to be what is impor-
tant. It is noteworthy that the light distribution
inferred by Copenhagen and Owen (1976) from
the data obtained by Baylor and Hodgkin
(1973) also has prominent “tails”, extending up
to 125 ym away from the peak. Furthermore,
the parameters in discrete model simulations
correspond to a A =18 um for the coupling
space constant whereas the computed receptive
field profile for that cell has a A, =29 um. This
supports Detwiler and Hodgkin’s (1979) sugges-
tion that the tail of the scattering function leads
to an overestimate by approx. 50% of the
coupling space constant. The above is for
the eyecup preparation, thus we must ask:
are these prominent “tails” in the intact eye as
well? Robson and Enroth-Cugell (1978) made
direct measurements of the light distribution in
the cat’s retinal image and found prominent
“tails”. This seems likely to be true for the turtle
as well,

The second building block of the model, the
light intensity/peak photocurrent relationship,
is based on the measurements from isolated
cones (Schnapf & McBurney, 1980). The model
does not incorporate time-dependent, voltage
controllied components of the membrane cur-

689

rent (as opposed to the photosensitive current)
stcR a8 those nieddféd on tiger salamander
cones by Attwell er al. (1982). These would
seem to play only a small role in shaping the
peak amplitude of cone voltage response to
light.

The third building block, the resistive coup-
ling, was introduced by previous investigators
(Lamb & Simon, 1976; Detwiler & Hodgkin,
1979) and has been tested using dual recording
from pairs of coupled cones and found to be
essentially ohmic.

Finally, it is interesting to note that early
compressive power law excitation functions
with exponents of about 0.5 have been inferred
from ganglion cell studies in other animals
(Easter, 1968 and Levine & Abramov, 1975:
goldfish; Enroth-Cugell & Harding, 1980: cat).
It is certainly intriguing that a similar procedure
applied to turtle cone responses and to fish and
cat ganglion cell responses leads to a virtually
identical inference about early intensity coding.
While it is tempting to do so, it may be a
mistake to conclude that there is any relation-
ship between their inferences and ours. The
stimuli used (spots of several hundreds of mi-
crons in diameter flashed on equally sensitive
positions of the ganglion cell receptive fields)
differ from those in our study. In turtle such
large stimuli would extend over areas much
larger than the cone receptive field. Such full
field stimuli evoke intraceliular responses in
turtle cones which are Michaelis-Menten and
not power-law functions of light intensity.
Nonetheless, it still seems possible that light
scatter and recruitment of locally saturating
sub-units might explain the early square-root
transformations inferred in these studies. Thus,
the relationship, if any, between the ganglion
cell studies and the present results from cones
must for the moment remain unclear.

Acknowledgements—This study was supported by NIH
grant EY00379. The authors are indebted to David Krantz
and Stephen Easter for helpful discussions and to Marilyn
Glover for her assistance in the analysis of data and in the
preparation of the manuscript.

REFERENCES

Attwell, D., Werblin, F. S. & Wilson, M. (1982). The
properties of single cones isolated from the tiger salaman-
der retina. Journal of Physiology, London, 328, 259-283.

Baylor, D. A. & Hodgkin, A. L. (1973). Detection and
resolution of visual stimuli by turtie photoreceptors.
Journal of Physiology, London, 234, 163-198.



690

Copenhagen, D. R. & Owen, W. G. (1976). Functional
characteristics of lateral interactions between rods in the
retina of the snapping turtle. Journal of Physiology,
London, 259, 251-282.

Detwiler, P. B. & Hodgkin, A. L. (1979). Electrical coupling
between cones in turtle retina. Journal of Physiology,
London, 291, 75-100.

Easter, S. S. (1968). Excitation in the goldfish retina:
Evidence for a non-linear intensity code. Journal of
Physiology, London, 195, 253-271.

Enroth-Cugell, C. & Harding, T. H. (1980). Summation of
rod signals within the receptive field center of cat retinal
ganglion cells. Journal of Physiology, London, 298,
235-250.

Green, D. G. (1986). The search for the site of visual
adaptation. Vision Research, 26, 1417-1429.

Hodgkin, A. L. (1971). Address of the President, Professor
A. L. Hodgkin, at the Anniversary Meeting, 30 November
1971. Proceedings of the Royal Society, London, A, 326,
V-XX.

