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Abstraet--In this paper we present plane-stress crack-tip stress and strain fields for pressure-sen- 
sitive dilatant materials. A hydrostatic stress-dependent yield criterion and the normality flow rule 
are used to account for pressure-sensitive yielding and plastic dilatancy. The material hardening 
response is specified by a power-law relation. The plane-stress mode I singular fields are found in 
a separable form similar to the HRR fields (Hutchinson, J. Mech. Phys. Solids 16, 13-31 and 
337-347, 1968; Rice and Rosengren, J. Mech. Phys. Solids 16, l-12, 1968). ‘Ihe angular variations 
of the fields depend on the material hardening exponent and the pressure sensitivity parameter. Our 
low-hardening solutions for d&rent degrees of pressure sensitivity agree well with the correspond- 
ing perfectly plastic solutions. An important aspect of the eRecta of pressure.-sensitive yielding and 
plastic dilatancy on crack-tip fields is the lowering of the opening stress and the hydrostatic stress 
directly ahead of the crack tip. This effect, similar to that under plane-strain conditions (Li and 
Pan, to appear in J. Appl. Mech. 1989), has implications in the material toughening observed in 
some ceramic and polymeric composites. 

1. INTRODUCTION 

RECENTLY, toughened structural polymers and ceramics have attracted tremendous research 
attention due to their outstanding mechanical properties. Experimental results on the mechanical 
behavior of these two classes of materials support a constitutive description that accounts for 
pressure-sensitive yielding and plastic dilatancy. For example, Spitzig and Richmond[ l] observed 
that for polymeric materials (polyethylene and polycarbonate) the flow stress has a significant 
dependence on the hydrostatic stress. Carapellucci and Yee[2] performed biaxial tension tests on 
glassy bisphenol A-polycarbonate and found that a modified Mises yield criterion with a 
dependence on the hydrostatic stress fits their experimental data well. Later, Sue and Yee[3] 
investigated the toughening mechanisms in a multi-phase alloy of Nylon 6,6/Polyphenylene oxide 
and found that there is a considerable amount of plastic volumetric change in the composite 
material due to the formation of crazes at large strain. The phenomenon of pressure-sensitive 
yielding is also observed in transformation-toughened ceramics (for example, see Chen and Reyes 
Morel[4] and Reyes Morel and Chen[5]). According to these studies, pressure-sensitive yielding 
seems to play an important role in the plastic deformation and fracture of toughened polymers and 
in the transformation plasticity and fracture of toughened ceramics. 

From the viewpoint of phenomenological fracture mechanics, the initiation and growth of a 
crack depend on the surrounding stress and deformation fields near the tip. Therefore, analyses 
of the crack-tip stress and deformation fields are needed to relate continuum stress analyses to 
micromechanical failure mechanisms. The asymptotic crack-tip fields for power-law hardening 
Mises materials (the well-known HRR fields) have been presented by Hutchinson[6,7] and Rice 
and Rosengren[8]. The crack-tip fields for power-law hardening orthotropic materials can be found 
in Pan and Shih[9, lo]. The deformations of all these fields are volume-preserving. An example of 
the HRR type crack-tip fields with volumetric deformation was presented by Hutchinson[l l] for 
power-law creep materials undergoing creep-constrained grain boundary cavitation. Recently, Li 
and Pan[l2] obtained the crack-tip stress and strain fields for pressure-sensitive dilatant materials 
under plane-strain condition. 

In this study, we investigate the plane-stress crack-tip fields for pressure-sensitive dilatant 
materials. A simple hydrostatic stress-dependent yield criterion and the normality flow rule are used 
to account for the pressure-sensitive yielding and plastic dilatancy (Li and Pan[l2]). Mode I 
crack-tip fields for both power-law hardening and perfectly plastic materials are obtained. The 
hardening solutions of the fields depend on the pressure sensitivity parameter cc and have a 
separable form. When ~1 = 0, they exactly match the HRR results. The low-hardening solutions 
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for different degrees of pressure sensitivity are found to agree well with the corresponding perfectly 
plastic solutions. 

2. CONSTITUTIVE RELATIONS 

Motivated by the aforementioned experimental work for polymeric and ceramic materials, we 
adopt a simple pressure-sensitive yielding criterion that contains two stress invariants, the effective 
shear stress r, and the hydrostatic stress a,,,. The yield criterion is written as 

$(a,/) = r, + ~0, = Q, (2.1) 
where z, = (s~s~/~)‘/~, sii = ci/ - a,6,, a, = akk/3, and rj (a,) represents the current yield surface in 
the stress space. The material constant p measures the pressure sensitivity of yielding (as sketched 
in Fig. 1). The characteristic yield strength Q can be taken to depend upon the plastic work W+‘. 
More information on the pressure-sensitive yield criterion can be found, for example, in 
Drucker[l3]. 

