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Abstract-Two-dimensional, n-layer isothermal flows of Newtonian liquids are analyzed by means of the 
Reynolds lubrication approximation (Phil. Trans. R. Sm. 177, 157, 1886). For algebraic simplicity, the 
coordinates are transformed for individual layers. The resulting governing equations are solved for 
multilayer coating and for multilayer extrusion by the Galerkinjfinite-element method and Newton 
iteration together with an implicit finite-difference scheme for the time-dependent analysis. The number of 
unknowns in the finite-element analysis is reduced by appropriately decoupling some of the equations. In 
the steady-state analysis, the thickness profile of each layer is estimated for given flow rates of individual 
layers over a range of capillary numbers between 10e6 and 1000 and a range of viscosity ratios between 
0.001 and 20. In coating, the surface tension of the outer layer was found to have a more pronounced elfect 
on the steady-state solution than the surface tensions of the inner layers. For initial sinusoidal disturbances 
of various wavelengths and amplitudes, the flow of up to seven layers with various configurations was found 
to be stable for negligible inertia effects. 

1. INTRODUCTION 

There are various ways of modifying physical proper- 

ties of polymers. Frequently, however, single polymers 

cannot satisfy all end-uses economically. Therefore, 
multilayer plastic films are used. Each layer of these 
composite materials provides a specific end-use 
characteristic such as oxygen and moisture barrier, 
thermoformability, mechanical attributes, and heat 
sealability to the product. Multilayer polymer films 
and sheets with combinations of these end-uses find 
applications in food packaging, in lamination to pa- 
per and other decorative uses (Schrenk and Alfrey, 
1978), and in multilayer coating (Kistler and Striven, 
1984). 

Multilayer polymer films and sheets are manufac- 
tured by a tubular blown-film process (Schrenk and 
Alfrey, 1973) or by a flat-die chill-roll process 
(Schrenk, 1974). In the case of extrusion through a flat 
die, the film is drawn down through a narrow slit at 
the outlet of the die and is subsequently quenched 
below its solidification temperature on a chill-roll. 
The modern and more widely used method has 
a single-manifold die. At the inlet of the die, a feed- 
block is attached that introduces a prearranged multi- 
layer melt stream (see Fig. 1). The feedblock method is 
more popular than other available methods because 
of its versatility in accommodating a large number of 
layers. 

Similar to multilayer extrusion, coating the surface 
of a substrate with multiple layers of liquids is import- 

ant in various scientific and industrial applications. 
The five commonly used devices that are suitable for 
premetered, precision coating are: slot coating, knife 
coating, roll coating, reverse-roll coating, and slide 

tTo whom correspondence should be addressed. 

coating (Bixler, 1982). All of them can be used for 
multilayer coating as well. A schematic diagram of 
one such arrangement of slot coating is shown in 
Fig. 2. 

Thickness profiles and pressure drops across the 
pipes and channels in two and three layers have been 
extensively studied, theoretically and experimentally, 
by several researchers such as Yu and Han (1973), 
White et al. (1972), Han and Kim (1976) and Southern 
and Ballman (1973). These studies were either 
motivated to reduce the pressure drop or to study the 
interface deformation in the form of encapsulation of 
the viscous liquid by the liquid of low viscosity. The 
analyses of Newtonian, power-law, and viscoelastic 
liquids have indicated that the important parameters 
which affect the thicknesses and the pressure drops 
are viscosity ratios and elasticities of the liquids. The 
effect of the viscosity stratification on the stability of 
multilayer flows have also been investigated (Yih, 
1967; Joseph et al., 1984; Wong and Jeng, 1987; 
Waters, 1983). There are very few studies on multi- 
layer coating (Kistler and Striven, 1984). Hawever, 
coating of a single layer on a liquid is extensively 
studied for predicting surface profiles and for pre- 
dicting unstable conditions (Pearson, 1960, Bixler, 
1982; Coyle et al., 1986). 

