J. Chem. Thermodynamics 1990, 22, 1035-1057

Thermodynamics of copper sulfides

IV. Heat capacity and thermodynamic properties of $Cu_{1.90}$ S from 5 K to 750 K, $Cu_{1.95}$ S from 5 K to 1000 K, $Cu_{1.98}$ S from 300 K to 1000 K, and $Cu_{1.995}$ S from 300 K to 750 K^a

SVEIN STØLEN, FREDRIK GRØNVOLD.

Department of Chemistry, University of Oslo, Blindern, 0315 Oslo 3, Norway

and EDGAR F. WESTRUM, JR.

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.

(Received 5 June 1990)

The heat capacities of $Cu_{1.90}S$, $Cu_{1.95}S$, $Cu_{1.98}S$, and $Cu_{1.995}S$ have been measured by adiabatic-shield calorimetry. All samples have been characterized by powder X-ray diffraction in the temperature interval studied. A revised version of the copper-rich part of the phase diagram is presented. All transitions are characterized by hysteresis in the attainment of equilibrium and a greater or lesser dependence on thermal history and/or thermal recycling. Thermodynamic functions have been evaluated and selected values are, for $R = 8.3144 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$:

	$C_{p, m}/R$	$\Delta_0^T S_{\mathbf{m}}/R$	${oldsymbol{\Phi}}_{f m}^{+}/R$	T/K
(1/2.90)Cu _{1.90} S	(3.166)	4.654	2.5148	298.15
	3.478	8.080	4.9280	700
(1/2.92)Cu _{1.95} S	3.109	4.679	2.5353	298.15
	3.446	8.145	4.9391	700
	3.420	9.361	6.0945	1000
	$C_{p,m}/R$	$\Delta^T_{298.15\mathrm{K}}S^\circ_\mathrm{m}/R$	$\Delta^T_{298.15\mathrm{K}}H^{\circ}_{\mathrm{m}}/(R\cdot\mathrm{K})$	T/\mathbf{K}
(1/2.98)Cu _{1.98} S	3.042	0	0	298.15
	3.395	3.529	1643.4	700
	3.384	4.723	2646.9	1000
(1/2.995)Cu _{1.995} S	3.027	0	0	298.15

1. Introduction

Despite extensive research on (copper + sulfur), the phase relations in the region from Cu_2S to $Cu_{1.90}S$ are still not well established. In addition to uncertainties as to

"The preceding papers in this series are cited in references 1 to 3.

the extension of the homogeneity ranges of the stable phases, djurleite and chalcocite, ambiguity is created by metastable phases. The present paper concerns primarily the heat capacities and thermodynamic properties of $Cu_{1.90}S$, $Cu_{1.95}S$, $Cu_{1.98}S$, and $Cu_{1.995}S$. However, during the course of this study a large number of "anomalies" were observed in the heat capacities, and a structural study was made to characterize the different transitions.

At room temperature three stable solid phases are found in the Cu_2S to $Cu_{1.75}S$ region. In addition to chalcocite (Cu₂S) and anilite (Cu_{1.75}S), which have been discussed in previous papers in this series,^(1 3) the djurleite phase is also stable. This phase was discovered by Djurle⁽⁴⁾ who reported the ratio n(Cu)/n(S) to be 1.96. Subsequent studies differ regarding the compositional limits of djurleite.^(4 11) Whereas Cook⁽⁸⁾ claimed that the phase region is very narrow (1.93 \pm 0.015), Luquet et al.⁽⁹⁾ found a broad range of homogeneity (1.92 to 1.96). It is generally agreed that djurleite decomposes into high chalcocite and high digenite around 366 K. The structure of djurleite was first described as orthorhombic by Takeda et al.⁽⁶⁾ Later refinements from natural specimens revealed, however, a slight monoclinic distortion (space group $P2_1/n$).^(12 14) According to these refinements, the unit cell contains eight $Cu_{31}S_{16}$ units, giving a ratio n(Cu)/n(S) of 1.938. This is in agreement with the sulfur-rich phase limit reported.^(8 11) The copper-rich phase boundary is generally assumed to be around 1.96 to 1.97,^(4 11) which might indicate that the djurleite field is restricted by ratios n(Cu)/n(S) of 62/32 and 63/32 (1.938 to 1.969).⁽¹⁴⁾ The assumption of a homogeneity range necessarily implies partly occupied sites which give rise to positional disorder in the intermediate range.

In addition to these stable phases, the existence of numerous metastable phases has been reported.^(5, 10, 15, 19) One of the main complications during the present study was the occurrence of a phase with tetragonal structure in the region $Cu_{1.95}S$ to $Cu_{1.98}S$. This phase, also first reported by Djurle,⁽⁴⁾ was claimed to be metastable at low pressures by Roseboom.⁽⁵⁾ More recently, Skinner⁽¹⁸⁾ confirmed that the tetragonal phase is a high-pressure polymorph of chalcocite with invariance point at 380 K and 80 MPa. In an electrochemical study Potter⁽¹¹⁾ found that the phase was unstable by about 1 kJ·mol⁻¹ in the range 388 K to 418 K with respect to stable (high chalcocite + high digenite). The transition of this metastable phase into djurleite is extremely sluggish. Roseboom⁽⁵⁾ reported the equilibration time at room temperature to be 18 months for a sample consisting of (2/3) tetragonal phase and (1/3) djurleite, which had been slowly cooled from 530 K.⁽⁵⁾ The tetragonal structure has been described in some detail by Janosi.⁽¹⁵⁾ According to Kazinets *et al.*⁽²⁰⁾ the tetragonal structure may be considered as a superstructure of high digenite with $c = 2a_{foc}$.

Another metastable phase, protodjurleite, was obtained by Mulder⁽¹⁹⁾ by cooling samples with n(Cu)/n(S) between 1.96 and 1.99. His findings were confirmed by Potter.⁽¹¹⁾ A hexagonal polymorph of digenite was observed by Cook *et al.*⁽¹⁷⁾ while Eliseev *et al.*⁽¹⁶⁾ and Mathieu and Rickert⁽¹⁰⁾ reported the existence of a phase with $n(Cu)/n(S) \approx 1.90$. It was remarked by Potter,⁽¹¹⁾ however, that the latter observations were based on an incorrect interpretation of the data.

No earlier heat capacities exist for the five compositions studied here. For the

related compositions $Cu_{1.998}S$, $Cu_{1.988}S$, and $Cu_{1.9535}S$ heat capacities in the range 170 K to 800 K have been reported by Kubaschewski⁽²¹⁾ in diagrammatic form. Some information about the phase relations in the copper-rich region of (copper + sulfur) have also been obtained by Luquet *et al.*⁽⁹⁾ by d.t.a.

2. Experimental

The copper sulfides were prepared directly from the elements. The copper was in the form of a continuous rod, >99.999 mass per cent pure, from the American Smelting and Refining Co., New Jersey. The sulfur was 99.9999 mass per cent pure crystals from Koch-Light Laboratories, Colnbrook, England. The mixture of the elements was heated in an evacuated and sealed vitreous silica tube, constricted at the middle by a smaller-diameter tube. Copper was placed in one part of the tube and sulfur in the other, and the tube was put into a slightly inclined tube furnace with the sulfur-containing compartment protruding. The copper was heated to 620 K and the sulfur was allowed to melt and flow into the hotter part of the tube. When most of the sulfur had combined with the copper, a heating pad wound around the exterior end of the silica tube was used to bring the remaining sulfur into reaction overnight. The empty half of the silica tube was sealed off and discarded before tempering the sample at 670 K for 24 h. The sample was then finally crushed and transferred to the calorimetric ampoule.

The characterization of the samples was done by powder X-ray diffraction as described in reference 3. The room temperature X-ray powder photographs were, however, taken in Guinier-Hägg cameras of 50 mm diameter with Cr K α_1 radiation, ($\lambda = 228.962$ pm). This was done in order to obtain better resolution of the diffraction lines. The phases observed in the three samples, as well as their lattice constants, are presented in table 1 together with results by previous investigators. The d.t.a. method has been described elsewhere.⁽³⁾

The calorimetry previously described,⁽¹⁾ includes the low-temperature (5 K to 350 K) work done at the University of Michigan⁽²⁴⁾ and the high-temperature work (300 K to 1000 K) at the University of Oslo.⁽²⁵⁾ The heat capacity of the samples represented from about 95 per cent to 80 per cent of the total in the low-temperature calorimeter and about 50 per cent in the high-temperature calorimeter outside the transition regions.

3. Results and discussion

STRUCTURAL CHARACTERIZATION AND PHASE RELATIONS

Despite numerous studies concerning the very complex phase relations below 400 K in the $Cu_{1.75}S$ to Cu_2S region of (copper + sulfur), no consensus about the extension and/or stability of the intermediate phases has been reached. Hence, further structural characterizations of the calorimetric samples were needed.

