"A NEW AND NOVEL APPROACH TOWARDS THE SYNTHESIS OF 3'-DEOXY-3'-HYDROXYMETHYL RIBOFURANOSIDES"

Jeffrey S. Pudlo and Leroy B. Townsend*
Department of Chemistry, College of Literature, Science, and Arts and Department of Medicinal Chemistry, College of Pharmacy University of Michigan, Ann Arbor, Michigan, 48109

Summary: The synthesis of 1,2,5 tri-O-benzoyl-3-deoxy-3-[[(benzyloxy)methyl]-α,β-D-ribofuranose (1) from 1,2-O-isopropylidene-α-D-xylofuranose (2) has been achieved in an overall yield of 37%. Compound 1 is a properly substituted intermediate for the synthesis of novel 3'-"branched" nucleoside analogs.

3'-Deoxy-3'-hydroxymethyl ribofuranosides (3'-branched nucleosides) are a known class of compounds, but there has been a paucity of reports regarding synthetic approaches for the preparation of these analogs. To the best of our knowledge, only the 3'-branched analog of adenosine (10) is known. This nucleoside (10) was synthesized and evaluated for its potential as an antitumor agent. A renewed interest in this specific class of compounds has been generated by the close structural similarity of the 3'-hydroxymethyl sugar moiety of this branched nucleoside to some recently developed antiviral agents such as 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG) and oxetanocin. Antiviral agents that exhibit anti-HIV activity such as AZT, ddT, and ddA seem to be dependent upon sugar ring conformation and also the polarity of the 3'-substituent (as indicated by the inactivity of 2',3'-dideoxy-3' cyanothymidine (CNT)). It was envisioned that substitution of the hydroxyl group at the 3'-position of ribose with an hydroxymethyl group may satisfy both the apparent 3'-exo sugar ring conformation and the polarity requirements. Although the methodology for the synthesis of these branched nucleosides had been previously reported, it was obvious that a new and more efficient synthetic route would
facilitate research in this area. This prompted us to initiate studies designed for the facile synthesis of a properly substituted sugar amenable to a glycosylation of appropriate aglycones.

Commercially available 1,2-\(\beta\)-isopropylidene-\(\alpha\)-D-xylofuranose\(^6\) (2) served as our starting material and was selectively monobenzoylated (pyridine/\(\text{CH}_2\text{Cl}_2\), 1/4, BzCl, room temp., 12 h, 93\%) at the primary hydroxyl group to yield 5-\(\beta\)-benzoyl-1,2-\(\beta\)-isopropylidene-\(\alpha\)-D-xylofuranose (3). Oxidation of the remaining 3-hydroxyl group in refluxing \(\text{CH}_2\text{Cl}_2\)^7 (PDC, Ac"O, 2 h, 81\%) provided 5-\(\beta\)-benzoyl-1,2-\(\beta\)-isopropylidene-\(\alpha\)-D-ribofuranos-3-ulose (4). Treatment of 4 with the Wittig salt of benzyloxymethylchloro ether \(^5\)\(^8\) furnished 5-\(\beta\)-benzoyl-1,2-\(\beta\)-isopropylidene-3-C-[(benzxyloxy)methylene]-\(\alpha\)-D-ribofuranose (6) (\(n\)-BuLi, THF, \(-40^\circ\text{C}, 80\%\)) and subsequent reduction of the vinyl group with 5\% Pd/C (EtOH, 50 psi \(\text{H}_2\), 4 h, 91\%) yielded 5-\(\beta\)-benzoyl-3-deoxy-3-[(benzxyloxy)methylene]-1,2-\(\beta\)-isopropylidene-\(\alpha\)-D-ribofuranose (7). The presence of the isopropylidene group on the \(\alpha\)-face served to effectively block the catalyst access to this face assuring hydrogen delivery to the \(\beta\)-face resulting in a steroselective reduction. Orientation of the benzyloxymethyl substituent of 7 was confirmed by \(^1\text{H}\) NMR techniques. The coupling constants \(J_{1,2}=3.7\) Hz and \(J_{2,3}=4.8\) Hz indicated an all \(\text{cis}\) relationship of H-1, H-2, and H-3\(^9\) with further proof being provided by NOE experiments. Irradiation of H-3 resulted in an enhancement of the C-2 proton resonance further indicating a \(\text{cis}\) relationship between these two protons. Similarly, irradiation of H-2 resulted in an enhancement of H-1 and H-3.