A major limitation of existing theoretical and ex- 
perimental works on multilayer flows is that no more 
than three symmetric layers have been analyzed 
theoretically. Since, at present, many products of 
multilayer films and sheets involve more than three 
layers, it is physically more relevant to develop a gen- 
eral model for analyzing the flow of II layers. Here, 
a general model is developed for ,isothermal n-layer 
flow of Newtonian liquids that accounts for any num- 
bet of layers and surface tension effects. The model is 
based on the well-known Reynolds lubrication theory 
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Fig. 1. Multilayer extrusion using single-manifold die (Schrenk and Alfrey, 1978). 
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Fig. 2. A schematic diagram of multilayer slot coating. 

(1886) and hence it is applicable only to thin-film 
flows in the absence of recirculation. The same equa- 
tions can be used for multilayer coating as well as for 
multilayer extrusion by changing the boundary condi- 
tions. The palerkinlfinite-element method is used 
with Newt+ iteration to solve the steady-state equa- 
tions. For the time-dependent analysis with initial 
sinusoidal disturbances of various wavelengths and 
amplitudes, an implicit method is used and the stabil- 
ity of the processes is investigated within the limita- 
tions of lubrication approximation, the most severe 
being its validity only for negligible inertia terms. 
Although the applications of multilayer extrusion and 
multilayer coating often involve non-Newtonian 
liquids, the analysis in this paper is developed for 
Newtonian liquids which is also a first step in ana- 
lyzing non-Newtonian flows. 

Despite its limitations, the lubrication approxima- 
tion is attractive in the analysis of almost rectilinear 

flows (confined as well as free surface flows) because it 
is simple. in many instances manageable by analytical 
tools, and in numerical modeling, it considerably re- 
duces the number of involved unknowns_ 

2 GOVERNING EQUATIONS 

The governing equations are derived with the as- 
sumption that the total thickness of all the layers is 
much smaller than the dimension along the direction 
of flow, which is reasonable for the industrial applica- 
tions of multilayer extrusion and of multilayer coating 
involving thin films. Then, the Reynolds lubrication 
approximation can be implemented to simplify the 
equations of change. This approach is fairly standard 
and is described in various textbooks on liquid mech- 
anics (e.g., Tipei, 1962; Langlois, 1964; Batchelor, 
1967). Another assumption made in the analysis is 
that the process is isothermal. In most situations, the 
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temperature variation across the domain of flow is 
small and the drying or the solidification of the poly- 
mer film is carried out away in the downstream direc- 
tion. 

An important step in the development of the theory 
is to transform the coordinates in such a way that the 
origin is shifted along the z-direction for each layer as 
shown in Fig. 3. Due to this transformation, the 
n-layer equations become algebraically tractable 
and Reynolds’ equations result naturally from the 
analysis. 

The dimensionless variables after stretching are: 

coordinates: x+ = x/L, zi* = zJ(L&). 

velocities: vx*, = VJV,. VZ# * = &,/(V&). 

pressures: pi+=pi 
i( > 

E 7 

time: t* = t/W%), 

where the superscript * denotes the dimensionless 
variables and the subscript i denotes the variables of 
the ith layer. x and zi are the coordinates, u,, and vZt the 
velocities in the x and z! directions, p1 the pressure and 
t the time. The variables are normalized by the aver- 
age velocity vO, at the inlet for coextrusion and at the 
outlet for coating, the viscosity pL1 and the length of the 
die L in the case of coextrusion or the effective length 
L for uniform film in the case of coating. The aspect 
ratio E equals H,/L, where H, is the total thickness of 
the film, defined to be at the inlet for coextrusion and 
at the outlet for coating. The pressure scale is propor- 
tional to E-’ to obtain consistent equations of motion. 

The dimensionless variables are substituted in the 
Navier-Stokes equations of momentum for each layer 
and an order-of-magnitude analysis is performed. The 
resulting dimensionless equations. with superscript * 
hereafter suppressed, are: 

aPi -_=(-J 3- ’ 
“Zi 

(2) 

ap. a2v --_+ ---Z = 0, 
ax az; i = 1, 2, _ . . , n. (3) 

Equation (2) shows that the pressure pi remains con- 
stant across the thickness of the ith layer. By integ- 
rating eq. (3) twice across the thickness of the ith layer, 
the expression for the velocity v,, is 

: % = A& f) + qx, r)q + sg, 
where A, and B, are integration constants. Equa- 
tion (4) shows that the Reynolds lubrication approx- 
imation implies a parabolic velocity profile across the 
thickness. 

