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Aimtraet--An approximate solution is developed for the contact area and the Ioad-penetltation 
relation for frictionless indentation of the elastic half-space by a punch of arbitrary profile. The 
method makes use of a previous result to the effect that the contact area in this problem is that which 
maximizes the total indenting force. An estimate of this force is obtained by applying the reciprocal 
theorem to the solution for indentation by a flat punch of the same plan-form, for which an 
approximate solution has recently been developed by Fabrikant. The method is illustrated using an 
example, the results of which are compared with a direct numerical solution using Hartnett's 
algorithm. 

1. I N T R O D U C T I O N  

The classical frictionless contact problem in which an elastic half-space is indented by a 
smooth rigid punch is nonlinear, since the extent of the contact area is not known a priori, 
but must be determined from inequality constraints stating that (i) the tractions in the 
contact area be non-tensile and (ii) the gap between the indenter and the deformed surface of 
the half-space be non-negative. The general problem may be solved by a variety of 
numerical (mostly variational or iterative) methods [1-5,1, but closed-form analytical 
solutions are known only for the classical Hertzian case, in which the indenting body has a 
quadratic profile and the contact area is elliptical. 

If P(A) is the force required to establish contact over some candidate contact area, A, it 
can be shown [6,1 that, for a fixed depth of indentation, the inequalities will be satisfied if 
and only if A is chosen so as to maximize P. Furthermore, we can use Betti's reciprocal 
theorem to determine P(A) for a punch of arbitrary profile I'7, 81, provided we know the 
contact pressure distribution beneath a flat punch whose plan-form is A. 

Of course, closed-form solutions of the flat punch problem are also only known for 
elliptical contact areas, so this result does not permit us to extend the catalogue of solutions 
to the general problem. However, Fabrikant [9,1 has recently developed an approximate 
solution to the flat punch problem, which shows quite good agreement with numerical data 
for quite a wide range of punch plan-forms. 

In the present paper, we therefore use Fabrikant's solution 1'9] and the ideas of Barber 1'6] 
and Mossakovskii [7] to develop an approximate solution for the general frictionless 
contact problem. An example problem is solved and the results compared with a direct 
numerical solution using Hartnett's method [2,1. 

2. S T A T E M E N T  O F  THE P R O B L E M  

We consider the elastic half-space z > 0 indented by a frictionless rigid punch, as shown 
in Fig. 1. The profile of the punch and its indentation are described through the function 
f (x ,  y), which can be defined as the depth of the punch surface below the original 
undeformed position of the half-space surface, z = 0. 

We can now define the gap g(x, 3,) between the punch and the half-space as 

o(x, y) = uz(x, y, o) - f (x ,  y), (1) 

where uz(x, y, O) is the normal elastic displacement of the half-space surface. 
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Fro. 1. The general indentation problem for a smooth rigid punch. 

The gap must be zero within the contact region A and must be positive in the separation 
region ,4, since interpenetration of material is prohibited. We therefore have the two 
conditions 

u=(x, y, O) = f (x ,  y); in A (2) 

u=(x, y, O) > f (x ,  y); in ,4. (3) 

To complete the definition of the frictionless contact problem, we require that the 
tangential traction be zero throughout the surface of the half-space, i.e. 

a=~ = a~y = 0; all x, y, z = 0 (4) 

and that the contact pressure p(x, y) = - a,=(x, y, 0) be zero in the separation region/i and 
positive (i.e. non-tensile) in the contact region A, i.e. 

p(x, y) = 0 i n / i  (5) 

p(x, y) > 0 in A. (6) 

If the contact region A is specified, the equality conditions (2), (4) and (5) define a well- 
posed boundary value problem for the half-plane which has a unique solution. We can then 
define the total contact force 

e(A)=ffAp(x,y)dxdy. (7) 

The inequalities (3) and (6) serve to determine the extent of the contact area for the contact 
problem of Fig. 1, but it has been shown [6] that the value of A which satisfies (3) and (6) is 
also that which maximizes the total force P(A) given by equation (7). 

2.1. Determination o f  P(A) 
The direct method of determining P(A) would be to solve the boundary value problem 

defined by equations (2), (4) and (5) and then substitute the resulting contact pressure into 
(7). However, there is no general non-numerical method of solving the boundary value 
problem. We could of course use one of the numerical methods referred to in Section 1 
above, in which case the problem would be reduced to a numerical optimization problem. 
However, the iteration involved in this optimization process would be just as time 
consuming as a direct iterative procedure based on the inequalities thernselves, as used for 
example in the algorithm of Hartnett [2]. 

A more efficient approach, first introduced by Mossakovskii [7], is to use Bvtti's 
reciprocal theorem. We consider the simpler boundary value problem in which a frictionless 
rigid fiat punch of plan-form A is pressed into the half-space so that the indentation is a 
constant, d*. This problem is of course defined by equations (2), (4) and (5) withf(x, y) = d*. 
We denote the corresponding pressure distribution for this case by the function p*(x, y). 
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We now apply the reciprocal theorem to this problem and the more general problem of 
equations (2), (4) and (5), obtaining the relation 

Since d* is by definition a constant, we can take it outside the integral in equation (8), 
obtaining 

P(A) = p(x, y)dxdy = ~ p*(x, y) f(x, y)dxdy. (9) 

Thus, we can obtain an expression for the total force P(A) in the general contact problem, 
provided we can determine the contact pressure p*(x, y) for a flat punch of plan-form A. 