A direct measurement of the pressure sensitivity factor p relies on shear experiments under 
pressure. It can be obtained from the difference between the compressive yield strength cc and the 
tensile yield strength cr, through the relation (Needleman and Rice[l4]) 

p=$S. 
c f 

P-2) 

An alternative method to determine p is to perform compressive or tensile tests under pressure p. 
For compressive tests, let a: denote the compressive yield strength in the absence of pressure, and 
a$ denote the compressive yield strength when superimposed by hydrostatic pressure p. If the 
experimental data can be fitted by the linear relation (Chen and Reyes Morel[4]) a; = a: + up, the 
paramater p can be calculated through 

p=Jr-. 
3+a 

(2.3) 

Note that the relations (2.2) and (2.3) give the same supper bound of ~1 equal to ,/% The 
experimental curves in Carapellucci and Yee[2] show that the factor p for glassy bisphenol 
A-polycarbonate is about 0.14. For Z@containing ceramics, Chen and Reyes Morel[4] reported 
that the constant tl in (2.3) may approach 2.0, which corresponds to p = 0.69. 

In this analysis, the material elastic-plastic behavior in shear is described by the 
Ramberg-Osgood stress-strain relation: 

(2.4) 

where T is the shear stress, y is the shear strain, n is the strain hardening exponent, a is a material 
constant, and r. and y. are the reference shear stress and the reference shear strain, respectively. 
Assuming that the yield surface expands isotropically and the plastic flow obeys the normality rule, 

Fig. 1. A sketch of a yield surface illustrating the geometric interpretation of /1 as the pressure sensitivity 
factor and the plastic dilatancy factor (by plastic normality). 
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we generalize the relation between the shear stress and the plastic shear strain (the second term 
on the right-hand side) in (2.4) to multiaxial states. The resulting deformation plasticity relation 
between the stresses and plastic strains is (Li and Pan[l2]) 

(2.5) 

where rge is the generalized effective shear stress defined by rge = r, + pa,,,. 
We write the total plastic strain .$ in (2.5) as the sum of a deviatoric part, ~7, and a volumetric 

part, &, so that EC = L~F + &!kSij. It can be easily shown that 

(2.6) 

where 7: = (~E~~E~~)‘/’ is the effective plastic shear strain. Equation (2.6) indicates that the pressure 
sensitivity factor ~1 also serves as the plastic dilatancy factor, which gives the ratio of plastic 
VOlUX’tICtriC Strain 6$k t0 the CffeCtiVe plastic shear Strain 7:. 

For the analysis of a crack under mode I loading, it is more convenient to express the 
constitutive equation in terms of the reference tensile stress a0 and the reference tensile strain G. 
With the connections rr,, = fir, and co = r,/fi, the alternative expression of (2.5) is 

(2.7) 

where bge is the generalized effective stress defined by 

a@ = fit@. = 0, + J3& 

with ce = &, = (3~&2)‘~ being the effective stress in the conventional sense. 
The stress-strain relations (2.5) and (2.7) are based on the deformation theory of plasticity. 

Incremental constitutive relations accounting for pressure sensitivity and plastic dilatancy can be 
found, for example, in Rudnicki and Rice[l5], and Needleman and Rice[l4]. In these authors’ 
constitutive equations, non-normality of plastic flow is allowed. However, in this paper we 
investigate the asymptotic crack-tip fields only for materials to which plastic normality applies. 

3. DOMINANT SINGULARITY ANALYSIS IN PLANE STRESS 

We consider the planar crack problem depicted in Fig. 2, where the Cartesian coordinates 
(x, , x2) and the associated polar coordinates (r, 0) are centered at the crack tip and the xj axis lies 
perpendicular to the x,-x, plane. Under the plane stress condition (cw = 0, i = 1, 2, and 3) the 
generalized effective stress age has the following expression: 

age = <a;, + u&l - 6,bge + 3a$)“2 + 5 (a,, + %e). (3.1) 

The argument leading to the HRR singular fields has been detailed in Hutchinson[6,7] and 
Rice and Rosengren[8]. In the same fashion, by applying the path-independent J-integral 

Fig. 2. Coordinates for the description of the crack-tip fields, and a typical contour r with the outward 
normal v for the evaluaton of the J-integral. 
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introduced by Rice[ 161, the dominant asymptotic crack-tip stress, strain and displacement fields for 
pressure-sensitive dilatant materials can be written as 

where 

J= 
aui 

-O&V, - c.r~V] - 

ax, 1 ds. 