Finally, removal of the isopropylidene group under acidic conditions (1N HCl, dioxane, 3 h, 70\%) provided 5-\(\beta\)-benzoyl-3-deoxy-3-[(benzxyloxy)methylene]-\(\alpha\),\(\beta\)-D-ribofuranose (8) which was benzoylated (pyridine, BzCl, room temp., 90 min, 95\%) to furnish an \(\alpha\):\(\beta\) anomic mixture\(^10\) (2:3) of 1,2,5-tri-\(\beta\)-benzoyl-3-deoxy-3-[(benzxyloxy)methylene]-\(\alpha\),\(\beta\)-D-ribofuranose (11). To demonstrate the utility of 11, the anomic mixture was subjected to a Vorbruggen-type glycosylation\(^11\) with 6-chloropurine to yield 9-[(3'-deoxy-3'-(benzxyloxy)methylene]-2,5-di-\(\beta\)-benzoyl-\(\beta\)-D-ribofuranosyl]-6-chloropurine (9). Anomeric purity of 9 was provided by the \(^1\text{H}\) NMR spectrum. The resonance corresponding to the anomeric proton appeared as a singlet indicating that only the \(\beta\)-anomer was present. The absence of any detectable amount of the \(\alpha\)-anomer was not surprising due to the well-known neighboring group participatory effect of the 2'-acyl group. Compound 9 was then converted into the known branched adenosine analog (10) in two steps by a removal of the benzyl group (\(\text{BCl}_3\), \(-40^\circ\), \(\text{CH}_2\text{Cl}_2\), 85\%) followed by a removal of the benzoyl groups and concurrent ammination by treatment with methanolic ammonia (100\%, 3.5 h, 73\%). This provided a product with spectral data (UV, \(^1\text{H}\) NMR) identical to the data reported by Rosenthal\(^1\).
Acknowledgement: This research was supported by funds from the Department of Health and Human Services research grant number NO1-AI-25739 and the National Institutes of Health Training grant number 5-T32-GM-07767. We would also like to thank Ms. Rae Miller for her expert preparation of this manuscript.

REFERENCES

6) Obtained from Pfansteihl, Waukegan, IL, I-105.

10) \(^1 \text{H NMR} \)

\(\delta \) (CDCl\(_3\)) 3.14 (m, 1.7 H, H-3); 3.75-3.94 (m, 3.4 H, C-3-CH\(_2\)); 4.48-4.80 (m, 8.5 H, H-4, Bn, H-5)
5.80 (t, 0.7 H, H-2 \(\alpha \)); 5.85 (d, 1 H, H-2 \(\beta \)); 6.57 (s, 1 H, H-1 \(\beta \)); 6.89 (d, 0.7 H, H-1 \(\alpha \)); 7.28-8.17 (m, 34 H, Bz).

\(\delta \) (CDCl\(_3\)) 1.38 (s, 3 H, CH\(_3\)); 1.53 (s, 3 H, CH\(_3\)); 4.50-4.67 (m, 2 H, H-5); 4.84 (dd, 2 H, Bn); 5.01 (d, 1 H, H-2); 4.25 (bs, 1 H, H-4); 5.91 (d, J=4.1 Hz, 1 H, H-1); 6.51 (s, 1 H, H-3'); 7.27-8.02 (complex, 10 H, Bn, Bz).

\(\delta \) (CDCl\(_3\)) 1.34 (s, 3 H, CH\(_3\)); 1.51 (s, 3 H, CH\(_3\)); 2.35 (m, 1 H, H-3); 3.62 (dd, 1 H, H-3'); 3.84 (dd, 1 H, H-3'); 4.24-4.36 (m, 2 H, H-4, 5); 4.54 (s, 2 H, Bn); 4.68-4.77 (m, 2 H, H-2, 5); 5.87 (d, J=3.7 Hz, 1 H, H-1); 7.27-8.07 (complex, 11 H, Bn, Bz).

\(\delta \) (DMSO-\(d_6 \)) 2.47 (m, 1 H, H-3); 3.51 (dd, 1 H, H-3'); 3.73 (dd, 1 H, H-3'); 3.92 (t, J=4.5 Hz, 1 H, H-2); 4.07-4.25 (m, 2 H, H-4, 5); 4.47 (dd, 2 H, Bn); 5.01 (d, J=4.5 Hz, 1 H, H-1); 5.12 (d, 1 H, D\(_2\)O exchangeable, 2-OH); 6.30 (d, 1 H, D\(_2\)O, exchangeable, 1-OH); 7.24-8.00 (complex, 10 H, Bn, Bz).

11) The heterocycle (6-chloropurine, 0.93 g, 6.01 mmol) was suspended in MeCN (20 mL) and heated to 80°C (external). BSA (2.0 mL, 8.1 mmol) was added and the solution stirred for 30 min. Compound \(8 \) (2.85 g, 5.03 mmol) in MeCN (2 mL) and TMSTf (2.9 mL, 15 mmol) was added to this solution. The reaction mixture was then stirred for 60 min., cooled, and worked up to provide \(2 \) (2.36 g, 78%).

(Received in USA 9 February 1990)