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Summary: Several zinc and copper fl-metallated alkylphosphonates of  type 2 have been prepared by the insertion of 
zinc to dialkyl ~-bromoalkylphosphonates of  type 1. This new class of  d z reagents reacts in excellent yields with a 
broad range of electrophiles such as acyl chlorides, aldehydes, enones, acetylenic esters, allylic and alkynyl halides, 
trialkyltin halides and nitro olefins. 

ct-Metallated phosphonates are versatile d 1 reagents 1 which have found numerous applications in organic 

syntheses.2, 3 They can be readily prepared by the ot-lithiation of phosphonates 2 or by the addition of organocopper 

derivatives to ~ 13-unsaturated phosphonates. 3 13-Metallated phosphonates cannot be obtained by these methods 

and we report herein a zinc-mediated approach to this new class of reagents. 1 Thus, the treatment of the c~,~- 

bromophosphonate l a  4 with zinc dust 5 in THF at 30 °C for 12 h affords the corresponding alkylzinc bromide in 90% 

yield. 6 The addition of the soluble copper salt CuCN-2 LiC1 (1 eq.) at 0 °C txansmetallates the intermediate zinc 

compound to the copper compound 2a. Substituted derivatives of l a  such as l h - l d  can be prepared in two steps from 

dimethyl or diethyl methanephosphonate 7a.b in 30-35% overall yields (see Scheme II). These secondary bromides 

insert zinc even more rapidly (25 °C, 30 min.) and remarkably, the 13-funcfionalized organometallics formed show no 

tendency to eliminate BrZnP(O)(OR)2.7 

S c h e m e  I 

O Br 
2 II / 1) Zn, THF 

(R O ) 2 P ~ R  1 25-30 °C; 0.5 to 12h 

2) CuCN- 2 LiCI 

la: R I=H; R 2=Et  
lb: R I = M e ; R  2=Me 
lc: R l=Pr;  R 2~Me 
ld:  R l=Pr;  R 2 =Et 

O Cu(CN)ZnBr O E 
II / ÷ 2 II | 

(R O)2P,~ ~ , ~  E 
V ~R  1 67-95% ~ (R O ) 2 P , , ~  Rt 

2a: R 1=H; R 2=Et 3: R I=H; R 2= Et 
2b: R l = M e ; R  2=Me 4: R I=Me;R  2=Me 
2c: R l fP r ;  R 2=Me 5: R l=Pr; R 2=Me 
2d: R l=Pr;, R ~=Et 6: R l=Pr;  R 2=Et 

The copper-zinc reagents 2a-2d were found to react with various electrophiles in high yields (67-95%; see scheme I 

and Table I). Their reaction with trialkyltin chlorides affords 13-trialkylstannylphosphonates (25 °C, 1 h); see entries 

1 and 19. Attempts to transmetallate the tin derivative 3a to the corresponding 13-1ithiated phosphonate with 

butyllithium did not succeed. Aldehydes 9 react in the presence of 2 equiv, of BF3.OEt 2 (-78 °C to -15 °C, overnight) 

to give T-hydroxyphosphonates (see entries 2,3 and 18), whereas the reaction of organocoppers 2 with acyl 

chlorides 10 furnishes ~/-ketophosphonates (0 °C, 2-5 h); see entries 4-6. The 1,4-addition of the reagent 2a to 

enones in the presence of chlorotrimethylsilane 10,11 gives the desired 1,4-adduct in satisfactory yields (Me3SiC1 ( 2 

eq.), -78 °C to 25 °C, overnight); see entries 7-8. 3-Iodo-2-cyclohexenone reacts in very high yields (-30 °C, 

overnight) with 2a and 2c affording the addition-elimination products 3i and 5b respectively; see entries 9 and 20. 