(3.2) 

(3.3) 

In (3.3), E, = v,/,,& is the effective strain, and v, is thejth component of the outward unit normal 
to an arbitrary path r from the lower crack face to the upper crack face (as shown in Fig. 2). The 
dimensionless constant Z and the dimensionless angular functions d,, Z. and u”, depend on the strain 
hardening exponent n and the pressure sensitivity factor p. These angular functions are normalized 
by setting the maximum value of the generalized effective stress z& (as a function of 19) equal to 
unity. The value cge is related to 6, through the following relation: 

g&! = d, + J3p&, 

where 

d, = <a$ + a& - d,, c?(J’es + 3c?$)“2, gm = @,, + &). 

The dimensionless constant Z is expressed as: 

(3.4) 

n s[ n z= --;efIcose - 
-n n+l [ 

sinB(a,,(li,-2i,)-B,(li,+P,))+~ (c?,,z-& + a”&&) de (3.5) 11 
where ( ’ ) denotes differentiation with respect to 8. Note that the separable form crack-tip fields 
(3.2) are of the HRR type, and when p = 0, they reduce exactly to the HRR fields. In (3.2), J 
represents the amplitude of the asymptotic singular fields. The determination of J relies on a full 
analysis of a cracked body under a specific loading condition. 

We follow the solution procedures used by Hutchinson[6,7], Rice and Rosengren[8], and 
Shih[l7, 181 to obtain the crack-tip fields for pressure-sensitive dilatant materials. The outline of 
these procedures is given in the following. An Airy stress function of separable form in r and 8 
is introduced to satisfy the equilibrium equations. The strain components are expressed in terms 
of the stress function through the plastic stress-strain relation, and then are inserted into the 
compatibility equation to arrive at a fourth-order nonlinear ordinary differential equation with 8 
as the independent variable. The traction-free conditions on the crack faces and/or the symmetry 
(mode I) or antisymmetry (mode II) conditions about the crack line provide the necessary boundary 
conditions for the differential equation. A shooting method based on a combined fourth fifth-order 
Runge-Kutta scheme with error and step-size control is employed to generate solutions. 

4. MODE I CRACK-TIP FIELDS 

We restrict our attention to the mode I crack-tip fields. The constant Z(n, p) and the angular 
functions of the fields in (3.2), d,(8; n, p), Co(d; n, p) and z&(0; n, p), are obtained numerically. Our 
numerical results for these angular functions when p = 0 are exactly the same as the tabulated 
values for the plane-stress HRR fields given by Shih[l9]. The constant Z(n, p) (as listed in Table 
l), decreases as n or p increases. It is noted from this table that when n is fixed, the value of 
l/Z(n, p)“@ + ‘) in (3.2) varies with p by no more than 5%. 

The &variations of the stresses g,(B; n, p) and fiBc(t9; n, p) for n = 3 (high-hardening materials) 
and n = 20 (low-hardening materials) are shown in Figs 3 and 4, respectively. In these figures, the 
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Table 1. The numerical values for I(n, c) 

n /I =o.o p -0.1 /I =0.2 fi =0.3 jl = 0.4 

3 3.855 3.667 3.507 3.368 3.245 
5 3.408 3.208 3.036 2.882 2.743 

20 2.742 2.545 2.376 2.226 2.091 

angular functions for p = 0,0.2 and 0.4 are chosen to show the effects of pressure-sensitive yielding 
on the crack-tip fields. 

It can be seen from Fig. 3 (for n = 3) that the maximums of the tensile hoop stresses de0 for 
all the ps are located at 8 = 0” while the maximum of the tensile radial stress d, is at 8 = 0” for 
p = 0 and at about 110” for a large p (see Fig. 3c for p = 0.4). The tensile hydrostatic stress 
W 
a,, = (l/3)(5, + CM) always achieves its maximum at 8 = 0”. The radial stress d, rapidly changes 
from tension to compression at about 8 = 160”. The angular location where the generalized 
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effective stress ~7s~ peaks moves towards 0 = 0” when ~1 increases. However, there is no significant 
difference between the maximum value of d, and the value of d, at 8 = 0”. We have observed that 
when p is extremely large (/A > 0.86), cBc peaks at 8 = 0”. Comparisons of Figs 3(a), (b) and (c) 
show that the normal stress c,, and dee and the hydrostatic stress 8kk decreases as ~1 increases. This 
results in a small tensile stress cige, d,, and dklr at 8 = 0” and a large compressive stress 6, and dAk 
at 8 = 180”, when /A is large. In contrast, the shear stress Zti weakly depends on P. 