The boundary conditions at the wall and at the 
interfaces are as follows. 

1. At z1 = 0, a no-slip boundary condition at 
a solid surface gives 

% = 0 (for coextrusion), or 

vx, = 1 (for coating). 

In the case of coating, the dimensional relationship of 
Q,, = H,, V, holds, where V. is the dimensional velo- 
city of the substrate. Therefore, the dimensionless 
substrate velocity equals 1. 

2_Atz,=h,andz,+, =0, 

Ki, = OX,+, (continuity of velocity at the interface), 

&,Pz, = M&J,+, Pz, + I 

(continuity of shear stress at the interface), 

i=l,&...,n-I, 

where M, is the viscosity ratio p,+ 1 1~1,. 

3 At z, = h,, 

% = 0 (no-slip boundary condition at the solid sur- 
face for coextrusion), or 

~u,,/~z, = 0 (zero shear stress at the free surface for 
coating). 

The boundary conditions of shear stress at the 
interfaces and free surface are consistent with the 
lubrication approximation, which can accommodate 
small surface gradients. These boundary conditions 
are derived in Appendix A. 

=n I 
M 

4 ? 
I =_” - 4 hr. 

zi 

layer n 

layer i 

layer 1 

Fig. 3. The local coordinate axes of n-layer flow. 
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When these 2n boundary conditions are substituted 
into eq. (4) we obtain 2n simultaneous equations, in 
as many unknowns Aj and Bi. 

1. For coating: 

of dimensionless variables, is given by: 

PieMM,P*+l =x E2L(2H*X i = 1, 2, . . . , n - 1, (9) 
I 

Al 

-Ai-hiBi 4’ Ai,l 

- 4 + MtBi+I 
. . . 

2. For coextrusion: 

-41 

- A,-hh,Bi ‘-t‘ Ai+, 

- B, + Mi&,l 
. . . 
- 4 

= 

= 

= 

- B” = 

= 

= 

= 

- h,B, = 

. 

1, 

W/2) (a~&), 

~i(~PilW, 

h”(aP,lw 

i = 1, 2,. . . ) n - 1. 

0, 

@T/2) (apilax), 

hi(aPi/ax)7 

(h.2/2) (ap,lW> 

i = 1,2,. . . ) n - 1. 

(5) 

(6) 

By integrating the continuity equation across the 
thickness of the ith layer, and then combining it with 
the equation of the principle of conservation of mass 
in the ith layer, the resulting equation is: 

~(p ih,) + 
I 

“pic,dzi = 0, i=l,2 ,..., n, (7) 
0 

where pi is the density of the liquid in the ith layer. By 
substituting eq. (4) in eq. (7), and noting that for in- 
compressible liquids the density pi can be eliminated 
from eq. (7), the Reynolds equation for each layer is 

i=l,2,.*.,n. (8) 

For II layers, there are n such coupled equations. 
However, for each layer i, there are two unknowns, 
the thickness hi and the pressure pi. Therefore, n addi- 
tional equations are required. The first (n - 1) equa- 
tions are obtained by using the normal-stress bound- 
ary conditions for the (n - 1) interfaces. The remain- 
ing equation is derived from the fact that the sum of 
the thicknesses of all the layers must be equal to the 
gap between the die walls in the case of coextrusion, 
and from the normal-stress boundary condition of the 
free surface in the case of coating. 

According to the normal-stress boundary condi- 
tion, a pressure jump across the interface, in the form 

where Ca, is the capillary number equal to U,JQ/CT,, ui 
is the surface tension between layers i and i + 1, and 
2H* is the curvature in the form of dimensionless 
variables. The expression for the curvature of the 
translationally symmetric film is 

* 

2H* = + +&,2 = -is. (10) 

where the term of O(E’) in the denominator of the 
right-hand side is neglected. Therefore, from eqs (9) 
and (lo), the normal-stress boundary condition is 

E3 a2hi 
P~-M~P~+~= -%dx+, i=l,2 ,..., n-l. 