Functionalized allylic bromides such as ethyl cz-(bromomethyl)acrylate 12 or 3-bromo-2-t-butylsulfonyl-1-propene 13 

undergo a selective monocoupling reaction with 2a leading to the aUylated phosphonates 3j (92%) and 3k (79%); see 
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Scheme II 

0 1) BuLi,  T I tF  0 O H  
[[ "78°C  2 [[ [ CBr4,  PPh3 

( R 2 0 ) 2 P ~ C H 3  ill (R O ) 2 P ~  R 1 = 
2) R 1 C H O  Et20  

7a: R 2 = Me (Ref. If,) 8a: R I = Me; R 2 = Me: 54% (Ref. 8) 

7b: R 2 = Et 8b: R 1 = Pr, R 2 = Me: 55% 
84:: R1= Pr; R 2 =Et: 70% 

0 Br 
2 II ! 

(R O ) 2 P ~ R  1 

lb: R 1 = Me; R 2 = Me: 53% 
lc :  R1 =Pr ,  R2=Me:  51% 
ld: R 1 = I~, R 2 = Et: 49% 

entries 10 and 11. The Michael-addition of the reagent 2 to nitro olefins 14 proceeds very efficiently (see entries 15, 

16, 17 and 21) giving 8-nitrophosphonates. 15 The addition of 2a to 3-nitro-3-heptene followed by a Nef reactionl6 

(0 3, -78"C, 3h; then Me2S, -78"C to 25"C, overnight) allows in a one-pot procedure, a direct conversion of the 

intermediate nitronate 9 to the ketone 10 in 70% overall yield; see Scheme III. Finally the addition to acetylenic 

mono and diesters was found to give stereospecifically 17 the syn-adducts 31 and 3m in 85% and 91% yield 

respectively (see entries 12, 13). The coupling of 2a with 1-bromooctyne 18 furnishes the alkynylphosphonate 3n in 

89% yield (see entry 14). 

Scheme IH 

0 Cu(CN)ZnBr E t v N O  2 r o % o ]  
II -7s°c to0°C | II II i 

( E t O ) z P ~ J  j "1- L 3h = / ifEto)2Y ~ ~ ~ 1 

2a Pr II / v y -Et 
L.. 9 Pr __1 

Cu~CN)ZnBr 

o 
II 

(gtO)zPN'~ 0 

1) 03,-78 °c, 3h L , "  ] [  
2) MezS , -78°C'io ~ "Et  

25 °C, 12 h / ] 
10 Pr 

70% 

The easy insertion of zinc to ~bromoalkylphosphonates allows a general approach to a new class of d 2 reagents 1. 

After a transmetaUation to the corresponding copper derivatives, they react with a wide range of electrophiles 

leading to a variety of polyfunctional phosphonates. Extensions of this methodology are currently underway in our 

laboratories. 

Typical procedure: The addition of the copper-zinc reagent 2c to 3-iodo-2-cyclohexenone (entry 20 of Table I). 
(a) Preparation of the zinc-copper reagent 2c.  A solution of 2.59 g (10 mmol) of dimethyl 
2-bromopentanephosphonate lc  in 10 mL of THF was slowly added at 25 °C to 1.96 g (30 mmol) of zinc dust 5 
previously activated with 200 mg of 1,2-dibromoethane and 0.1 mL of Me3SiCI.10 The addition is exothermic and the 
temperature reaches 45 °C. GLC analysis of a hydrolyzed reaction aliquot showed the complete consumption of the 
starting bromide and the formation of dimethyl pentanephosphonate. The zinc reagent solution was added to a 
solution of 0.72 g (8 retool) of copper cyanide and 0.68 g (16 retool) of lithium chloride in 8 mL of THF at -40 °C. The 
reaction mixture was then warmed up to 0 °C and was ready to use. 
(b) Reaction with 3-iodo-2-cyclohexenone. The previously prepared solution of 2c was cooled to -78 °C and 1.33 g 
(6 retool) of 3-iodo-2-cyclohexenone in 2 mL of THF was slowly added. The reaction mixture was warmed up to -30 
°C and stirred 4 h at this temperature. After the usual work-up using ethyl acetate as extraction solvent an oil was 
obtained containing the desired product 5b and a substantial amount of dimethyl pentanephosphonate (which proved 
to be difficult to separate by chromatography). The residue was transferred to a short-path distillation apparatus and 
the dimethyl pentanephosphonate was separated by distillation (b.p. 52 °C at 0.03 mm Hg). The residue was then 
purified by flash chromatography (solvent MeOH/CH2C12: 5/95) to afford 1.56 g (95% yield) of the analytically pure 
ketophosphonate 5b (see entry 20 of Table I). 
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Table I. Preparation of the Polyfunctional Phosphonates 3-6 by the Reaction of the Copper-Zinc Reagents 2a-2d with 
Electrophiles 