Lamb, T. D. & Simon, E. J. (1976). The relation between
intercellular coupling and electrical noise in turtle pho-
toreceptors. Journal of Physiology, London, 263, 257-286.

Levine, M. W. & Abramov, 1. A. (1975). An analysis of
spatial summation in the receptive fields of goldfish retinal
ganglion cells. Vision Research, 15, 777-789.

Pluvinage, V. & Green, D. G. (1990). Evidence for a power
law intensity code in the coupled cones of the turtle.
Vision Research, 30, 673-682.

Robson, J. G. & Enroth-Cugell, C. (1978). Light distri-
bution in the cat’s retinal image. Vision Research, 18,
159-173.

Schnapf, J. L. & McBurney, R. N. (1980). Light-induced
changes in membrane current in cone outer segments of
tiger salamander and turtle. Nature, London, 287,
239-241.

Thorson, J. & Biederman-Thorson, M. (1974). Distribution
relaxation process in sensory adaptation. Science, New
York, 189, 161-172.

APPENDIX 1

The model consists of (1) a light distribution function, (2)
a Michaclis-Menten relationship between absorbed photons
and photocurrent amplitude, and (3) an electrical network
of cones (Lamb & Simon, 1976). Because the slit stimulus
generates no electrical gradient parallel to its longitudinal
axis, the model is one-dimensional. We define the light
distribution function [,S(x) as the light “'seen” by a cone
situated at a distance “x” from the center of the slit, where
1, is a scaling factor and S(x) is a dimensionless function
which accounts for the scattering. Since the actual scattering
function of the retina is unknown, S(x) is for the moment
unspecified.

It is assumed that each cone can be modeled as a current
source in parallel with a fixed membrane resistance “r,”
Because cones are electrically coupled the model oornams
resistances, “'r.”, which couples cones to their neighbors.
The current souree is controlled by light according to a
Michaelis-Menten relationship (Schnapf & McBurney,
1980):

i I
-~ T+ a
where “i*" is the peak photocurrent, “i,.." is the saturating
peak amphwde, “1" is the light intensity falling on the cone,

(ALD)
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“g ’”

and is the intensity which produces half maximum
photocum:nt.

A distributed model will first be used to test qualitatively
the recruitment hypothesis. On each infinitesimal segment
“dx", light generates a photocurrent “i(x)dx” given by:

1,S(x)
LSx)+eo
For a linear coupling, the response amplitude “V™"’ at the

origin is proportional to a weighted sum of all the contribu-
tions at various distances from the slit:

A
vV W (x) e
°°f ® resm
where W(x) is the weighting function which accounts for
the distance dependent coupling [for simplicity o was
normalized and W(x) and S(x) were assumed to be sym-
metrical:

i{x}dx o {AL2)

(AL3)

Wix)=W(-x), S(x)=S(-x)}

The question we need to address is: does a function 5(x)
exist such that equation (A1.3) can be approximated by:

Vek-J/hL; (Al.4)

over the correct range of intensities? If such a function
exists, is it a plausible representation of light scatter? As
shown in Appendix II, for a light distribution defined
analytically by:

X -2
Sx) {l +7 J W(y)dy} ;
13

where y is a constant, the slit intensity-response curve will
exhibit a linear range at low intensities, a square-root range
at medium intensities and a progressive saturation at high
intensities.

Since the cone coupling is assumed to be ohmic (Detwiler
& Hodgkin, 1979) the spread of current is described by the
equations of a linear leaky cable (Lamb & Simon, 1976).
Then the coupling function W({x) is given by:

W(x) oc e ¥4 (Al.6)

where A = /r, /r, of the coupling. Substituting into equa-
tion (A1.5) we obtain:

Sxyoc [l +y4(1—~e" {A1L.)

It can be shown that for a slit displaced by a distance D
the intensity-response curve also exhibits a power law range
but with an exponent which increases with slit displacement,
& trend observed in the data. For a full field stimulus S(x)
is constant and (A1.3) reduces to (1), and therefore the
intensity—response curve is Michaclis-Menten.