At room temperature anilite, djurleite, and low chalcocite are observed in the X-ray powder photographs of thoroughly annealed samples. Results and calculations

x in						
Cu _x S	Phase	a/pm	b/pm	c/pm	β/π	Reference
1.90	Djurleite	2691.9 ± 1.5	1573.8 ± 0.7	1358.0±0.6		present
	Anilite	five strongest l	ines			
1.95	Djurleite	2691.1 ± 1.1	1575.8 ± 0.6	1357.2 ± 0.4		present
1.98	Djurleite	2692.2 ± 1.3	1576.4±0.8	1355.8 ± 0.8		present
	L-Chalcocite	1524.4 ± 0.4	1189.2 ± 0.2	1351.6 ± 0.3	2.0300 ± 0.0002	•
1.995	Djurleite	some of the str	ongest lines			present
	L-Chalcocite	1523.6 ± 0.4	1189.5 ± 0.2	1350.5 ± 0.3	2.0300 ± 0.0002	-
2.00	L-Chalcocite	1524.7 <u>+</u> 0.4	1189.1±0.3	1349.0 ± 0.4	2.0310 ± 0.0003	14
2.00	L-Chalcocite	1524.6 ± 0.4	1188.4 ± 0.2	1349.4 <u>+</u> 0.3	2.0307 ± 0.0002	22
2.00	L-Chalcocite	1523.5 ± 0.3	1188.5 ± 0.2	1349.6 ± 0.2	2.0291 ± 0.0002	23
1.934	Djurleite	2689.6 ± 0.6	1569.4 ± 0.3	1353.6 ± 0.3		23
1.96	Djurleite	$2686 + \overline{2}$	1570.0 ± 0.6	1352.8 ± 0.6		4
1.97	Diurleite	2692 + 5	$1571 + \overline{3}$	$1356 + \overline{3}$		6
1.94	Djurleite	2689.7 ± 0.7	1574.5 ± 0.3	1356.5 ± 0.5	1.5731 ± 0.0003	13, 14

TABLE 1. Phases characterized by X-ray powder diffraction at room temperature. The djurleite structure is indexed according to an orthorhombic cell. Small and varying amounts of a phase with tetragonal structure were observed in $Cu_{1.98}S$ and $Cu_{1.98}S$

for anilite are given in reference 3, whereas corresponding results for djurleite (in $Cu_{1,95}S$) and low chalcocite (in Cu_2S) are presented here in table 2. The calculated intensities are based on the structural quantities given in reference 14. The obtained unit-cell dimensions, given in table 1, are in good accord with previously published values. The slight scatter in the cell dimensions is related mainly to difficulties in resolution of diffraction lines when two phases with large unit cells are present. In $Cu_{1.95}S$ and $Cu_{1.98}S$ the earlier-reported phase with tetragonal structure is present to some extent. According to Potter⁽¹¹⁾ this phase becomes unstable in the temperature range 388 K to 418 K. However, no low-temperature X-ray studies have been made so far in this composition region. Thus, the transition near 220 K in Cu_{1.95}S, observed in the present heat-capacity study, and also by d.t.a. of Cu_{1.98}S here, and of Cu_{1.9535}S by Kubaschewski,⁽²¹⁾ is of so far unknown origin. X-ray powder photographs of $Cu_{1.95}S$ show that the djurleite phase remains unchanged around 220 K. Five reflections which are present at low temperatures, and apparently do not belong to low chalcocite, or diurleite, disappear around 220 K. Furthermore, seven new reflections which may be indexed in terms of a tetragonal cell with $a = (400.78 \pm 0.14)$ pm and $c = (1125.8 \pm 0.9)$ pm occur above the transition temperature. The transition appears to be of first order, showing temperature hysteresis ($T_{\rm h} = 238$ K and $T_{\rm c} = 224$ K, as detected by d.t.a.).

The structure and stoichiometry of the low-temperature phase are not yet known. Taking the very low transition temperature into consideration, the low-temperature phase and the tetragonal phase most probably have the same stoichiometry. Both low-temperature phases are observed only in the range $Cu_{1.95}S$ to $Cu_{1.99}S$, hence indicating stoichiometries around $Cu_{1.96 \text{ to } 1.97}S$. The position of the reflections observed at the lowest temperatures as well as the tetragonal reflections are given in table 2. The five low-temperature reflections listed in the table all disappear at higher

I _{obs}	hkl	$10^5(\sin\theta)^2$	Icalc	I _{obs}	hkl	$10^5(\sin\theta)^2$	I _{calc}
			$\mathbb{C}\mathfrak{u}_2\mathbf{S}$ — low	chalcocite			
vw	111/711	3100	51	m	042/342	18449	102
vw	022/222	7249	45	w	114/314	18739	55
w	221/321	8788	54	· · ·	315	19109	126
vw	202/402	9151	16	m	241/341	19963	20
s	122/322	9384	229	s	402/602	20514	197
m	212/412	10124	156	vs	412/612	21397	341
m	032/232	11913	170	VS	204/604	22766	541
s	104/304	12214	229	s	152	26112	130
S	222/422	12921	162	s	316	26875	295
s	314/114	13138	237	w	444/044	29107	108
m	132/332	14027	127	w	126/326	32346	65
s	312/512	15056	297	vs	060	33339	383
w	014/414	15236	89	vs	630	33662	1000
vw	124/324	15974	46	m	721	34090	66
m	Ĩ41/041	17141	123	s	450	34396	189
vs	240	17644	317	m	026/626	35933	81
vw	024/424	17999	23	m	532/732	36494	107
			Cu _{1.95} S —	djurleite			
vw	331	7083	42	w	343	16516	44
vw	611	7748	8	vw	451	16814	26
vw	313/313	8574	59	vw	604	17828	47
m	332/332	9205	119	w	115	18483	84
VW	413	9779	24	vw	305	19383	10
w	323/323/711	10133	85	w	153	19764	72
m	440	11339	201	w	315/315	19995	84
w	800	11575	63	w	415/353	21184	78
vw	721	11696	27	w	162	22023	38
vw	233/233	11857	34	m	1.1.10	22414	89
w	$114/\overline{1}14$	12104	34	s	804/804	22899	320
w	333/333	12810	121	s	1.1.11	23134	103
w	314/314	13493	106	w	216/216	26872	56
m	151/433	14079	90	w	753	28527	31
w	821/802	14379	115	w	326	29342	33
W	414	14838	61	w	570	30395	90
W	143	15009	42	w	1.3.10/571	31123	66
m	351/351	15483	103	VS	080	33743	450
m	533	15577	85	vs	046	34131	1000
m	911	15846	118				
		Cu _{1.9}	₅ S — tetrage	onal $T \approx 25$	50 K		
w	102	12260		m	113	25602	
m	110	16271		s	114	32277	
vs	111	17347		w	202	36679	
vs	104	24700		W	211	41820	
		$Cu_{1.95}S - 1$	ow-tempera	ture phase	$T \approx 150 \text{ K}$		
s		21811		w		39026	
s		24050		vw		43397	
w		31584					

TABLE 2. X-ray powder results for synthetic djurleite $(Cu_{1.95}S)$ and synthetic low chalcocite (Cu_2S) at 295 K with Cr K α_1 radiation, and for the most characteristic reflections of the low-temperature phase and the tetragonal phase in $Cu_{1.95}S$ (obtained with Cu K α_1 radiation, but multiplied by the factor 2.2090 for direct comparison with the djurleite results)

$\frac{T}{T}$			x in $Cu_x S$		
K	1.90	1.95	1.98	1.99	1.995
293	Dj + An	Dj	Dj + LoCh	Dj+LoCh	Dj+LoCh
325	Dj + LoDg	Dj	Dj + LoCh	Dj + LoCh	Dj + LoCh
355	Dj + HiDg	Dj	Dj+LoCh	Dj+LoCh	Dj+LoCh
390	HiDg + HiCh	HiDg+HiCh	HiDg + HiCh	HiCh	HiCh
425	HiDg+HiCh	HiDg+HiCh	HiDg + HiCh	HiDg + HiCh	HiDg + HiCh
525	HiDg	HiDg + HiCh	HiDg+HiCh	HiDg + HiCh	HiDg + HiCh

TABLE 3. Phases occurring in $Cu_{1,90}S$, $Cu_{1,95}S$, $Cu_{1,98}S$, $Cu_{1,99}S$, and $Cu_{1,995}S$ in the range 293 K to 525 K

temperatures. The low-temperature structure may, however, be characterized by additional reflections present also at higher temperatures.

At room temperature X-ray photographs of $Cu_{1.98}S$ and $Cu_{1.995}S$ show the presence of both low chalcocite and djurleite as well as the tetragonal phase. Thus, one of these phases, most probably the tetragonal one, is metastable at this temperature. The relative proportions of the phases depend on the previous thermal history as the transition of the tetragonal phase to the stable assemblage is extremely slow. In addition, phase separation might originate from insufficient thermal equilibration during cooling. This aspect causes variability in the heat capacities in the transitional region for the different measurement series, which will be further discussed below.

The results of the X-ray-diffraction-based phase analysis in the range 293 K to 525 K are summarized in table 3. In addition, the tetragonal phase is observed in varying amounts in $Cu_{1.95}S$, $Cu_{1.98}S$, and $Cu_{1.995}S$ at 390 K and below. Although the presently studied samples are well characterized as a function of temperature, the extensions of the djurleite- and high-chalcocite fields have not been properly delineated. The djurleite transition is observed alone in $Cu_{1.90}S$ and $Cu_{1.95}S$. In $Cu_{1.98}S$ and $Cu_{1.995}S$ eutectoid formation of high chalcocite from (djurleite + low chalcocite) is observed, and also the low- to high-chalcocite transition.

A new phase diagram for the copper-rich part of (copper + sulfur) is presented in figure 1. It is based in part on the new structural and heat-capacity results obtained here which indicate that high chalcocite is formed eutectoidally from djurleite and low chalcocite at 366.2 K, and that its composition is approximately $Cu_{1.97}S$. The djurleite phase is taken to exist over the composition range $Cu_{1.938}S$ to $Cu_{1.969}S$ as reported by Potter,⁽¹¹⁾ whereas the extension of the homogeneity range of high chalcocite is chosen in consistency with the presently reported X-ray and heat-capacity results.