I 
(11) 

Equation (11) implies that unless Ca,/(~‘hi/dxZ) is of 
0(.e3) or smaller, the surface tension effects can be 
neglected. In coextrusion of polymer melts, the surface 
tension ui is generally not high enough so that 
Ca,/(d”hi/~x2) is of 0(e3). However, to generalize the 
governing equations and to study the high surface 
tension effects, we keep the term on the right-hand 
side of eq. (11). 

The remaining equation is: 

ig hi = f *w 
P, = - @/ca,)(a%,/aX*) 

(no-slip boundary condition at the 
solid surface for coextrusion), or 
[eq. (9) at the free surface for 
coating], 

(12) 
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wheref*(x) is the ratio of the thickness of the die at 
any location to the thickness of the die at the inlet. 

Thus, eqs (S), (1 I), and (12) provide 2n equations 
involving 2n unknowns, h, and pi, for n-layer flow. The 
other 2n unknowns Ai and B,, involved in eq. (8), are 
obtained from eq. (5) or (6). 

In coextrusion, the pressure at the outlet of the die 
is atmospheric and hence equal to zero. Yu and Han 
(1973) have reported an experimental observation of 
positive pressure at the outlet of the rectangular die 
for polymeric liquids. However, this exit pressure is 
small compared to the pressure at the inlet of the die. 
For coating, the boundary condition of zero pressure 
gradient far downstream of the flow is well estab- 
lished. Therefore, 

3. SOLUTION OF EQUATIONS 

The Galerkin/finite-element method, which is used 
in this analysis, is well described in several books such 
as in Strang and Fix (1973). Here, we merely outline 
the procedure of the finite-element formulation, em- 
phasizing the efforts made in reducing the number of 
unknowns by decoupling some of the equations. 

The unknowns h, and pi are expanded in a suitable 
set of one-dimensional quadratic finite-element basis 
functions @l(<(x)): 

hi& t) = : h,/tWjGW), 
j=l 

Pik t) = jEl Pij(O4jW4)~ i=‘l,2,_. .,n, J * 

at x=1.0, pi=0 (for coextrusion), or ‘I 

at x = xI, ap,/ax = 0 (for coating), i= 1,2,. ..,n, } 
(13) 

where xf is the dimensionless distance along the flow 
where the films become virtually planar. 

In the lubrication approximation, the flow rate or 
the thickness of each layer can be specified at the inlet 
of the flow. Under processing conditions, however, the 
flow rate for each layer is expected to be known at the 
inlet instead of its thickness. Therefore, we specify the 
flow rates of each layer as the inlet boundary condi- 
tions, 

at x = 0: Qi = qt. i = I, 2, . , n, (14) 

where Qi is the dimensionless flow rate per unit width 
and q, are prescribed constants along with the con- 
straint: 

i: 4i = I, (15) 
i=l 

due to the conservation of mass. In the case of coex- 
trusion, the flow is assumed to be fully developed at 
the inlet of the die. Therefore, 

atx=0: ahi=* 
ax 

i = I, 2, _ _ _ , n. (16) 

For coating, the total thickness at x = 0 is addition- 
ally assumed to be fixed. Then, 

at x = 0, F hi = H,. (17) 
i=l 

Thus, the unknowns in the equations are the thick- 
nesses hi, the pressures pg. and the constants Ai and Bi. 
The solution of the system of equations for multilayer 
extrusion or for multilayer coating depends on the 
following dimensionless groups and parameters: 

where nn is the number of nodes and < the 
isoparametric coordinate such that 9 = (<: 0 
< e C + 1). Each of the elements in the flow domain 

is mapped through the isoparametric relation: 

on the interval F, where xI is the coordinate of the 
jth node. Since for each node there are 2n unknowns, hi 
and p,, the unknowns or degrees of freedom in one 
element are 6n, where n is the number of layers. 
A procedure to evaluate the additional unknowns A, 
and 8, is outlined subsequently. 