2.2. Rayleigh-Ritz approximation 
Closed-form solutions of the flat punch problem are known only for the case where the 

contact area A is circular, elliptical or an infinite strip. Thus, the above procedure does no~t 
provide a general non-numerical method for determining the contact area in the problem of 
Fig. 1. However, it does permit us to develop approximate solutions in the Rayleigh-Ritz 
sense--i.e, to determine the "best" elliptical approximation to the actual contact area--and 
this procedure will also yield a corresponding approximation to the load-penetration 
relation. This is potentially very useful in situations where the contact condition is only 
important in the sense of defining a nonlinear spring characteristic for input to a larger 
static or dynamic structural analysis problem. 

2.3. Use of Fabrikant's solution 
A more speculative extension of the method can be made, using a recent approximate 

solution for the fiat punch problem due to Fabrikant [9]. Briefly, Fabrikant argues that the 
contact pressure under an arbitrary flat punch will be given approximately by 

4//d'a(0) 
p(r, 0) = (10) 

(1 - v)L x/aZ(O) - r 2 

where a(O) defines the boundary of the contact region A in polar coordinates, #, v are 
respectively the modulus of rigidity and Poisson's ratio for the half-space material and 

L = a(O)dO. (11) 

The origin for the system of polar coordinates should be taken at the centroid of the area ,4 
[91. 

The traction distribution (10) is exact for the three "closed-form" cases where .4 is a circle, 
an ellipse or a strip and Fabrikant demonstrates that it compares favorably with previous 
approximate and numerical solutions for a wide variety of contact area shapes, particularly 
in respect of the predicted relation between load and penetration. 

We now substitute this expression into equation (9), obtaining an approximate ex- 
pression t for the force P(A) in the form 

4.  f2, fo(o) a(O)f(r, O)rdrdO 
P(A) (12) 

(1 - v)L Jo J0 

Note that this expression can be generalized to the case of two deformable bodies by 
replacing/~/(1 - v) by [(1 - vl)/p 1 + (1 - v2)/p2]-1 andf(r, 0) by the interpenetration of 
the two undeformed bodies. 

The problem is now to choose the function a(O) so as to maximize P(A). 

, Notice that the expression is approximate only insofar as Fabrikant's solution for the fiat punch problem is 
approximate. 
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3. SOLUTION OF THE OPTIMIZATION PROBLEM 

Suppose we first examine a sub-class of variations of a(O) for which L [see equations 
(10, 11)] is constrained to be a prescribed constant. A particular variation which satisfies 
this constraint is 

Aa(0) = 6; 01 - e < 0 < 01 + e 

= -6 .~02 -E<0(02 -~ -  8 

= 0; all other 0 

(13) 

where ~ ~ a, e ~ 2n, the corresponding variation in P being 

8#c5 I d f2(°')a(O1)f(r, O1)rdr 

d ~.(o2) a(O2)f(r, O2)rdr] 
da-(02) ,Jo ~ - - - ~ 2 ;  ~ ~- ~ -1 (14) 

for sufficiently small 6, e. 
For  P(A) to be a maximum in the sub-class of constant L, Ap must be zero and hence 

the two integrals in (14) must be equal and opposite. But 01 and 02 can be chosen at random 
and hence we must have 

( ~ f'(O)a(O)f(r,O)rdr~ 
 aJo  - -520 (15) 

for all 0 where D is an as yet unknown constant (i.e. D is independent of 0). 
If D were known, (15) would constitute an equation sufficient to determine t the function 

a(O). We can therefore solve the original problem by treating D as an unknown, solving for 
a(O) and hence Pmax(D), which is now a function of D only, and finally choosing D to 
maximize Pmax(D). 

Notice incidentally that L drops out of the constrained optimization problem, during 
which it is a constant. There is of course a parametric relation between L and D, so that the 
final stage of the process also determines the value of L. 

4. EXAMPLE 

To illustrate the procedure, we consider the case in which the symmetric vertex of a 
tetrahedral punch is pressed into the half-space, the inclination of the tetrahedral faces to 
the half-space surface in the undeformed state being denoted by ct. The interpenetration 
function f(r, O) for this case is 

7c 7~ 
f(r,O)--d o-rtan~tcosO; - ~ < 0 < - ~  

= d o - r t a n ~ t c o s  0 -  ; ~ - < 0 < n  (16) 

= d  o - r t a n ~ t c o s  0 +  ; - ~ t < 0 <  - 

where d o is the indentation of the vertex. 