HEAT CAPACITIES

The experimental heat capacities for $(1/2.90)Cu_{1.90}S$, $(1/2.95)Cu_{1.95}S$, $(1/2.98)Cu_{1.98}S$, and $(1/2.995)Cu_{1.995}S$ from both low- and high-temperature ranges, are listed in chronological order in table 4 for the mean temperatures. The

FIGURE 1. Part of the (copper + sulfur) phase diagram. Cv, covellite, CuS; An, anilite, Cu_{1.75}S; loDg, low digenite, Cu_{2-x}S with 0.18 < x < 0.23; hiDg, high digenite, Cu_{2-x}S with 0 < x < 0.27; Dj, djurleite, Cu₆₂S₃₂ to Cu₆₃S₃₂; loCh, low chalcocite, Cu₂S; hiCh, high chalcocite, Cu_{2-x}S, 0 < x < 0.02. ..., Presently assumed eutectoid decomposition lines for low digenite; ---, low-digenite to high-digenite transition temperatures; ---, presently assumed phase limits for high chalcocite.

approximate temperature increments used in the determinations can usually be inferred from the adjacent mean temperatures in table 4.

Twice the standard deviation in the measured low-temperature heat capacity is about 1 per cent from 8 K to 30 K, 0.1 per cent from 30 K to 300 K, and 0.2 per cent from 300 K to 350 K. In the higher-temperature region it is about 0.3 per cent. The smoothed heat capacities for $Cu_{1.95}S$ and $Cu_{1.98}S$ are in reasonable agreement with those reported by Kubaschewski⁽²¹⁾ for $Cu_{1.9535}S$ and $Cu_{1.988}S$, respectively. The heat capacities reported by Kubaschewski were, however, presented only as a small figure, and a proper comparison with the present results is not possible.

TRANSITIONAL ENTHALPIES AND ENTROPIES

The enthalpies and entropies of the different transitions are given in table 5. Due to the presence of several partly overlapping heat-capacity contributions the values of the separate transitional increments depend considerably on the way the resolution is made. In addition, the background level chosen for evaluating the excess functions is of decisive importance in the comparison of the different transitions. It should also be noted that the transitional evaluations from series with small energy increments and long stabilization times are relatively more sensitive to temperature-drift corrections and therefore less accurate than those from series with larger energy

T K	$C_{p, m}$ R	T K	С _{р. т} R	T K	C _{p.m} R	Т К	$C_{p,m}$ R	T K	С _{р. т} R	T K	$C_{p,m}$ R
				M/11/2	90)Cu	S1 - 52 69	1 ø·mol-	1			
			Lliah ta		0,C u _{1.90}	$O_j = 02.07$	I E mor	u of Oolo			
	-		rign-te	mperatur	e measur	ements -	Universit				1 < 0.04
Series	s I	394.84	4.722	506.92	3.430	633.94	3.453	Serie	s II	366.59	16.081
303.28	3.280	403.03	4.675	517.28	3.428	644.81	3.455	346.11	3,922	367.72	7.823
313.18	3.382	411.20	4.804	529.14	3.421	033.13	3.439	348.30	3.999	309.30	4.420
322.92	3.495	419.04	4.500	548 63	3.410	677.73	3.457	351.57	4.174	371.04	4.317
341.82	3.826	428.03	3.939	559 15	3.427	688 79	3.469	356.43	4.508	375.00	4.300
350.80	4 193	447 40	3 846	569.69	3 442	699.90	3 4 70	358 53	4 4 5 6	378.13	4 307
358.99	5.222	456.95	3.796	580.27	3.446	711.06	3.477	360.60	4.730	380.29	4.321
364.68	13.675	466.60	3.737	590.88	3.451	722.25	3.481	362.32	5.162	382.44	4.401
370.21	5.500	476.41	3.631	601.55	3.446	733.51	3.481	363.96	8.343	384.57	4.486
378.16	4.347	486.43	3.510	612.30	3.440	744.81	3.481	365.09	14.697	386.67	4.602
386.60	4.568	496.61	3.465	623.10	3.440			365.85	20.567	388.74	4.683
		I	Low-temp	berature 1	measurem	nents — Ur	niversity d	of Michiga	ın		
Series	s III	194.61	2.7316	244.14	2.9236	324.44	3.2913	Serie	s X	30.22	0.6179
76.96	1.6452	199.77	2.7556	249.32	2.9425	329.53	3.3518	9.519	0.0429	31.67	0.6627
80.34	1.7100	204.93	2.7779	254.50	2.9620	Series	VI	10.022	0.0495	33.20	0.7088
84.31	1.7716	210.11	2.7973	259.67	2.9813	276.02	3.0721	10.483	0.0565	34.81	0.7570
88.51	1.8336	220.45	2.8423	264.87	2.9993	306.08	3.2881	Serie	s XI	36.50	0.8051
92.95	1.8936	225.61	2.8609	270.09	3.0205	324.24	3.2756	9.87	0.0475	38.28	0.8548
97.63	1.9522	230.78	2.8784	280.38	3.0672	329.53	3.3518	10.41	0.0558	40.15	0.9046
102.54	2.0133	235.95	2.8988	285.55	3.0992	Series	VII	10.90	0.0638	42.11	0.9554
107.58	2.0721	246.30	2.9360	290.69	3.1640	100.26	1.9650	11.34	0.0734	44.17	1.0076
112.63	2.1291	251.47	2.9529	295.74	3.3162	137.23	2.3641	11.92	0.0833	46.34	1.0609
117.70	2.1818	256.64	2.9740	300.63	3.6482	175.97	2.6339	12.48	0.0948	48.62	1.1150
122.79	2.2349	Series	S IV	305.54	3.7971	Series	VIII	13.05	0.1063	51.02	1.1690
127.88	2.2859	176.94	2.6411	310.98	3.2998	281.66	3.0943	13.65	0.1200	53.53	1.2234
132.97	2.3361	186.26	2.6826	316.55	3.2578	310.88	3.4724	14.28	0.1360	56.18	1.2780
138.06	2.3830	192.42	2./158	321.72	3.2956	328.30	3.3639	14.93	0.1530	58.96	1.3365
143.17	2.4253	197.58	2.7389	326.84	3.3548	333.25	3.5044	15.62	0.1/13	61.88	1.3943
148.28	2.4048	202.74	2.7027	226.02	3.4493	Series	1A	19.20	0.2747	64.95	1.4489
159.55	2.3024	207.91	2.7824	241 44	3.3/38	273.98	3.0505	22.95	0.3890	71.50	1.5099
158.55	2.3300	213.09	2.8030	346.12	4 22207	303.79	3 3009	25.91	0.4155	75.04	1.5054
168.83	2.5095	218.20	2.8220	Serie Serie	شرو ۷. م	326.60	3 3116	25.05	0.4001	78.79	1.6240
173.98	2.0017	223.44	2.0451	275 77	3 0641	331.65	3 3895	27.51	0.5334	82 77	1.7515
179 13	2.6554	233 79	2.8700	306.07	3 2319	551.05	5.5675	28.83	0.5745	86.86	1.8155
184.29	2.6334	238.96	2.0024	500.07	5.2517			20.0.7	0.5745	00.00	1.0155
	1.0010		High-te	mperatu	re measur	ements —	Universit	v of Oslo			
Sorio	, VII	227 20	2 / 20	358.05	5 174	360.02	5 246	300.67	1 6 4 3	524 00	3 1 1 3
261.50	2 Q64	327.59	3 535	360.59	5 708	370.71	1 2 40 1 2 2 8	410.79	4.045	537 49	3 300
201.50	2.904	335.67	3.685	362 13	6 545	372 30	4 3 3 8	422 37	4.046	550.96	3 387
279.99	3.069	339 77	3 927	363 50	7 903	Series	XIII	434 31	3919	564.50	3.410
289.13	3.120	343.64	4.366	364.64	11.161	341.76	3.700	446.51	3.840	578.08	3.411
295.83	3.245	347.36	4.493	365.52	15.563	353.57	4.364	458.91	3.731	591.70	3.412
300.14	3.534	350.97	4,759	366.16	21.192	362.56	9.802	471.54	3.680	605.31	3.430
304.28	3.656	353.67	4.576	366.71	22.816	369.13	9.759	484.38	3.524	618.91	3.434
308.63	3.418	355.47	4.756	367.22	26.256	377.99	4.502	497.48	3.423	632.69	3.463
318.80	3.273	357.23	4.938	367.80	15.082	388.87	4.793	510.74	3.383	646.38	3.466
323.12	3.360										

TABLE 4. Heat capacities of $(1/2.90)Cu_{1.90}S$, $(1/2.95)Cu_{1.95}S$, $(1/2.98)Cu_{1.98}S$, and $(1.2.995)Cu_{1.995}S$. $(R = 8.3144 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$