In the Galerkinlfinite-element method, the basis 
functions themselves are used as weighting functions 
in computing the residuals. Then the residual of the 
Reynolds lubrication equation in the ith layer [see 

eq. @)I is 

The evolution of flow with time is represented by the 
first term, discretized by backward-differencing in the 
above equation. The choice of this implicit method is 
primarily due to its well-known stability. To lower the 
order of the differential equation and to impose the 
natural boundary conditions, the divergence theorem 
is applied to the second term of the above equation. 

Capillary number 
Viscosity ratio 
Aspect ratio 
Flow rate per unit width at the inlet 
Spatial variation of the gap between 

the die walls (for coextrusion) 
Thickness of the slot at x = 0 

(for coating) 

Ca, = ~ivO/ui, i = I, 2, _ . , n 
Mi = Pi-r l/Pi. i=l,2,...,n-1 

E = H,/L 

4iT i= 1,2,. . .,n 

f *t4 

ffl. 
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The resulting expression for the residual R!jR’ is: 

h; api 
+dax 1 

(‘“+l)d&dx 
dxGd& i=l,2 ,..., n, 

(21) 

where At is the time-step and the superscripts (m + 1) 
and m denote (m + 1)th and mth time-steps respect- 
ively. Equation (4), integrated across the thickness at 
the inlet, yields: 

u,,dzi = qi = A,hi + 
B.hs hij ap. “+-2 

2 6 ax X=o’ 

i = 1,2, . . . , II, (22) 

which replaces the boundary term in eq. (21). The 
essential boundary condition of zero exit pressure for 
coextrusion and the natural boundary condition of 
zero pressure gradient for coating [see eq. (13)] are 
imposed at the outlet at x = 1 or xf. 

The residual of eq. (1 l), after applying the diver- 
gence theorem, can be expressed as: 

&J 

s 

1 i%y+1 dr#.dx -- 
Cai 0 

-2-d<, 
ax dx d< 

i = 1,2, . . . , n - 1. (23) 

In the case of coextrusion, the boundary term is re- 
placed by eq. (16) at x = 0. For coating, the additional 
boundary condition of eq. (17) is imposed. 

The residuals of the remaining equation (12) are: 

R)T’ = (24) 

for coextrusion, and 

f 

1 

R$b = 
0 

p;+l &,,!!?de + [&~]m+“l:-; 

&3 -- s ‘W’+‘d8,dxdt, 
Ca, o ax dx d{ 

(25) 

for coating. 
The nonlinear system of algebraic equations (21), 

(231, and (24) or (25) can be expressed as: 

R(u(~+‘)) = 0, (26) 

where 

u = Cp’lml+l), . . . ,pf,~+l),h$ml+l),. . .,h:y+l), . . .] 

is the vector of the nodal unknowns and R is the 
column vector of the weighted residuals. This system 

of nonlinear equations is solved by Newton iteration 
at each time-step such that 

J(I@+ ‘))(u~Y;~) - uhm+ ‘)) = - R(@+ “), (27) 

where J = aR/au is the Jacobian matrix and the sub- 
script k represents the value evaluated at the kth 
Newton iteration. The set of linear equations in 
eq. (27) is solved by the frontal routine developed by 
Hood (1976) for asymmetric matrices. For each time- 
step, the solution of the previous time-step is used as 
the initial guess in Newton iteration. 

Until now, we have not considered the evaluation 
of the unknowns Ai and Bi involved in the Reynolds 
lubrication equations. For these unknowns, the addi- 
tional set of equations are provided by eq. (5) or (6). If 
this additional set of equations was to be solved 
simultaneously with eqs (8) and (11) for the unknowns 
hi, pi, Ai, and Bi, the total degrees of freedom @er 
element would be 12n--an excessively high number of 
unknowns for a one-dimensional problem. (For 
example, if the flow of five layers was to be studied, 
then the number of unknowns in each element would 
be 60.) Therefore, to reduce computational time and 
cost, it was essential to reduce the number of un- 
knowns as much as possible. In order to achieve this 
goal, the tridiagonal structure of eq. (5) or (6) is used 
to our advantage. This set of equations is decoupled 
from the rest and solved by the standard, rapid com- 
putational technique described in Carnahan er al. 
(1969). Thus, during Newton iteration, for given h,, 

and pi, in each element from the previous iteration, 
the unknowns Ai and Bi, as well as their derivatives 

8 A i /au,, and aBJi?u,, with respect to the unknowns 
uJIc. are first computed as described in Appendix B. 
The quadratic convergence of Newton iteration is 
conserved in the numerical scheme. 

