Tetrahedron Letters, Vol.31, No.13, pp 1833-1836, 1990 Printed in Great Britain 0040-4039/90 \$3.00 + .00 Pergamon Press plc

Preparation and Reactivity of β-Zinc and Copper Phosphonates

Carole Retherford, Tso-Sheng Chou, Robert M. Schelkun and Paul Knochel*

The Willard H. Dow Laboratories, Department of Chemistry, The University of Michigan Ann Arbor, MI 48109

Summary: Several zinc and copper β -metallated alkylphosphonates of type 2 have been prepared by the insertion of zinc to dialkyl β -bromoalkylphosphonates of type 1. This new class of d^2 reagents reacts in excellent yields with a broad range of electrophiles such as acyl chlorides, aldehydes, enones, acetylenic esters, allylic and alkynyl halides, trialkyltin halides and nitro olefins.

α-Metallated phosphonates are versatile d¹ reagents¹ which have found numerous applications in organic syntheses.^{2,3} They can be readily prepared by the α-lithiation of phosphonates² or by the addition of organocopper derivatives to α, β-unsaturated phosphonates.³ β-Metallated phosphonates cannot be obtained by these methods and we report herein a zinc-mediated approach to this new class of reagents.¹ Thus, the treatment of the α,βbromophosphonate 1a⁴ with zinc dust⁵ in THF at 30 °C for 12 h affords the corresponding alkylzinc bromide in 90% yield.⁶ The addition of the soluble copper salt CuCN·2 LiCl (1 eq.) at 0 °C transmetallates the intermediate zinc compound to the copper compound 2a. Substituted derivatives of 1a such as 1b-1d can be prepared in two steps from dimethyl or diethyl methanephosphonate 7a-b in 30-35% overall yields (see Scheme II). These secondary bromides insert zinc even more rapidly (25 °C, 30 min.) and remarkably, the β-functionalized organometallics formed show no tendency to eliminate BrZnP(O)(OR)₂.⁷

Scheme I

The copper-zinc reagents 2a-2d were found to react with various electrophiles in high yields (67-95%; see scheme I and Table I). Their reaction with trialkyltin chlorides affords β -trialkylstannylphosphonates (25 °C, 1 h); see entries 1 and 19. Attempts to transmetallate the tin derivative 3a to the corresponding β -lithiated phosphonate with butyllithium did not succeed. Aldehydes⁹ react in the presence of 2 equiv. of BF₃·OEt₂ (-78 °C to -15 °C, overnight) to give γ -hydroxyphosphonates (see entries 2,3 and 18), whereas the reaction of organocoppers 2 with acyl chlorides¹⁰ furnishes γ -ketophosphonates (0 °C, 2-5 h); see entries 4-6. The 1,4-addition of the reagent 2a to enones in the presence of chlorotrimethylsilane^{10,11} gives the desired 1,4-adduct in satisfactory yields (Me₃SiCl (2 eq.), -78 °C to 25 °C, overnight); see entries 7-8. 3-Iodo-2-cyclohexenone reacts in very high yields (-30 °C, overnight) with 2a and 2c affording the addition-elimination products 3i and 5b respectively; see entries 9 and 20. Functionalized allylic bromides such as ethyl α -(bromomethyl)acrylate¹² or 3-bromo-2-t-butylsulfonyl-1-propene¹³ undergo a selective monocoupling reaction with 2a leading to the allylated phosphonates 3j (92%) and 3k (79%); see

Scheme II

entries 10 and 11. The Michael-addition of the reagent 2 to nitro olefins¹⁴ proceeds very efficiently (see entries 15, 16, 17 and 21) giving δ -nitrophosphonates.¹⁵ The addition of 2a to 3-nitro-3-heptene followed by a Nef reaction¹⁶ (O₃, -78°C, 3h; then Me₂S, -78°C to 25°C, overnight) allows in a one-pot procedure, a direct conversion of the intermediate nitronate 9 to the ketone 10 in 70% overall yield; see Scheme III. Finally the addition to acetylenic mono and diesters was found to give stereospecifically¹⁷ the syn-adducts 3I and 3m in 85% and 91% yield respectively (see entries 12, 13). The coupling of 2a with 1-bromooctyne¹⁸ furnishes the alkynylphosphonate 3n in 89% yield (see entry 14).

Scheme III

The easy insertion of zinc to β -bromoalkylphosphonates allows a general approach to a new class of d² reagents¹. After a transmetallation to the corresponding copper derivatives, they react with a wide range of electrophiles leading to a variety of polyfunctional phosphonates. Extensions of this methodology are currently underway in our laboratories.