T	<i>C</i> _{<i>p</i>, m}	T	$C_{p,m}$		С _{р. т}	T	С _{р. т}	T	<i>C</i> _{<i>p</i>.m}	T	<i>C</i> _{<i>p</i>, m}
K	R	К	R	ĸ	R	К	R	ĸ	R	к	R
				M(1/2)		$S_{1}^{1} = 52.87$	5 g . mol	- <u></u>	•		
			High-te	mperatu	e measu	$35^{\circ}_{i} = 52.07$	Universit	v of Oslo			
Soria	εI	101 85	2877	705.62	3 474	177.84	A 661	375.10	4 521	789.61	3/10
322.95	3.246	505.57	3.825	718.06	3.430	432.51	4.163	379.78	4.507	801.28	3.425
333.93	3.324	516.32	3.833	730.67	3.439	442.78	3.804	384.45	4.560	813.00	3.406
344.72	3.482	527.11	3.828	743.32	3.435	453.28	3.851	389.10	4.617	826.86	3.392
354.87	4.279	537.94	3.840	756.06	3.421	463.75	3.880	393.72	4.676	838.76	3.404
362.29	10.798	548.78	3.872	768.90	3.430	474.27	3.864	398.24	4.977	850.68	3.401
368.26	7.621	559.63	3.904	Serie	s II	484.86	3.850	402.50	5.358	862.63	3.392
376.27	4.600	570.48	3.940	313.06	3.201	495.54	3.822	406.83	4.858	881.41	3.389
385.54	4.645	581.31	3.981	324.06	3.271	506.28	3.803	411.39	4.762	899.56	3.400
394.77	4.718	592.08	4.103	334.95	3.341	517.08	3.801	415.98	4.738	911.56	3.380
403.85	4.983	603.34	3.660	345.68	3.495	527.97	3.805	420.59	4.752	924.05	3.370
412.93	4.762	614.88	3.441	355.80	4.249	Series		425.20	4.762	936.40	3.376
422.16	4.781	626.75	3.423	362.73	13.964	347.96	3.495	429.81	4.777	948.82	3.398
431.76	4.211	638.67	3.423	368.61	6.289	353.18	3.768	434.45	4.704	961.27	3.410
442.00	3.828	645.02	3.413	311.13	4.422	358.04	4.597	439.20	4.201	9/3.74	3.399
452.51	3.860	657.03	3.421	380.34	4.505	301.75	9.040	444.37	3./95	980.27	3.401
403.02	3.838	609.09	3.415	395.80	4.//9	364.12	15.984	270 79	2 A 2 1	998.88	3.4.29
4/3.38	3.831	081.22	3.429	404.55	5.150	300.00	8.031	770.42	2.431		
404.17	5.652	075.50	5.427	415.54	4.724	570.45	4.504	117.45	J. 4 07		
		I	_ow-temp	perature r	neasuren	nents — Un	niversity c	of Michiga	in		
Serie	s V	196.42	2.7535	337.78	3.3086	Series	XIII	221.51	3.1773	5.61	0.0074
204.79	2.7956	206.43	2.8029	345.83	3.3859	201.24	2.7740	221.88	3.1757	6.70	0.0133
212.69	2.8262	Series	S VIII	Series	s XI	205.54	2.7902	222.25	3.1445	7.63	0.0192
222.46	2.8590	200.14	2.7699	206.81	2.7978	209.82	2.8048	222.62	3.1650	8.37	0.0285
238.18	2.9122	209.45	2.8121	210.84	2.8196	214.07	2.8231	223.18	3.1075	9.36	0.0411
Serie	s VI	218.81	3.2850	213.85	2.8417	217.25	2.8407	224.13	3.0653	10.31	0.0579
214.10	2.8649	228.37	3.0374	215.83	2.8793	218.72	2.8469	227.40	2.9581	11.24	0.0722
222.97	2.8629	238.64	2.9291	217.67	2.9154	219.55	2.8498	232.80	2.9141 XV	12.26	0.0922
233.51	2.8893	248.29	2.9426	218.27	3.0353	220.17	2.8544	Serie	S X V	13.43	0.1180
246.34	2.9311	257.14	2.9664	219.21	3.0741	220.59	2.8555	213.43	2.8270	14.74	0.1529
252.30	2.9495	205.70	2.9953	220.13	3.2011	221.00	2.801.3	210.10	2.8911	10.24	0.1908
200.04	2.9/8/	273.09	2.0270	220.90	2.0402	221.41	2.0732	220.03	2.9742	22.25	0.3010
270.33	2.0100	205.01	3.0030	221.70	3.0223	221.62	2.0943	221.02	3.0103	22.55	0.3739
204.25	3 1 1 3 0	293.01 Series	5.0970 EIX	222.39	3.9725	222.23	2.0790	222.50	3.0459	28.21	0.5622
Serie	5.1157 c VII	117.01	2 1076	223.40	3.0013	222.04	2.8926	223.33	3.0215	30.90	0.6489
00/18	1 8770	125.60	2.1970	224.41	3,0053	223.25	2.8720	224.40	2 9683	34 34	0.7527
99.18	1.9870	134 23	2 3 5 5 8	228.73	2 9443	Series	XIV	Serie	s XVI	37.82	0.8525
107.81	2.0878	143.55	2.4338	Serie	s XII	203.20	2.7799	54.94	1.2662	41.54	0.9526
117.11	2.1933	152.59	2.5029	215.21	2.8554	206.83	2.7948	60.38	1.3776	45.59	1.0550
127.08	2.2925	161.52	2.5623	217.69	2.9069	211.01	2.8160	66.96	1.5020	50.01	1.1599
136.89	2.3796	170.75	2.6212	219.29	3.0440	213.95	2.8303	74.37	1.6256	54.76	1.2626
146.80	2.4613	Series	s X	220.86	3.2165	215.63	2.8512	82.63	1.7606	Series	XVIII
156.78	2.5338	213.79	2.8981	222.53	3.2750	217.67	2.9154	91.09	1.8832	93.08	1.3115

219.28

220.07

220.67

221.10

224.27 3.1614

226.69 3.0304

232.29 2.9535

3.0162

3.0648

3.1491

3.1635

100.87

111.92

4.55

2.0054

2.1328

0.0035

Series XVII

204.52 2.7831

210.63 2.8107

2.5960

167.32

273.78 3.0250

306.60 3.1417

317.12 3.1882

327.53 3.2420

176.48 2.6558

186.43 2.7055

2.5338 166.64 2.5989

TABLE 4—continued

Т	$C_{p.m}$	Т	$C_{p,m}$	Т	$C_{p,m}$	Т	$C_{p,m}$	Т	$C_{\rho,m}$	Т	$C_{p.m}$
K	Ŕ	К	R	К	R	К	R	К	R	К	Ŕ
			High-t	emperatu	re measu	rements	Universit	ty of Oslo			
Serie	s XIX	Serie	s XX	372.99	4.659	362.39	19.364	369.70	4,799	402.99	4.723
300.13	3.089	351.10	3.564	375.68	4.561	362.77	20.314	370.73	4.791	406.19	4.590
309.94	3.140	354.09	3.908	Serie	s XXI	363.14	20.158	371.78	4.607	409.40	4.542
319.64	3.216	356.89	4.604	342.62	3.363	363.50	22.130	372.82	4,706	412.65	4.460
329.24	3.268	359.32	6.360	346.40	3.419	363.87	20.098	374.89	4.813	415.95	4.251
338.75	3.352	361.18	10.573	350.12	3.661	364.27	17.524	377.97	4.815	419.32	4.162
348.12	3.476	362.50	15.972	353.75	3.766	364.70	16.778	381.08	4.721	422.72	4.159
356.72	4.635	363.50	20.446	357.16	4.614	365.14	15.527	384.21	4.752	426.15	4.089
362.17	18.354	364.51	15.503	359.27	5.655	365.63	13.507	387.34	4.724	429.60	4.077
365.29	16.044	365.89	9.817	360.16	7.164	366.20	11.081	390.46	4.812	433.06	4.040
370.65	5.250	367.88	5.622	360.90	9.585	366.85	8.857	393.57	4.839	436.55	3.994
378.24	4.766	370.36	4.717	361.51	13.098	367.68	5.926	396.69	4.752	440.05	3.981
386.09	4.759			361.98	16.850	368.67	4.995	399.87	4.781		
				M{(1/2.)	98)Cu _{1.98}	$\{S\} = 52.98$	82 g∙mol-	1			
			High-t	emperatu	re measu	rements —	Universit	ty of Oslo			
Serie	es I	364.91	10.484	575.61	3.777	955.04	3.329	371.35	12.587	379.19	3.868
313.52	3.158	366.46	39.474	585.86	3.816	966.70	3.330	371.75	13.526	380.25	3.905
326.57	3.199	368.16	8.494	596.16	3.825	978.41	3.348	372.11	14.809	381.31	3.955
336.71	3.261	370.61	11.531	606.48	3.821	990.16	3.365	372.46	15.180	Series	s VII
346.77	3.322	372.54	13.920	616.79	3.887	1001.97	3.382	372.79	16.133	361.20	3.346
356.64	3.519	374.78	7.802	627.11	3.973	Serie	s V	373.09	16.456	363.40	3.530
363.89	10.103	378.70	3.956	637.41	3.955	297.97	3.055	373.36	23.972	365.19	/.048
368.48	11.235	383.32	3.988	647.62	4.008	303.80	3.073	373.70	12.196	366.01	51.542
372.77	11.753	387.90	4.033	657.79	4.044	309.65	3.090	374.14	13.378	366.19	141.04
379.13	4.633	392.42	4.100	668.13	3.890	315.47	3.098	374.81	4.894	366.42	35.553
387.96	4.077	396.86	4.223	678.98	3.573	321.23	3.156	375.78	3.893	367.20	8.488
396.92	4.296	401.25	4.365	690.10	3.440	325.54	3.148	376.83	3.874	368.40	8.868
405.61	4.505	405.57	4.486	701.42	3.391	328.40	3.180	377.88	3.991	369.52	10.327
414.11	4.575	409.84	4.534	712.80	3.4.24	335.87	3.197	378.92	3.979	370.50	12.213
422.44	4.603	414.08	4.551	Serie	s III	341.55	3.241	379.96	3.935	371.35	15.038
430.50	4.579	418.22	4.584	304.34	3.024	347.21	3.265	381.00	3.997	3/1.93	17.832
439.54	3.885	422.21	5.883	314.05	3.098	352.84	3.322	266.14	S VI	372.44	10.010
449.02	3.887	425.80	5.480	Serie	S I V	357.05	3.330	300.14	8.234	3/3.11	17.237
438.52	3.907	429.80	4.417	733.43	3.341	209.80	3.400	300.92	4.8//	5/4.5/ Soria	4.744
408.00	3.898	434.40	3.98Z	754.09	3.340	262.01	2.400	307.70	5.205	267.27	7 576
4//.0/	3.884	439.12	3.881	754.81	3.333	302.91	3.323	308.39	0.039	307.37	0 204
487.35	3.842	443.80	3.882	/03.3/	3.340	304.00	3.002	369.30	1.473	308.02	0.300
497.10	3.813	448.01	3.893	//0.39	3.342	363.02	4.542	270.49	8.471	260.22	0.001
506.92	3.807	453.35	3.927	709.10	3.333	266.07	11.033	370.48	9.992	309.22	9.000
516.80	3.790	458.09	3.910	/98.19	3.339	300.07	42.980	370.90	11.5408	270.76	10.364
526.74	3.780	462.85	3.907	809.10	3.338	300.17	111.02	371.42	12.402	370.20	14.837
536.74	3.787	407.03	3.880	820.17	3.379	300.23	171.93	3/1.83	13.492	370.00	14.373
540.79	3.783	472.42	3.802	031.19 P43.34	2,200	266.27	57647	272.22	14 200	271.00	13.002
547.02	3.790	477.23	3.804	852.24	3.320	366.62	1/ 875	372.39	14.300	371.32	14.421
501.03	3.193 2.756	402.00	2826	864 40	3 3 76	367.10	0 300	372.72	13 376	377 70	16 508
511.24 Somi-	5.750 M	400.71	3.030	875 57	3,320	367.10	8 757	37262	7 680	372.65	17 536
337 14	3 11	471.78	3,020	886 72	3.341	368 30	8 470	374 14	7 494	373.01	16 677
311.40	3.220	501 54	3,920	802 N7	3 2 2 2 4	368.80	8054	374.05	1 206	373.45	11 007
247 44	2 216	504.30	2871	0/0.21	2 210	360.09	0.704	375 00	1.320	37/19	4 502
341.44	3.310	545 15	3.021	909.31	3.310	360 00	9.208	377 06	3.720	375 20	3 847
357 20	3.324	555 75	3.700	031 04	3,352	370 47	11 041	378.12	3 000	376.20	3 780
361 70	5 080	565.41	3 781	943 43	3 378	370.47	11 566	570.13	5.770	377 35	3933
501.79	5.007	505.41	5.701	743.43	0-2-0	570.75	11.500			511.55	5.155