Entry Copper-Zinc Reagent Electrophile Products of Type 3-6 Yield (%)a 

O Cu(CN)ZnBr 
H i l l  

1 (EtO)2P...~ 2a Bu3SnC1 

2 2a PhCHO 

3 2a HexCHO 

4 2a PhCOC1 

5 2a c-HexCOC1 

6 2a PentCOC1 

7 2a cyclohexenone 

8 2a benzylidene acetone 

9 2a 3-iodo-2-cyclohexenone 

10 2a ethyl tz-(bromomethyl)acrylate 

11 2a 3-bromo-2-t-butylsulfonyl- 
1-propene 

12 2a H -~4202Et 

13 2a MeO2C --z--CO2Me 

14 2a Hex ----~-Br 

15 2a 1-nitropentene 

16 2a [3--nitmstyrene 

0 Cu(CN)ZaBr 
I i /  

17 (MeOh~. J .  M e ~ - .  2b ~-nitrosty~ene 

18 2b PhCHO 

(EtO)2P(O)(CH2)2SnBu 3 3 a 81 

(EtO)2P(O)(CH2)2CH(OH)Ph 3b 96 

(EtO)2P(O) (CH2)2CH(OH)Hex 3c 88 

(EtO)2P(O)(CH2)2(CO)Ph 3d 96 

(EtO)2P(O)(CH2)2(CO)c-Hex 3 e 86 

(EtO)2P(O)(CH2)2(CO)Pent 3f 84 
o 

o ~ ~ l  3g 71 

P(OEt)2 
U I 

M e ~ / ~  "~  P(OEt)2 3h 88 

ipl(oEt) 2 3i 86 

CO2Et O 
II 

~ P ( O E t ) 2  3j 92 

t-BWS02 0 

v(OEt)2 3k 79 
O II %@ (EtO)2P, CO2E t 31 85 

O H rl 
U (EtO)21p I_ ~,. ~L, 
v ~ ~CO2Me 3m 91 

C02Me 

(EtO)2P(O)(CH2)2 ----~-Hex 3n 89 

(EtO)2P(O)(CH2)2CH(Pr)CH2NO 2 30 80 

(EtO)2P(O)(CH2)2CH(Ph)CH2NO2 3p 81 

Pit 
O 2 N ~  O 4a 91b,c 

I -P(OMe)2 
Me O Me 

~ 1 1  
P h ~  ~(OMe)2 4b 81 b,d 

OH 
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Table I. (Continued) 

O Cu(CN)ZnBr 
II 

19 ( M e O h ~ . ~  p r 2c 

20 2e 

Cu(CN)ZnBr 

2 .  

Me3SnC 1 O (MeO)2P(O)CH2CH(Pr)SnMe 3 5a 67 

3-iodo-2-cyclohexenone ~ J  A O  5b 95 
V " ~  -P(OMe)2 

Pr Pr 

O2 N Ipl(oEt)2 79b,e 
1-nitropentene 6a 

Pr 

All yields refer to isolated yields of analytical pure products (purity > 98%). Satisfactory special data (IR, 1H and 
13C NMR, mass spectra and high resolution mass spectra) were obtained for all compounds; o A mixture of two 
diastereoisomers is formed; c d.r. (diastereomefic ratio): 70:30; d d.r. = 64:36; e d.r. --/52:48. 
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