The observations and comments made for the n = 3 solutions on the p-dependence of the 
functions a’,, and d, also apply to the case for n = 20 (low-hardening materials), except that the 
radial stress d,, peaks at about 8 = 120” and changes rapidly from tension to compression at about 
8 = 150” for all three ps (see Fig. 4). 

Figures 5 and 6 show the e-variations of the strains &(e; n, p) and &(e; n, p) for n = 3 and 
n = 20, respectively. It can be seen from these figures that Z, always peaks at 8 = 0”. For n = 20 
(low-hardening materials), the strain Zrr approaches zero for all 8s. The vanishing volumetric strain 
Zkk for Jo = 0 represents the incompressibility of the HRR strain fields. When ~1 becomes large, & 
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develops and peaks at somewhere between 8 = 0” and 45”. However, the value of & at 3 = 0” is 
only slightly smaller than its maximum, which is similar to the behavior of the generalized effective 
stress (78e. As ~1 increases, the polar angle 8, where the shear strain i;e peaks, decreases from 65” 
to 55” for n = 3 and from 50” to 40” for n = 20. 

Figure 7(a) and (b) depicts the contours of the generalized effective stress uge for n = 3 and 
20. These contours are plotted in the normalized coordinates xl/[J/(oloor,(a,,/ao)“+ I)] and 
x2/[J/(~bOt0(bge/bO)nf1)]. It can be seen from these plots that for a fixed n the contour expands and 
moves towards the positive x, direction as p increases. When p is very large (not shown in these 
figures), a flat egg-shaped contour is observed due to drre peaking at 8 = 0”. 

5. PERFECT-PLASTICITY CRACK-TIP FIELDS 

In this section we use the general formulation for the asymptotic near-tip fields in elas- 
tic-perfectly plastic solids, established by Rice[20], to obtain the crack-tip stress dist~bution for 
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the pressure-sensitive materials. For a perfectly plastic material, the stress near the tip is bounded. 
Hence, terms of the form r(&r,/&) in the equilibrium equations must vanish as r-+0. Therefore, 
the equilibrium equations (in the polar coordinate system) reduce to two ordinary differential 
equations[20]: 

da, 
a,, - see + - = 0, 

dt’ 
(5.1) 

20 -l-*=0 f+ dt7 . 
(5.2) 

The yield condition for the pressure-sensitive material is written as 

f(a,) = age - a0 = (a:, + a& - a,,agg + 3aL)“’ + L (a,, + ace) - a0 = 0. 
J5 

(5.3) 

Combining the differential form of the yield condition and the asymptotic form of the 
equilibrium equations, Rice[ZO] derived the governing equation for plastic sectors near the tip: 

(5.4) 

where prr = Jf/aa, can be interpreted as the rr component of the outward normal to the yield 
surface in the stress space. 

Equation (5.4) leads to the following forms of simple solutions near the tip: 

(1) Constant stress sectors 

Within a constant stress sector, the Cartesian stress components a,, , a22 and a,2 are 
independent of 8, i.e. 

al, = constant, 

a22 = constant, (5.5) 

al2 = constant, 

where the constants are to be determined from the yield condition and the relevant boundary 
conditions. 

(2) Centered fan sectors 

Within a centered fan sector, 

PII = 0. (5.6) 

Equation (5.6) indicates that the radial lines correspond to one of the two families of characteristics. 
When normality plastic flow is assumed, the extensional (or compressive) strain component along 
the radial lines vanishes. 

The crack-tip fields can be assembled through the requirement that the traction vanish along 
the crack surface and be continuous across the radial line between two adjacent sectors. In addition, 
the symmetry of mode I crack-tip fields gives another condition, arg = 0 at 0 = 0. We assume that 
the material surrounding the crack tip is fully yielded. Since we expect that there will be no abrupt 
change in the assembly of the crack-tip field from that for the Mises materials (Hutchinson[fl), we 
adopt the same assembly as shown in Fig. 8, where regions (1) and (2) are constant stress sectors, 
and (3) is a centered fan sector. .The angles &, and 6, define the angular locations of the boundaries 
OB and OC between sectors (1) and (2) and between sectors (2) and (3), respectively. A simple 
Newton-Raphson scheme together with a combined fourth fifth-order Rung+Kutta integration 
scheme are used to determine the stress field as a function of 8. 