TABLE 4- continued

T K	C _{e,m} R	T K	$\frac{C_{p,m}}{R}$	T K	$\frac{C_{p,m}}{R}$	T K	$C_{p,m} R$	T K	С _{р. т} R	T K	$C_{p,m}$ R
				M{(1/2.99	5)Cu _{1.9}	$\{9,5,8\} = 53.0$	35 g·mol	[1			
			High-	temperature	e measi	irements	Universi	ity of Oslo			
Serie	s 1	618.64	3.798	587.36	3.779	341.47	3.286	395.18	3.998	374.64	17.881
302.14	3.087	628.82	3.834	597.45	3.792	346.40	3.314	399.65	3.976	375.30	24.402
312.35	3.130	639.01	3.839	607.58	3.779	351.31	3.339	403.93	3.973	375.81	32.317
322.50	3.178	649.19	3.911	617.79	3.744	356.19	3.387	Serie	s VI	376.20	40.524
332.57	3.222	659.33	3.956	628.04	3.808	361.01	3.460	298.29	3.026	376.53	46.846
342.57	3.277	669.38	4.104	638.28	3.826	364.91	7.237	305.39	3.102	376.83	43.328
352.50	3.335	679.32	4.205	648.51	3.881	368.24	5.509	312.41	3.126	377.36	17.915
361.75	4.248	689.27	4.129	658.70	3.954	371.48	7.860	319.39	3.150	378.99	4.278
368.96	7.666	699.45	3.946	668.82	4.054	373.81	13.927	326.36	3.175	Series	s VIII
373.53	15.455	Series	s III	678.78	4.213	375.26	25.468	333.30	3.204	418.72	4.183
376.18	28.825	451.56	3.899	688.65	4.266	376.13	42.844	340.22	3.238	420.89	4.667
380.60	6.064	460.91	3.902	698.62	4.133	376.72	56.916	347.11	3.275	422.92	4.523
388.57	3.985	470.29	3.908	709.05	3.648	378.21	9.505	353.97	3.321	425.13	4.030
397.61	3.975	479.72	3.881	720.05	3.394	379.48	5.822	360.75	3.433	427.45	4.089
406.67	3.980	489.22	3.873	732.02	3.359	381.76	4.017	364.85	4.431	429.76	4.397
415.74	4.035	498.78	3.858	743.48	3.347	386.22	3.998	365.90	11.657	432.27	4.374
424.64	4.312	508.41	3.834	754.99	3.330	390.70	3.993	366.75	7.139	434.84	4.226
433.44	4.238	518.09	3.834	766.55	3.348	395.18	3.998	367.91	5.231	437.36	4.069
442.51	3.937	527.83	3.807	Series	IV	399.65	3.976	369.19	5.374	439.94	3.902
451.85	3.898	537.62	3.808	303.75	3.128	Series	V	370.38	6.145	446.11	3.884
461.28	3.880	547.46	3.807	313.90	3.152	381.76	4.017	Serie	s VII	455.96	3.868
Serie	s II	557.35	3.781	323.99	3.194	386.22	3.998	372.39	8.492	465.68	3.888
598.29	3.768	567.30	3.790	334.01	3.246	390.70	3.993	373.24	10.865	475.43	3.886
608.45	3.774	577.30	3.762					373.94	13.424	485.26	3.862

TABLE 4—continued

inputs. In many cases the transitional enthalpy varies from one measurement series to the next, which reflects the varying degree of conversion of the high-temperature phases to the stable assembly during the previous cooling process. In such cases the highest transitional value is most often used in the evaluation of the thermodynamic function values. The thermal history of the samples is summarized in table 6.

For $Cu_{1.90}S$ the reference heat capacity for the anilite to low-digenite transition is estimated from the heat capacities in the pre- and post-transitional regions, compare figure 2. The separation is aided also by the absence of anilite in some of the measurement series due to incomplete low-temperature equilibration. It appears that cooling below 260 K is essential for converting digenite to anilite, compare Series IV, VIII, IX, and XII is contrast to Series V and VI. The maximum value of $\Delta_{trs}H_m =$ $8.57 \cdot R \cdot K$ represents only about 35 per cent of the value expected for a two-phase mixture of $Cu_{1.75}S$,⁽³⁾ and djurleite with composition $Cu_{1.934}S$, as claimed by Potter.⁽¹¹⁾ If our highest result for $Cu_{1.90}S$ represents complete equilibration, the composition of the neighboring phase should be $Cu_{1.915}S$, compare figure 3. Our earlier results for $Cu_{1.80}S$ and $Cu_{1.85}S$ also support this contention, but it should be remarked that the transition temperature is 309.9 K for $Cu_{1.85}S$, and 305.5 K for $Cu_{1.90}S$. The lowering indicates that the peritectoid decomposition of the lowdigenite phase occurs below 310 K under equilibrium conditions, but how far is still not known.

Series	Detn.	$\frac{\Delta_{T_1}^{T_2}H_{\rm m}}{R\cdot {\rm K}}$	$\frac{\Delta_{T_1}^{T_2} S_{m}}{R}$	Series	Detn.	$\frac{\Delta_{T_1}^{T_2}H_{\rm m}}{R\cdot {\rm K}}$	$\frac{\Delta_{T_1}^{T_2}S_{m}}{R}$
		<i>M</i> {(1	./2.90)Cu _{1.9}	$_{0}\mathbf{S}$ = 52.691 g·n	nol ⁻¹		
(Anilite + d	jurleite) to lo	w-digenite tr	ansition (29	00 K to 320 K)			
IV V	21 to 26 $\frac{2}{2}$	7.18 1.39	0.0235 0.0046	VIII IX	1 and 2	8.57 7.62	0.0280 0.0250
VI	2	3.15	0.0103	XII	4 to 9	5.16	0.0169
Low-digenite and changin	e to high-dige g composition	nite transition n of high-dig	on (356 K), o genite and d	ljurleite- to high- jurleite (320 K to	-chalcocite tra 5 370 K)	nsition (363	K to 370 K),
I	4 to 9	65.03	0.1784	XII	19 to 32	88.58	0.2425
II	1 to 14	55.69	0.1523	XIII	1 to 4	86.16	0.2363
		$M\{(1$	/2.95)Cu _{1.9}	${}_{5}\mathbf{S}$ = 52.875 g · n	nol ⁻¹		
Low-temperation	ature transitic	on (214 K to	228 K)				
IV	2 to 4	2.81	0.0126	XIII	3 to 16	3.22	0.0145
VIII	2 to 4	7.34	0.0331	XIV	3 to 17	2.62	0.0118
XI XII	3 to 15 1 to 7	6.39 4.26	0.0288 0.0192	XV	1 to 8	4.21	0.0190
Djurleite to	(high digenite	+ high-cha	alcocite) trai	nsition (350 K to	370 K)		
I	3 to 6	60,76	0.1669	XIX	6 to 10	91.36	0.2511
II	4 to 7	59.66	0.1638	XX	1 to 11	69.76	0.1922
III	2 to 7	54.84	0.1507	XXI	3 to 24	81.19	0.2235
Total increm	nents (350 K t	o 440 K)					
I		465.7	1.1944	XIX ^a		480.3	1.2547
II		462.9	1.1870	XXI		476.0	1.2258
III		466.7	1.1941	Mean values		470.3	1.2112
^a Extrapolate	ed above 414	К.					
		M {(1	l/2.98)Cu _{1.9}	${}_{8}S$ = 52.982 g·m	nol ⁻¹		
(Djurleite +	low chalcoci	te) to high-c	halcocite tra	ansition (360 K t	o 367.5 K)		
II	7 to 9	51.46	0.1406	VI	1 and 2	42.47	0.1160
v	13 to 26	44.05	0.1203	VII	1 to 7	50.27	0.1373
Uptake of lo	w chalcocite	in high chal	cocite (367.	5 K to 375 K)			
П	9 to 12	57.85	0.1559	VII	7 to 15	57.71	0.1553
V	26 to 42	58.39	0.1573	VIII	1 to 16	53.98	0.1455
VI	3 to 17	42.47	0.1144				
		M {(1/	2.995)Cu _{1.9}	${}_{95}S$ = 53.035 g ·	mol ¹		
(Djurleite +	low chalcoci	te) to high-c	halcocite tra	ansition (360 K t	o 367.5 K)		
I IV	7 and 8 9 to 11	12.45 13.07	0.03412 0.03578	VI	10 to 14	11.31	0.03102
Uptake of lo 380 K)	w chalcocite i	in high chalc	ocite (367.5	K to 375 K) and	of copper in	high chalcoc	ite (375 K to
I IV	8 to 11 11 to 18	118.6 124.7	0.3166 0.3323	VIII	1 to 11	116.9	0.3115

TABLE 5. Enthalpy and entropy increments for Cu_xS phases. $R = 8.3144 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

THERMODYNAMICS OF COPPER SULFIDES. IV.