Typical procedure: The addition of the copper-zinc reagent 2c to 3-iodo-2-cyclohexenone (entry 20 of Table I). (a) Preparation of the zinc-copper reagent 2c. A solution of 2.59 g (10 mmol) of dimethyl 2-bromopentanephosphonate 1c in 10 mL of THF was slowly added at 25 °C to 1.96 g (30 mmol) of zinc dust⁵ previously activated with 200 mg of 1,2-dibromoethane and 0.1 mL of Me₃Sicl.¹⁰ The addition is exothermic and the temperature reaches 45 °C. GLC analysis of a hydrolyzed reaction aliquot showed the complete consumption of the starting bromide and the formation of dimethyl pentanephosphonate. The zinc reagent solution was added to a solution of 0.72 g (8 mmol) of copper cyanide and 0.68 g (16 mmol) of lithium chloride in 8 mL of THF at -40 °C. The reaction mixture was then warmed up to 0 °C and was ready to use.

solution of 0.72 g (6 minut) of copper cyanace and 0.05 g (16 minut) of minut chronic in 5 million 111 at 40 c. The reaction mixture was then warmed up to 0 °C and was ready to use. (b) Reaction with 3-iodo-2-cyclohexenone. The previously prepared solution of 2c was cooled to -78 °C and 1.33 g (6 mmol) of 3-iodo-2-cyclohexenone in 2 mL of THF was slowly added. The reaction mixture was warmed up to -30 °C and stirred 4 h at this temperature. After the usual work-up using ethyl acetate as extraction solvent an oil was obtained containing the desired product 5b and a substantial amount of dimethyl pentanephosphonate (which proved to be difficult to separate by chromatography). The residue was transferred to a short-path distillation apparatus and the dimethyl pentanephosphonate was separated by distillation (b.p. 52 °C at 0.03 mm Hg). The residue was then purified by flash chromatography (solvent MeOH/CH₂Cl₂: 5/95) to afford 1.56 g (95% yield) of the analytically pure ketophosphonate 5b (see entry 20 of Table I).

Acknowledgments: We thank the National Institutes of Health (GM 41908) for the generous support of this work and Jennifer L. Gage and Gregory F. Nieckarz for some preliminary experiments.

Entr	y Copper-Zinc Reagent	Electrophile	Products of Type 3-6	1	Yield (%) ^a
1 (1	O Cu(CN)ZnBr EtO) ₂ P 2a	Bu3SnCl	(EtO)2P(O)(CH2)2SnBu3	3a	81
2	2a	PhCHO	(EtO)2P(O)(CH2)2CH(OH)Ph	3b	96
3	2a	HexCHO	(EtO)2P(O)(CH2)2CH(OH)Hex	3c	88
4	2a	PhCOCl	(EtO)2P(O)(CH2)2(CO)Ph	3d	96
5	2a	c-HexCOCl	(EtO)2P(O)(CH2)2(CO)c-Hex	3e	86
6	2a	PentCOCl	(EtO) ₂ P(O)(CH ₂) ₂ (CO)Pent	3f	84
7	2a	cyclohexenone	O = O = O O = O O O O O O O O O O O O O	3g	71
8	2a	benzylidene acetone	Me P(OEt) ₂	3h	88
9	2a	3-iodo-2-cyclohexenone		3i	86
10	2a	ethyl α -(bromomethyl)acrylate	CO_2Et O $P(OEt)_2$	3j	92
11	2a	3-bromo-2-t-butylsulfonyl- 1-propene	$\begin{array}{c} t-Bu-SO_2 & O \\ P(OEt)_2 \\ O & H \end{array}$	3k	79
12	2a	H-=-CO ₂ Et	(EtO) ₂ PCO ₂ Et	31	85
13	2a	MeO ₂ C- ≡ -CO ₂ Me	O H $H(EtO)2P CO_2MeCO_2Me$	3m	91
14	2a	Hex-≡-Br	$(EtO)_2P(O)(CH_2)_2 \rightarrow = -Hex$	3п	89
15	2a	1-nitropentene	(EtO) ₂ P(O)(CH ₂) ₂ CH(Pr)CH ₂ NO ₂	30	80
16	2a	β-nitrostyrene	(EtO) ₂ P(O)(CH ₂) ₂ CH(Ph)CH ₂ NO ₂	3р	81
17 (MeO) ₂ P MeO) ₂ P Me	β-nitrostyrene	O_2N	4a	91b,c
18	2b	PhCHO P	$h \xrightarrow{Me O Me}_{P(OMe)_2}$	4b	81b,d

Table I. Preparation of the Polyfunctional Phosphonates 3-6 by the Reaction of the Copper-Zinc Reagents 2a-2d with Electrophiles

1836

All yields refer to isolated yields of analytical pure products (purity > 98%). Satisfactory spectral data (IR, 1 H and a 13C NMR, mass spectra and high resolution mass spectra) were obtained for all compounds; b A mixture of two diastereoisomers is formed; ^c d.r. (diastereomeric ratio): 70:30; ^d d.r. = 64:36; ^e d.r. = 52:48.