This optimization scheme reduces the number of 
unknowns per element from 12n to 6n. A typical 
computation with 20 elements of five-layer flow re- 
quires approximately 50 CPU seconds on an Apollo 
DN-4000 work station for each time-step. In the ab- 
sence of this scheme, the computational time and the 
cost were found to increase by at least two-fold. The 
optimization is expected to become more and more 
efficient as the total number of unknowns increases 
due to either an expanded dew domain or the large 
number of layers. 

In the time-dependent analysis, the thickness pro- 
file is perturbed sinusoidally such that: 

hi(x, t = 0) = his(x) [l + ha,,_,, sin (2nNx)], 

i=l,2 ,..., n-lorn, (28) 

where N is the wavenumber of the disturbance and 
h,.(x) the thickness profile in the steady-state solution. 
With this initial perturbation, the transient analysis is 
carried out to compute the evolution of film thickness 
with time. Since the source of the disturbance can be 
any physical phenomenon such as the vibration of the 
die or the fluctuation in the flow rate of any layer, it 
can be well represented by the sinusoidal disturbance 
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as in eq. (28). To keep the total thickness in coextru- 
sion equal to the gap between the die walls, this 
perturbation is applied only to the thicknesses of 
(n - 1) layers, and the thickness of the nth layer is 
calculated using eq. (12). The amplitude of the dis- 
turbance, hamD,, is a parameter set to between 2% and 
20% of the steady-state value. It is unnecessary to 
perturb the pressure pi. because for a perturbed thick- 
ness a perturbed pressure will be automatically evalu- 
ated. 

4 RESULTS AND DISCUSSION 

4.1. Multilayer extrusion 

To check the accuracy of the finite-element analysis, 
several tests were performed. At high CL+, with a vis- 
cosity ratios of 1 .O for all the layers, the dimensionless 
pressure drop across the length of the die is 12.0, 
exactly matching the value obtained by the analytical 
expression for Hagen-Poiseuille flow. The pressure 
drop per unit length was also constant. 

A constant pressure gradient along the die with 
uniform thickness was also observed at high Cai for 
up to seven-layer flow with several combinations of 
viscosity ratios. The ratios of the dimensionless pres- 
sures in adjacent layers were found to be equal to the 
inverses of the viscosity ratios. Then, according to the 
dimensional analysis using eq. (l), the same dimen- 
sional pressure exists in all layers at a given location. 
These numerical results are experimentally supported 
by Yu and Han (1973) for polymer melts using thin 
dies in the case of three-layer flow. 

Analytical expressions for the flow rates and the 
thicknesses were derived for power-law liquids in two- 
layer and symmetric three-layer flow by Han (1981). 
For a power-iaw exponent equal to 1.0 (Newtonian 
liquids), the Bow rates and the thicknesses obtained by 
the analytical expressions agree to within 0.01% with 
the numerical results. 

Two typical thickness profiles for five-layer flow are 
shown in Fig. 4. The parameters are Mi = 0.2,0.2,5.0, 
5.0; Ca, = 10.0,2.0,0.4,2.0; qi = 0.1,0.05,0.5,0.05,0.3; 
and E = 0.1. The gap between the walls is constant in 
Fig. 4(a) and varies linearly in Fig. 4(b). The viscosity 
ratios M, are selected such that layers 1 and 5. and 
2 and 4 have the same viscosities. This flow configura- 
tion is common in extrusion of food-packaging film in 
which a small amount of glue is extruded in layers 
2 and 4, and recycled scrap at high flow rate is ex- 
truded in one of the outer layers. It is assumed that the 
surface tension is the same for all the liquids. Then, 
Cai = Ca,_ I M,_ 1 for i = 1,2,. . _ , n - 1. The pro- 
portions of the thicknesses occupied by various layers 
clearly remain constant over the domain of flow. Simi- 
lar thickness profiles are obtained for up to seven 
layers and over a wide range of flow rates that follow 
the constraint in eq. (15). The viscosity ratios were 
changed over the range of 0.001 to 20.0, and Cai over 

the range of 10e6 to 1000. Since we impose the flow 
rate of each layer as a natural boundary condition in 
our analysis, the thicknesses are directly correlated to 
the flow rates of individual layers. 