Series	Previous treatment	Series	Previous treatment
Cu _{1 90} S			
I:	tempered 7 d at 670 K; cooled with furnace	VII:	enthalpy determ., cooled from 332 to 82 K (4 h)
II:	after explor. determ. to 440 K, then from	VIII:	cooled to liq. N_2 (4 m)
	amb. T to 385 K and from amb. T to 365 K	IX:	cooled to 200 K overnight, heated to 265 K (8 h)
III:	after 8 a at amb. T cooled to 75 K (44 h)	X:	cooled to 8.7 K (3 d)
IV:	after explor. determ. to 290 K	XI:	cooled to 9.5 K
V :	cooled to 261 K (8 h)	XII:	after 2 m at amb. T
VI:	cooled to 261 K (12 h)	XIII:	after 7 m at amb. T
Cu _{1.95} S			
I:	temp. 21 d at 670 K, cooled with furnace	XIII:	up to 283 K, cooled to 184 K (4 h), held
11:	after explor. determ. to 825 K, and after-	VIV.	at 200 K to 220 K applied to 100 K (15 b) down to 125 K
111.	hald at 240 K (24 b)	ALV:	(6 h later) heated to $184 K$ $(4 h)$
III. IV·	heated to 750 K after 240 d at amb T	VV.	(0 in face), ficated to 104 K (4 fi)
V.	cooled to 200 K after 5 a at amb T	Λι.	(3 h)
VI	Cooled from 245 K to 200 K overnight	XVI.	cooled to 51 K (24 h)
VII	cooled to 84 K (11 h)	XVII:	cooled to $41 \text{ K} (5 \text{ d})$
VIII	cooled from 210 K to 200 K	XVIII:	heated to 90 K, enthalpy determ.
IX:	cooled to 113 K	XIX:	after 70 d at amb. T
X:	after two enthalpy determ., 180 K to	XX:	held at 340 (2 d)
	300 K	XXI:	after explor. determ. to 450 K and 14 d
XI:	cooled to 147 K overnight		at 358 K
XII:	cooled to 52 K (59 h), heated to 200 K		
Cu _{1 98} S			
I:	tempered at 670 K (20 d), cooled with	V :	after determ. to 1000 K and 5 a at amb.
	furnace		Т
II:	heated to 330 K	VI:	after explor. determ. to 386 K
III:	after 150 d at amb. T	VII:	after 1 a at amb. T
IV:	heated to 725 K (20 h)	VIII:	after 3 d at 365 K
Cu _{1.995}	S		
I:	tempered at 670 K (20 d), cooled with	V :	cooled to 375 K (12 h)
	furnace	VI:	after 12 a at amb. T
11:	heated at 590 K (17 h)	VII:	held at 370 K (24 h)
HI:	heated to 440 K after 3 d at amb. T	VIII:	heated to 415 K (42 h)
IV:	alter 2 d al amo. I		

TABLE 6. Thermal history

The transitions of low digenite to high digenite, and of djurleite to (high digenite + high chalcocite), both occur in the region 350 K to 370 K. In addition, the digenite phase changes composition from about $Cu_{1.77}S$ to $Cu_{1.83}S$ on heating from 300 K to 370 K. Furthermore, the djurleite phase might also vary in composition. The combined effects result in a maximum transitional value for Series XII. The low- to high-digenite transition appears as a slight maximum around 356 K in Series II and around 351 K in Series XII, while the maximum is at 352.6 K in $Cu_{1.75}S$, at 355.3 K in $Cu_{1.80}S$, and is observable as a bulge around 355 K in the low- to high-digenite transition in $Cu_{1.85}S$. The transition of djurleite to (high digenite + high chalcocite)

FIGURE 2. Molar heat capacity of $(1/2.90)Cu_{1.90}S$. \bigcirc , U. of M.; \bigcirc , U. of O.; \neg , reference values in transition regions.

shows up as a substantial maximum over a 4 K interval around 366 K, compare Series XII.

The enthalpy of the transitions is evaluated by subtracting $C_{p, m}/R = -3.1620 + 0.020086(T/K)$ over the range 320 K to 370 K. The results for the more thoroughly equilibrated sample, compare tables 5 and 6, are considerably higher than those obtained after comparatively short resting times at ambient temperatures and below. Thus, the mean values from Series XII and XIII are chosen.

The high heat capacity persists above 370 K for $Cu_{1.90}S$ and returns to normal at about 500 K. We ascribe it primarily to the changing composition of the high-digenite phase from $Cu_{1.83}S$ to $Cu_{1.90}S$ by uptake of high chalcocite. The maximum around 400 K presumably reflects the most rapid change in composition of high digenite with temperature. Changes in the phase composition of high chalcocite constitutes another possible contribution, which then ought to be more prominent in $Cu_{1.95}S$.

The heat capacity of Cu_{1.95}S is shown in figure 4. A small transition is observed around 220 K. The background level for the transition is interpolated by polynomial fitting of the heat capacities in the pre- and post-transitional regions. Again, the transitional enthalpy varies as result of previous cooling procedures, compare tables 5 and 6. The highest value, $\Delta_{trs}H_m = 7.34 \cdot R \cdot K$, is obtained in Series VIII, *i.e.* after cooling to 84 K (11 h), measurements up to 210 K (Series VII), and cooling to

FIGURE 3. Enthalpy of decomposition of anilite as function of mole fraction of Cu in Cu_xS with $x = 1.90, 1.85, 1.80, and 1.75; \cdots$, expected values with djurleite composition equal to $Cu_{1.938}S$.

FIGURE 4. Molar heat capacity of $(1/2.95)Cu_{1.95}S$. \bigcirc , U. of M.; \bigcirc , U. of O.; \cdots , reference values in transition regions.

200 K before the start. In the absence of contradictory evidence this value is for the present taken as representing complete conversion of the low-temperature phase to the tetragonal phase in the sample. The amounts of the low-temperature and tetragonal phases vary depending upon the heat treatment and constitute fractions which are not known with certainty. The transition is seen to be absent in Series V and VI, indicating that cooling to 200 K is not in itself sufficient to obtain conversion to the low-temperature phase.

The djurleite to (high-digenite + high-chalcocite) transition presents itself as a broad heat-capacity maximum in the range 361 K to 367 K, compare Series XXI. The background level for the transition is represented by $C_{p,m}/R = -14.577 + 0.051750(T/K)$ over the range 350 K to 370 K. The enthalpy of the djurleite transition is highest in Series XIX, but it is seen that tempering at 358 K for 14 d (Series XXI) is also rather effective in equilibrating the sample. As a consequence of such equilibration, the enthalpy increment in the range 370 K to 440 K is lower for Series XXI than for the other series. For Series XIX similarly, a high enthalpy increment in the range 350 K to 370 K to 415 K.

In the evaluation of the thermodynamic properties of $Cu_{1.95}S$ the mean results of all five Series have been used for obtaining the total increments over the region 350 K to 440 K. Since Series XIX probably represents the best equilibrated sample, it has been used for obtaining the 350 K to 370 K increments. Furthermore, the 222 K transition increments have not been included, as they presumably are caused by the presence of metastable phases. The high heat capacity in the range 367 K to 430 K is due to the exsolution of high digenite from high chalcocite, whereas the smaller excess heat capacity persisting up to 610 K is due to the increasing solubility of almost stoichiometric high chalcocite in high digenite.

The transitional evaluations for $Cu_{1.98}S$ are complicated by the partial overlap of the djurleite to low-chalcocite transition with that of low chalcocite to high chalcocite. The present heat-capacity results for $Cu_{1.98}S$, compare table 4 Series V and also figure 5, give no indications of the 363 K transition reported by Potter,⁽¹¹⁾ but a marked confirmation of the 366 K transition.

A heat-capacity maximum of $100 \cdot R$ is observed in the range 366.1 K to 366.3 K, compare Series V and VII, which we ascribe to the eutectoid formation of high chalcocite from (djurleite + low chalcocite). Evaluations with background level $C_{p,m}/R = -5.3851 + 0.024467(T/K)$ from 360 K to 375 K give close to the same values for Series II and VII over the range 360 K to 367.5 K. The mean value $\Delta_{trs}H_m = 50.87 \cdot R \cdot K$ is chosen. For the solution of low chalcocite in high chalcocite from 367.5 K to 375 K the mean value of Series II, V, VII, and VIII is $\Delta_{trs}H_m = 56.98 \cdot R \cdot K$. Series VI obviously does not pertain to a well equilibrated sample. The high heat capacity of Cu_{1.98}S above 366.2 K indicates that it is still not single-phase material. The solution process occurs over a range of about 4 K with heat capacities ranging only between $10 \cdot R$ and $24 \cdot R$, compare Series I, II, V, VI, and VIII. Hence chalcocite is probably homogeneous close to the composition Cu_{1.97}S by uptake of low chalcocite. This process appears to be largely completed at 374 K.

FIGURE 5. Molar heat capacity of $(1/2.98)Cu_{1.98}S$. Details in insert: ..., reference values in transition regions; --, dividing line, 367.5 K; +, Series II; \bullet , Series V; \bigcirc , Series VI; \triangle , Series VII; \blacksquare , Series VIII.