Figure 9(a), (b) and (c) shows the normalized crack-tip stresses d,(=a,/a,) as functions of 
8 for p = 0,0.2 and 0.4, respectively. The numerical values for 0, and (Jr, are obtained as f3c = 79.84” 
and &, = 151.24” for Jo =O; &= 73.03” and &,= 151.14” for fi =0.2; and &=67.21” and 
Be = 152.16” for p = 0.4. These results indicate that as p increases, the angular span of the centered 
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Fig. 8. The assembly of crack-tip fields for perfectly-plastic pressure-sensitive materials. 
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fan sector ahead of the crack tip decreases; however, the angular location of the boundary between 
the two constant stress sectors changes only slightly. Note that the solutions have radial stress 
discontinuity along the boundary OB between the two constant stress sectors. A comparison of 
Fig. 4 (for the n = 20 solutions) and Fig. 9 shows that our perfectly plastic solutions indeed 
correspond to the low-hardening limit of the power-law solutions. 

The stress state ahead of the crack tip at 8 = 0” seems to have an important implication on 
crack initiation. As shown in Fig. 9, as ,u increases, the hoop stress c88 and the radial stress c,, at 
8 = 0” decreases. This indicates that the pressure sensitivity of materials relieves the hydrostatic 
stress ahead of the crack tip. This trend is in agreement with that for power-law hardening materials 
as discussed earlier and _ that of the crack-tip fields under plane strain conditions[ 121. The 
closed-form solution for the stresses ahead of the tip (at t9 = O”) can be derived easily as 

(5.7) 
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where 

From (5.8), c decreases as ~1 increases, and c = l/2 for p = 0. When p = a/2, c = 0; hence o,, = 0. 
As p further increases, c becomes negative, and consequently u,~ becomes negative. This trend of 
0, as a function of ~1 is the same as that observed in the solutions for power-law hardening 
materials. It is noted that eq. (5.8) is valid for ,u less than fi, which is consistent with the limit 
of p given by (2.2) and (2.3). Equations (5.7) and (5.8) may be useful in constructing the crack 
initiation criterion for perfectly plastic pressure-sensitive materials. 

6. CONCLUDING REMARKS 

In this study we have investigated plane-stress mode I crack-tip fields for both power-law 
hardening and perfectly plastic pressure-sensitive dilatant materials. The asymptotic crack-tip fields 
for power-law materials have a separable form of the HRR type. The solutions of the crack-tip 
fields for p = 0 match those of the HRR fields exactly. The crack-tip stress distributions for 
low-hardening materials agree well with those of the corresponding perfect-plasticity solutions. 

It is clear from our hardening solution (3.2) that J can be regarded as a measure of the 
amplitudes of the singular crack-tip fields for pressure-sensitive dilatant materials. If the finite 
deformation zone and the fracture process zone are well-contained within the zone of dominance 
of the singular field, J can be used as a characterizing parameter to correlate the crack initiation 
and a limited amount of crack growth in these materials. Under small-scale yielding conditions, 
J can be related to the elastic intensity factor K of the cracked solid. In general, the determination 
of J relies on a full analysis of a cracked solid under external loading. 

In Figs 3, 4 and 9, we have shown that pressure sensitivity relieves the near-tip stress ahead 
of the crack tip (at 8 = 0”). To see this trend more clearly, in Fig. 10(a) and (b) we plot 
des = ~~(0; n, ~)/{60[J/(clbg~~)]“(n + I)>, d, = a,(O; n, ~)/{bOIJ/(a~g~Or)]“(n + I)}, and ee = a,(O; n, P)/ 

bdJl&wo~N ‘/(“+‘)} vs p for n = 3 and n = 10, respectively. In Fig. 10(c), the corresponding 
stresses, bee = a&O; ~)/a~, d, = a,(O; p)/oO, and c?~ (0; ~)/a,, are plotted for perfectly-plastic 
materials. These figures show clearly that under the same value of J (representative of the applied 
load) and for a given set of material constants, ~1, crO and co, the hoop stress egg, the hydrostatic 
stress cm,, and the effective stress 6, at 8 = 0” decrease as p increases. Therefore, we conclude that 
pressure sensitivity of yielding relaxes the stress state ahead of the crack tip. This effect, similar 
to that under plane-strain conditions[l2], has implications in the material toughening observed in 
some ceramic and polymeric composites. 
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