References and Notes

- 1.
- Seebach, D. Angew. Chem. 1979, 91, 259; Angew. Chem. Int. Ed. Engl. 1979, 18, 239.
 (a) Corey, E.J.; Shulman, J.I. J. Org. Chem. 1970, 35, 777; (b) Kluge, A.F.; Cloudsdale, I.S. J. Org. Chem. 1979, 44, 4847; (c) Collard, J.-N.; Benezra, C. Tetrahedron Lett. 1982, 23, 3725; (d) Thangaraj, K.; Srinivasan, P.C.; Swaminathan, S. Synthesis 1982, 855; (e) Kawashima, T.; Ishii, T.; Inamoto, N. Chem. Lett. 1983, 1375; 2. (f) Schaumann, E.; Fittkau, S. Tetrahedron Lett. 1984, 25, 2325; (g) Mikolajczyk, M.; Balczewski, P. Synthesis 1984, 691; (h) Imamoto, T.; Sato, K.; Johnson, C.R. Tetrahedron Lett. 1985, 26, 783; (i) Teulade, M.P.; Savignac, P.; Aboujaoude, E.E.; Collignon, N. J. Organomet. Chem. 1985, 287, 145; (j) Aboujaoude, E.E.; Lietje, S.; Collignon, N.; Teulade, M.P.; Savignac, P. Tetrahedron Lett. 1985, 26, 4435; (k) Kay, M.K.; Aboujaoude, E.E.; Collignon, N.; Savignac, P. Tetrahedron Lett. 1987, 28, 1263; (1) Meijs, G.F.; Eichinger, P.C.H. Tetrahedron Lett. 1987, 28, 5559.
- (a) Bodalski, R.; Michalski, T.J.; Monkiewicz, J. Phosphorous and Sulfur 1980, 9, 121; (b) Schaumann, E.; 3. Fittkau, S. Synthesis 1983, 449.
- 4. Ford-Moore, A.H.; Howarth Williams, J. J. Chem. Soc. 1947, 1465.
- 5. The zinc dust used was purchased from Aldrich (-325 mesh).
- 6. The polar phosphonate group considerably accelerates the rate of formation of the zinc organometallic (non-functionalized alkyl bromides usually cannot be converted to the corresponding organozinc compounds in THF).
- 7. We reported recently that β -cyano zinc and copper organometallics also do not eliminate the cyano group at temperature below 30 °C see: (a) Yeh, M.C.P.; Knochel, P. Tetrahedron Lett. 1988, 29, 2395; (b) Majid, T.N.; Yeh, M.C.P.; Knochel, P. Tetrahedron Lett. 1989, 30, 5069.
- 8. Hooz, J.; Gilani, S.S.H. Can. J. Chem. 1968, 46, 86.
- Yeh, M.C.P.; Knochel, P.; Santa, L.E. Tetrahedron Lett. 1988, 29, 3887.
- 10. (a) Posner, G.H.; Whitten, C.E. Org. Synth. 1975, 55, 122; (b) Knochel, P.; Yeh, M.C.P.; Berk, S.C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.
- 11. (a) Corey, E.J.; Boaz, N.W. Tetrahedron Lett. 1985, 26, 6015, 6019; (b) Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. 1986, 27, 1047; (c) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025; (d) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4029.
- 12. (a) Ramarajan, K.; Ramalingam, K.; O'Donnell, D.J.; Berlin, K.D. Org. Synth. 1983, 61, 56; (b) Cassady, J.M.; Howie, G.A.; Robinson, J.M.; Stamos, I.K. Org. Synth. 1983, 61, 77.

- 13. Auvray, P.; Knochel, P.; Normant, J.F. *Tetrahedron* **1988**, 44, 4495, 4509, 6095. 14. Retherford, C.; Yeh, M.C.P.; Schipor, I.; Chen, H.-G.; Knochel, P. J. Org. Chem. **1989**, 54, 5200. 15. The addition of 2b to β -nitrostyrene has to be performed at -20 °C. We observed the formation of 27% of dimethyl 4-phenyl-2-propyl-3-butenylphosphonate (substitution of the NO2 group by a dimethyl pentylphosphonate group) during the reaction of 2c to β -nitrostyrene if this reaction is performed at 0 °C.
- 16. (a) McMurry, J.E.; Melton, J.; Padgett, H. J. Org. Chem. 1974, 39, 259; (b) Thompson, W.J.; Buhr, C.A. J. Org. Chem. 1983, 48, 2769; (c) Barrett, A.G.M.; Graboski, G.G.; Russell, M.A. J. Org. Chem. 1986, 51, 1012.
- 17. For a rationalization of this stereochemistry see: Krause, N. Tetrahedron Lett. 1989, 30, 5219.
- 18. Yeh, M.C.P.; Knochel, P. Tetrahedron Lett. 1989, 30, 4799.

(Received in USA 6 February 1990)