*The expression for a(O) may turn out to be multivalued, but it is a simple matter to examine the corresponding 
solutions and pick that which gives the largest P(A). 
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4.1. The approximate solution 
Substituting equation (16) into equation (15) and performing 

differentiation, we obtain 

3rm2 tan ~ cos 0 n 
4 =O,  - ~ - <  0 <~- 2doa - 

which has the solution 

the integration and 

(17) 

4do + 2x/4d2o - 3nDtan~cos0 n 
a(O) = 3ntan~cos0 ' - 3- < 0 < 3" (18) 

This result is repeated in the two remaining ranges of equation (16), with 0 replaced by 
(0 - 2n/3), (0 + 2~/3), respectively. 

Notice that this equation has a physically admissible solution for all 0 if and only if 
D < 4d~/3n tan ~. 

The force, Pmmx(D), is now obtained by substituting (18) into (12), using (11) to evaluate L 
and performing the integrations. It turns out that Pmx(D) increases monotonically with D in 
the admissible range and hence that the value of D which maximizes P(A) is 4d02/3n tan ~. 

With this value, the expression for a(O) simplifies to 

a(O) 4d°(1 + x/1 - cos0), n n (19) 
= 3ntan~cos0 ' - 3  < 0 < - ~  

etc. 
The corresponding indentation force is obtained by substituting this result into equations 

(11) and (12) and performing the integrations. The larger value corresponds to the choice of 
the positive sign in equation (19) and is 

e = 1.6960#d~ 
(1 - v)tan ~" (20) 

4.2. A Rayleioh-Ritz approximation 
It is interesting to compare this result with that obtained using the Rayleigh-Ritz 

procedure of Section 2.2 above. Since the tetrahedral punch has symmetry about three 
planes, the "best ellipse" is a circle centred on the vertex of unknown (but now constant) 
radius, a. The corresponding force, P(A), is then found to be 

6# f ~ / 3 f ~ ( d o - r t a n ~ c o s O ) r d r d O  
P ( A )  - - v) j - , : 3  ( 21 )  

_ 4# [ado 3x/~a~tan~] 
(1 - v)  ( 2 2 )  

from equations (12) and (16). 
We determine the contact radius, a, by applying the condition dP/da = O, with the result 

4d o 1.5396 #d~ 
a =  ; P =  . (23) 

3 x/~tan~ (1 - v)tan~ 

4.3. Comparison with a numerical solution 
The accuracy of these approximations can conveniently be tested by solving the same 

problem using a direct numerical method, a convenient algorithm being that of Hartnett 
[2], in which the contact pressure is represented as piecewise constant over a system of 
rectangular cells on the surface of the half-space. Any desired accuracy can be obtained by 
increasing the number of cells. 

Figure 2 shows the contact region for the tetrahedral punch predicted by Hartnett's 
method using a mesh of 49 x 49 cells. Superimposed on the same figure, we show the 
contact area shape predicted using Fabrikant's approximation [equation (19)] and a circle 
of radius 4do/3 x/~ tan ~ [equation (23)]. Clearly the Rayleigh-Ritz approach gives a good 
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FIG. 2. Contact region for the tetrahedral punch: . . . .  numerical solution . . . . . . . . .  equation (23), 
- - -  equation (19). 

TABLE 1. 

n 3 4 5 6 7 8 10 15 20 50 

3nDtanct 

4do ~ 
1.000 0.853 0.809 0.789 0.778 0.770 0.763 0.757 0.754 0.750 

(1 - v)Ptana 

udg 
1.696 1 . 4 4 9  1 . 3 7 3  1 . 3 3 9  1 . 3 2 0  1 . 3 0 8  1 . 2 9 5  1 . 2 8 3  1 . 2 7 9  1.274 

estimate of the overall size of the contact area, but does not adequately describe its shape, 
whereas the solution using Fabrikant's approximation is quite good as to both size and 
shape. 

The numerical solution predicts an indentation force of 

1.7725/zdo 2 
P = (24) 

( 1  - v)tan 

which compares favorably with both methods, indicating an error of 13% using the 
Rayleigh-Ritz method and only 4.3% using Fabrikant's approximation. 

We therefore conclude that the methods of this paper provide a useful and reasonably 
accurate way of estimating the force displacement relation for non-Hertzian smooth elastic 
contacts. 

4.4. The general polyhedral punch 
The above example can be regarded as a special case of the n-faced polyhedral punch for 

which the interpenetration function is 

/t 7[ 
f(r,  O) = do - r tan ~t cos 0; - - < 0 < - (25) 

n n 

repeated in the remaining (n - 1) intervals. 
Equations (17) and (18) still hold for this more general problem in - rt/n < 0 < ~/n,  but 

the corresponding value of Pm,z(D) from equation (12) has a maximum in the admissible 
range (i.e. not at the end point D = 4do2/3n tan g) for n > 3. 
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Values of D and the total force P for various n are given in Table 1. The predicted contact 
area can then be recovered from (18) in - 7t/n < 0 < 7t/n and is repeated in the remaining 
intervals. 

As n--, oo, D~d2 /~ tanc t  and P--,4/zdg/7~(1- v)tan~, agreeing with the classical 
solution for indentation by a conical punch due to Love [10]. 
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