In addition to this solution process, a further process terminates around 430 K and another around 670 K. The former begins at about 390 K and is ascribed to the exsolution of high digenite from high chalcocite, which thus becomes more closely stoichiometric. The peak near 430 K is presumably due to a rapid conclusion of the exsolution process due to overheating. Superimposed on the decreasing heat capacity of high chalcocite with temperature comes the reaction component for solution of high chalcocite in high digenite, which is complete at 670 K. The steady decrease in the range 470 K to 530 K is indicative of the presence of relatively large amounts of high chalcocite in $Cu_{1.98}S$.

The heat capacity of $Cu_{1.995}S$ is shown in figure 6. Just as for $Cu_{1.98}S$, a rather sharp maximum is observed near 366 K, followed by a broader one peaking at 376.7 K. Again, the former peak is attributed to the eutectoid formation of high chalcocite from (low chalcocite + djurleite), while the latter is related to the uptake of low chalcocite in high chalcocite. Remarkably, the heat capacity remains higher for $Cu_{1.995}S$ than for $Cu_{2.00}S$ in a narrow range above 377 K, which indicates that high chalcocite contains slightly more sulfur than does low chalcocite in this temperature range.

The enthalpy of the transitions is evaluated after subtracting a background level represented by $C_{p,m}/R = -7.334 + 0.02990(T/K)$ in the range 360 K to 380 K. The

FIGURE 6. Molar heat capacity of $(1/2.995)Cu_{1.995}S.$..., Reference lines in transitional regions; --, dividing line, 367.5 K.

enthalpy effects of the two transitions are presently divided at 367.5 K so that the eutectoid formation resides in the lower peak. Over the range 360 K to 367.5 K the mean value of the transitional enthalpy is $\Delta_{trs}H_m = 12.28 \cdot R \cdot K$, and over the range 367.5 K to 380 K it is $120.0 \cdot R \cdot K$. The large unit cell of low chalcocite (Cu₉₆S₄₈) implies high structural order and thus a very narrow homogeneity range.

In the range 380 K to 420 K and also above 440 K the heat capacity of $Cu_{1.995}S$ is very reproducible and slightly decreasing. The high values in the intermediate range are presumably due to the rapidly changing sulfur-rich composition limit of high chalcocite towards stoichiometry with increasing temperature. The excess enthalpy above a smoothly decreasing heat capacity in the region 410 K to 440 K amounts to $8.3 \cdot R \cdot K$, which for the present will be included in the thermodynamic functions for $Cu_{1.995}S$. At about 620 K the heat capacity departs from its steadily decreasing path and rises to a maximum of about $4.3 \cdot R$ around 790 K. The associated solution of high chalcocite in high digenite is complete around 710 K, where the heat capacity regains its normal course.

PHASE RELATIONS IN THE Cu_{1.90}S TO Cu_{2.00}S REGION

According to Potter's⁽¹¹⁾ phase diagram for the $Cu_{2-x}S$ region (compare figure 7) a sample with composition $Cu_{1.995}S$ should consist of a mixture of (low chalcocite +

FIGURE 7. Phase relations in the low-chalcocite high-chalcocite region according to different authors: •. Potter;⁽¹¹⁾ × ×, Kubaschewski;⁽²¹⁾ - -, Dumon *et al*.⁽²⁶⁾ (high digenite + tetragonal phase + high-chalcocite) between 375 K and the line from $Cu_{1.96}S$ to $Cu_{1.99}S$; - -, Dumon *et al*.⁽²⁶⁾ high chalcocite to the right of this line.

djurleite) at ambient temperature and become single-phase low chalcocite around 320 K. It should remain so up to 365 K, at which temperature the eutectoid transformation to high chalcocite should start. The biphasic reaction terminates at 370 K and the high chalcocite remains homogeneous up to 380 K. Above this temperature high digenite is exsolved until the high chalcocite becomes practically stoichiometric, *i.e.* Cu_{>1,999}S, at 420 K. Thus, the low- to high-chalcocite enthalpy increment should develop in the 365 K to 370 K interval, while normal highchalcocite heat capacity ($\approx 4 \cdot R$) should show up in the range 370 K to ²80 K. The compositional change of high chalcocite $(dx/dT = 0.00002 \cdot K^{-1} \text{ at } 380 \text{ K})$ is expected to raise the heat capacity by about $0.2 \cdot R$ above the $C_{p,m}$ (lattice) value in the beginning and to decay to zero at about 420 K. The present results for Cu1.995S do not correspond well with the above picture. A practically isothermal enthalpy acquisition occurs at 366.2 K, followed by a small phase-reaction contribution in the 367 K to 371 K region. The contribution rises markedly with further increase in temperature and reaches 56.89 · R over the interval 376.46 K to 376.98 K. Above 380 K normal high-chalcocite heat capacity obtains. Also for Cu_{1.98}S we find an isothermal enthalpy absorption at 366.2 K, with about four times the magnitude of that for $Cu_{1.995}S$. In $Cu_{1.95}S$ the effect is absent, or overshadowed by the decomposition reaction of djurleite to high digenite and low chalcocite in the 360 K

to 365 K region (compare Series XXI). At present we do not have enough experimental values to locate the high-chalcocite eutectoid composition exactly, but indications are that it is close to the composition $Cu_{1.97}S$. The low- to high-chalcocite transition is practically complete at 374 K. Accordingly, the decay of the eutectoid reaction at 366.2 K with increasing copper content, and also the fact that it is only about 10 per cent of the total reaction enthalpy in the range 360 K to 375 K for $Cu_{1.995}S$, substantiate the copper-rich composition limit of low chalcocite as not below $Cu_{1.995}S$ at 366.2 K. Since, on the other hand, the eutectoid reaction for $Cu_{1.98}S$ is only one half of the total, the composition of the high-chalcocite eutectoid ought to be around $Cu_{1.97}S$ (with an uncertainty dependent upon the enthalpy increment for compositional change of the high-chalcocite phase).

The presently proposed phase diagram for the region $Cu_{1.96}S$ to Cu_2S differs substantially from earlier versions, see figure 7. The complex phase diagram proposed by Dumon et al.⁽²⁶⁾ was based on anomalies in the e.m.f. of the cell $Cu|CuBr|Cu_{2-x}S|C$ with temperature. The homogeneity range of high chalcocite was found to decrease with increasing temperature above 377 K in agreement with the present findings. No evidence is found here which supports their reported increase in the solubility of high digenite in high chalcocite at even higher temperatures. Dumon et $al^{(27)}$ found that the high-chalcocite phase becomes stoichiometric at 500 K and that the solubility of high digenite in high chalcocite increases rapidly up to 590 K, with a limiting composition $Cu_{1,97}S$ for high chalcocite. We do not see the consequential decay in solution reaction heat capacity either in the region 520 K to 690 K for Cu_{1.995}S or in the region 570 K to 640 K for Cu_{1.98}S. Furthermore, the homogeneity range found here for low chalcocite is much narrower than reported by Dumon et al.⁽²⁶⁾ and Potter.⁽¹¹⁾ Potter also reported a broad homogeneity range for the djurleite phase.⁽¹¹⁾ Taking the large unit cell of the compound, which implies high structural order, into consideration, it is tempting to suggest the existence of two distinct phases with closely related structures. The phase diagram proposal by Kubaschewski⁽²¹⁾ differs from the present one and that by Dumon et al.⁽²⁶⁾ in that the homogeneity range of high chalcocite is taken to increase with increasing temperature. Furthermore, the heat-capacity effects around, 430 K ascribed to disappearance of the tetragonal phase (T) by Kubaschewski,⁽²¹⁾ is interpreted here as arising from the compositional change of high chalcocite. The tetragonal phase and its low-temperature polymorph may in our opinion be metastable phases originating in the cooling process of high chalcocite with approximate composition $Cu_{1,97}S$.

THERMODYNAMIC PROPERTIES

The experimental heat capacities for the low- and high-temperature series were fitted to polynomials by the method of least squares. The fitting and especially the joins between the fitted segments were checked by inspection of plots of $dC_{p,m}/dT$ against *T*. The polynomials were then integrated by Simpson's rule, to yield values of thermodynamic functions at selected temperatures presented in table 7. Within the transition regions the heat-capacity values were read from large-scale plots and the thermodynamic functions were calculated by integration of the curves. At the lowest