While the distributed model is in qualitative agreement
with the data, it is based on a continuous, one-dimensional
array of infinitesimally small cones. Thus the analytical
solution we derived might not apply to a discrete array of
finite size cones. Furthermore, S(x) is unrealistic since it is
too sharp at the origin and has a nonzero asymptotic value.
In other words, a more realistic model is needed. A discrete
model based on a two dimensional anatomical distribution
of cones and a more realistic light distribution $(x) was
developed and numerical simulations were compared with
the data. A discrete array of cones was used. The positions
of the cones were measured from a turile retina photomi-
crograph published by Hodgkin (1971). The positions of 83
red cones, which contain red and orange oil dropléts, were
digitized. In the model the properties of all receptors with
a red pigment were assumed to be identical.

(ALS)
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As in the distributed model, the cones were modeled as
current sources and finite membrane resistance intercon-
nected by resistive clements. The current sources were
assumed to be controlled by light according to a Michaelis—
Menten relationship. The mutual resistance between two
cones was assumed to be proportional to Ky(d/d) where d
is the distance between the cones, é is a constant and K,(.)
is a modified Bessel function (Detwiler & Hodgkin, 1979).

When a slit is flashed all the cones in a band, a Agm in
width and parallel to the slit axis, are approximately equally
stimulated. Any function S(x) which has in each band an
average value approximately equal to the average value of
S (x) will produce the same intensity—response curve. Conse-
quently, the function S(x) was modified as follows. Within
the range |x| <5 um, it was replaced by a constant P(0).
Within the range 5 um < | x| < 50 um, the function was kept
unchanged except for a scaling factor equal to the ratio
P(0)/S(0). For larger values of x, S(x) was multiplied by
the damping factor [1/(1 + a(x — 50)), where “q” is a
constant]. This ensured that S(c0) =0. The value P(0),
which determines the overall scaling of the distribution, was
determined by equating the total light delivered by the
slit to that in a 5um band from a full field stimulus.
The resulting piecewise defined function $*(x) is shown on
Fig. 9B.

The response V is the sum of the contributions from the
coupled cones:

Iy

L+o/S*kx) ALY

V=% Ki(d?)

where d; = [x? + y2P* is the distance between the ith cone
and the central cone.

Since equation (A1.8) reduces to a Michaclis-Menten
relationship for a full field stimulus [S,,, is constant), the
parameters x;, and o were determined by minimizing the
square-error deviations from the full field data points. On
double logarithmic coordinates, this corresponds to adjust-
ing the vertical and horizontal positions of all the simulation
curves at once, keeping their shapes and relative positions
one to another unchanged.

The last free parameter, 3, determines the decrease of
response amplitude when the distance between a fixed
intensity slit and the receptive field center is increased. Thus,
this parameter controls the spacing of the slit simulation
curves. By trial and error a value of 18 um was found to
provide a good fit.

APPENDIX 2

One can use the mathematical identity (Thorson &
Biederman-Thorson, 1974);

i b LS
ne——— | a1 ga 1
s sl"(m)l"(l—m)J; anliade A2D
To satisfy (A1.4), let m = 0.5 and:
a=1/S(x); (A22)

together with:

W(x)dx cc a~%da. (A2.3)
Combining (A2.2) and (A2.3), we find:

ds—%(x)

& o W(x). (A2.4)

Finally, by integrating (A2.4):

S(x) = S(O){l +7 J W(y)dy}*; (A2.5)
0
where y is a free parameter. If W(x) is an exponential
function (equation A1.6) then:
S(x)= SOl +y4(1 — e *V4))-2 (A2.6)

In other words, if S(x) and W (x) are related according
to (A2.5) and (A1.3), then:

/)
V J; a'°"7;—£—°_—a da; (A2.7)
where:
a =1/5(0); (A2.8)
B =1/8(w0)
=a(l +y4)>% (A2.9)

Solving (A2.7), we find:

V < /I(tan~* \/B/I,— an~' Ja/L,). (A2.10)

Evaluating equation (A2.10) three ranges of intensities
can then be defined:

® Linear range:
If L, <a«}f; then

Vol (A2.11)
where ¢, is a constant.
o Compressive power law range:
If a «ly«f; then
VeV (A2.12)
where c2z cln,/a/2.
® Saturation range:
If a « B «1,; then
Ve, (A2.13)

where the constant ¢, = ¢, /af.
The range of the compressive power law is fixed by the
ratio:
Bla=(1+yAP. (A2.19)

According to (A2.12), the ratio §/x must be greater than
10%, the approximate range of the compressive power law.
Fixing arbitrarily y = 1 and A = 25 um leads to f/a = 10>%.