T Ř	$\frac{C_{p,m}}{R}$	$\frac{\Delta_0^T S_{m}^{\circ}}{R}$	$\frac{\Delta_0^T H_{\mathbf{m}}^{\circ}}{R \cdot \mathbf{K}}$	$\frac{\boldsymbol{\varPhi}_{\mathbf{m}}^{\circ}}{\boldsymbol{R}}$	T K	$\frac{C_{p, m}}{R}$	$\frac{\Delta_0^T S_{m}^{\circ}}{R}$	$\frac{\Delta_0^T H_m^\circ}{R \cdot \mathbf{K}}$	ወ _m R
				/2.90)Cu _{1 oo} S}	= 52.691 g	r mol ⁻¹			
0	0	0	0	0	260	2 084	4 734	520.69	2 2314
10	0 0496	0.0162	0 1226	0,0030	280	3.081	4.254	581.12	7 3874
15	0.0470	0.0102	0.1220	0.0035	280	3 1 3 6	4 567	612.23	2.5024
20	0.1544	0.0342	1 731	0.0130	298.15	(3.166)	4.507	637.91	2.4007
25	0.4543	0.2011	3610	0.0514	300	(3.170)	4.674	543 77	7 5780
30	0.4343	0.2011	6 275	0.0507	305	(3.185)	4 727	659.66	7 5637
40	0.0000	0.5144	13.875	0.1675	305	(3.185)	4 755	668.22	2.5637
50	1 146	0.7433	74 141	0.2605	320	3 265	4 909	716.43	2.5057
60	1.140	0.7455	24.141	0.2503	340	2 0 2 2	5 222	820.62	2.0702
70	1.530	1 1037	51 181	0.3392	370	1 270	5.604	001.86	3.0120
80	1.541	1.1957	51.101	0.4023	430	4.270	6 266	1260.1	2 4252
00	1.705	1.410	07.423	0.3073	430	3.932	6.300	1200.1	3.4555
100	1.052	1.020	03.430	0.0729	440	3.904	6 5 4 2	1229.0	2 5490
120	2 207	2 205	104.42	0.7778	430	3.032	6.024	1530.1	2.2002
120	2.207	2.203	140.40	1 1 9 4 1	550	3.433	7 250	1519.1	2.0001
160	2.577	2.339	242.03	1.1041	530	3.409	7.230	1069.7	4.1773
100	2.347	2.070	242.05	1.3773	600	2.443	7.040	2022.5	4.4400
100	2.039	3.197	294.15	1.3028	0.50	3.431	1.824	2033.3	4.095
200	2.733	3.482	348.28	1.7406	700	3.478	8.080	2206.7	4.9280
220	2.841	3.844	404.23	2.0066	750	3.477	8.321	2380.6	5.1465
240	2.911	3.998	401.//	2.0740					
0	0	0	M{(l/2.95)Cu _{1.95} S	= 52.875		4 2 (2	533.04	2 2 6 0 2
5	0 0049	0,0000	0 0077	0 0005	200	2.978	4.202	523.04	2.2003
3	0.0048	0.0020	0.0077	0.0005	280	3.044	4.485	583.27	2.4019
10	0.0505	0.0150	0.1188	0.0037	298.13	3.109	4.0/9	639.13	2.0000
20	0.1562	0.0550	0.0207	0.0150	300	3.113	4.098	708.04	2.34/0
20	0.3020	0.1197	1.702	0.0510	320	2.223	4.902	708.04	2.0004
20	0.4015	0.2040	5.009	0.0373	340	3.301	5.101	//3./4	2.8244
10	0.0194	0.5025	14.053	0.0090	330	3.330	5.200	000.10	2.0905
50	1 160	0.3211	14.033	0.1098	370	4.370	5.070	1079 4	2.5056
50 60	1.100	0.7517	24.433	0.2031	440	3.909	6.407	12/8.4	3.3030
70	1.572	1 200	51.122	0.3038	430	2.077	6.002	1510.7	0.0711
70 00	1.550	1.200	J1.762 29.171	0.4034	500	3.810	0.903	1309.2	2.0044
00	1./10	1.427	00.171	0.5740	550	3.874	7.208	1/00.7	4.1/50
90	1.005	1.038	30.079	0.0810	600	3.845	7.011	1898.2	4,4470
100	1.772	1.041	103.38	0.78/2	000	3.380	1.892	20/3.1	4.7021
120	2.223	2.223	147.04	0.994/	700	3.440	8.145	2243.8	4.9391
140 140	2.400	2.382	193.98	1.1905	/ 30	5.435	8.382	2416.1	5.1608
190	2.333	2,914	243.03	1.3913	850	3.403	8.003	2380.9	5.5691
100	2.0/2	3.222	293.93	1.3779	80U 000	3.403	8.809	2/3/.1	5.3034
200 220	2.101	3.308	330.30	1./302	900	5.589	9.003	2927.0	5.7511
240	2.840	4.027	400.51 464.12	2.0932	1000	5.384 3.420	9.187 9.361	3096.2 3266.5	5.9271 6.0945
			<i>r</i>	.T					<u>, Т</u>
T_{-}	C _P .	m 🛆	298.15KSm	$\Delta_{298.15\mathrm{K}}^{\prime}H_{\mathrm{m}}^{\circ}$	T	$C_{p,m}$	Δ_{29}^{\prime}	$8.15 \text{ K} \text{ S}_{\text{m}}$	$\Delta_{298,15\text{K}}H$
K	R		R	<i>R</i> · K	K	R		R	R K
			M(1/2.98)Cu _{1.98} S	s = 52.982 g	g∙mol ¹			
298.15	3.04	42	0	0	600	3.827	2	2.938	1260.4
300	3.0	51	0.019	5.63	650	4.025	2	3.252	1456.6
200									

TABLE 7. Thermodynamic properties ($R = 8.3144 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$)

T	$C_{p,m}$	$\Delta^T_{298,15\mathrm{K}}S^{\mathrm{o}}_\mathrm{m}$	$\Delta^T_{298.15\mathrm{K}}H_\mathrm{m}^+$	Т	$C_{p,m}$	$\Delta_{298.15\mathrm{K}}^{T}S_{\mathrm{m}}$	$\Delta_{298,15\mathrm{K}}^{T}H_{\mathrm{m}}$
ĸ	R	R	$R \cdot K$	К	R	R	$R \cdot K$
					-		
340	3.253	0.411	131.10	750	3.349	3.760	1810.8
360	3.423	0.600	197.20	800	3.361	3.977	1978.8
380	3.921	1.079	374.27	850	3.334	4.180	2146.2
440	3.915	1.751	648.77	900	3.334	4.371	2312.8
450	3.897	1.839	687.72	950	3.335	4.551	2479.7
500	3.820	2.247	881.26	1000	3.384	4.723	2646.9
550	3.778	2.608	1070.9				
		M(1)	1/2.995)Cu _{1.995} S	5 = 53.035 g	,∙mol 1		
298.15	3.027	0	0	500	3.889	2.257	884.45
300	3.061	0.019	5.63	550	3.789	2.623	1076.2
320	3.158	0.221	68.16	600	3.771	2.950	1264.4
340	3.262	0.415	132.32	650	3.891	3.255	1455.1
360	3.430	0.605	198.81	700	(4.02)	3.564	1660.7
380	4.028	1.161	405.56	750	3.332	3.800	1832.0
430	3.981	1.664	609.42	770	3.344	3.888	1898.5
450	3.895	1.849	690.82				

TABLE 7—continued

temperatures the heat capacities were smoothed with the aid of plots of $C_{p,m}/T$ against T^2 and the functions were evaluated by extrapolation of this function. From such plots γ was found to be zero within experimental error limits for both $Cu_{1.90}S$ and $Cu_{1.95}S$ { $C_{p,m}/R = 4.871 \cdot 10^{-5} (T/K)^3$ and $4.931 \cdot 10^{-5} (T/K)^3$, respectively}.

The portion of this work done at the University of Michigan was supported by the Structural Chemistry and Chemical Thermodynamics Program, Division of Chemistry, National Science Foundation, under Grant No. CHE-7710049, whereas the work done at the University of Oslo was supported by the Norwegian Research Council for Science and the Humanities. The assistance of Bjørn Lyng Nielsen with the preparation of the samples and in the higher-temperature calorimetric measurements is gratefully acknowledged.

REFERENCES

- 1. Grønvold, F.; Westrum, E. F., Jr. J. Chem. Thermodynamics 1987, 19, 1183.
- 2. Westrum, E. F., Jr.; Stølen, S.; Grønvold, F. J. Chem. Thermodynamics 1987, 19, 1199.
- 3. Grønvold, F.; Stølen, S.; Westrum, E. F., Jr.; Galeas, C. G. J. Chem. Thermodynamics 1987, 19, 1305.
- 4. Djurle, S. Acta Chem. Scand. 1958, 12, 1415.
- 5. Roseboom, E. H. Am. Mineral. 1962, 47, 1181.
- 6. Takeda, H.; Donnay, J. D.; Appleman, D. E. Z. Kristallogr. 1967, 125, 414.
- 7. Cavalotti, P.; Salvago, G. Electrochemica Metalli 1969, 4, 181.
- 8. Cook, W. R., Jr. U.S. Natl. Bur. Standards Spec. Publ. 1972, 364, 703.
- 9. Luquet, H.; Gustavino, F.; Bugnot, J.; Vaissière, J. C. Mater. Res. Bull. 1972, 7, 955.
- 10. Mathieu, H. J., Rickert, H. Z. Phys. Chem. NF 1972, 79, 315.
- 11. Potter, R. W. Econ. Geol. 1977, 72, 1524.
- 12. Evans, H. T., Jr. Nature 1971, 232, 69.
- 13. Evans, H. T., Jr. Science 1979, 203, 356.
- 14. Evans, H. T., Jr. Z. Kristallogr. 1979, 150, 299.
- 15. Janosi, A. Acta Cryst. 1964, 17, 311.

- Eliseev, E. N.; Rudenko, L. E.; Sinev, L. A.; Koshurnikov, B. K.; Solovov, N. I. Mineralog. Sb. L'Vovsk. Gos. Univ. 1964, 18, 385.
- 17. Cook, W. R., Jr.; Shiozawa, L.; Augustine, F. J. Appl. Phys. 1970, 41, 3058.
- 18. Skinner, B. J. Econ. Geol. 1970, 65, 724.
- 19. Mulder, B. J. Kristall und Technik 1973, 8, 825.
- 20. Kazinets, M. M.; Ivanova, I. V.; Shafizade, R. B. Phase Transitions 1979, 1, 199.
- 21. Kubaschewski, P. Ber. Bunsenges. Phys. Chem. 1973, 77, 74.
- 22. Evans, H. T., Jr. Nat. Phys. Sci. 1971, 232, 69.
- 23. Potter, R. W.; Evans, H. T., Jr. J. Res. U.S. Geol. Surv. 1976, 4, 205.
- Westrum, E. F., Jr.; Furukawa, G. T.; McCullough, J. P. Experimental Thermodynamics. Vol. 1. McCullough, J. P.; Scott, D. W.: Editors. Butterworths: London. 1968, p. 133.
- 25. Grønvold, F. Acta Chem. Scand. 1967, 21, 1695.
- 26. Dumon, A.; Lichanot, A.; Gromb, S. J. Chim. Phys. 1974, 71, 407.