0.2 

1 
layer 1+ 

01 , I 0 0.2 0.4 0.6 0.8 1 

x 

0.2 - 
layer I---, 

o/ , , , 
0 0.2 0.4 0.6 0.8 1 

x 

Fig. 4. Thickness profile of five-layer flow. The parameteis 
are qi = 0.1, 0.05, 0.5, 0.05. 0.3, Cn, = 10.0, 2.0, 0.4, 2.0; 
M, = 0.2. 0.2, 5.0, 5.0; E = 0.1. (a) The gap between the walls 
is constant. (b) The gap between the walls is linearly varying 

along the length. 

The effect of the viscosity ratios on the thicknesses 
and the volumetric fractions is.shown in Fig. 5. Three 
layers are used with the configuration, which is 
symmetric along the direction of the thickness 
(41 /q3 = 1.0). The outer layers have the same viscos- 
ity. The gap between the die walls is constant. The 
other parameters are Ca, = 10.0. Ca, = M,Ca,, and 
E = 0.1. The change in ~(h, + h,) with respect to 
(ql + q3) is much higher at low volume fractions for 

low M,. However, at high volume fractions, as the 
viscosity ratio increases, the slope in Fig. 5 increases. 

In Fig. 6, the thickness ratios h, /h, and h,/h, are 
plotted against the volumetric ratio q1/q2 for various 

(q++Q& 

Fig. 5. The thickness (h, + h,) vs. the volumetric fraction 
e(q, + qj) for three layers of symmetric configuration at 
various viscosity ratios M, . The other parameters are 
Ca, = 10.0; Ca, = MICaI; ti = 0.1; M, = l/M,. The gap 

between the die walls is constant. 
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Fig. 6. The thickness ratios vs. the ratio of the volumetric 
flow rate 4Jq2. for three-layer flow at various values of 
q1/q3. The other parameters are Mi = 0.1, 10.0; Ca, = 10.0; 
Ca, = M, Ca,, . E = 0.1. The gap between the die walls is 

constant. 

values of q,/q3 for three-layer flow. Since q1 # q3. the 
outer layers are asymmetric-usually the case when 
the recycled scrap is introduced into one of the outer 
layers. The other parameters are Mi = 0.1, 1O.q 
Ca, = 10.0, 1.0; and E = 0.1. The gap between the die 
walls is constant. The values of h, and h, interchange 
when the value of ql/q3 is inverted. Therefore, the 
values of q, /q3 > 1 are not considered in the analysis. 
For a given ql/q2, h,/h, clearly remains approx- 
imately constant over a wide range of q1/q3. This 
observation also holds true for -the various sets of 
viscosity ratios. Similarly, h, /hh, remains approxim- 
ately constant over a range of q, /q2 for a given ql/q3, 
provided that the outer layers have the same viscosi- 
ties. 

Results similar to those in Figs 5 and 6 are import- 
ant in establishing correlations between the thick- 
nesses and the volumetric flow rates. In general, the 
thicknesses of the layers in the final products are 
dictated by the end-uses. However, in industrial op- 
erations, the flow rate of each layer can be controlled 
but not the thickness. Therefore, the correlation be- 
tween the thicknesses and the Aow rates must be 
established in n-layer coextrusion. We achieve this 
goal by choosing the boundary condition on the flow 
rate for each layer and then computing the thickness. 

As discussed in section 3, a sinusoidal disturbance 
of a specified amplitude is applied to the steady-state 
thickness profile as an initial condition and the time- 
dependent analysis is carried out by backward- 

differencing. A time-step is chosen such that any 
further reduction in the time-step does not change the 
solution at any particular time. One such evolution of 

thickness profjle with respect to time is shown in 
Fig. 7 for three-layer flow. The other parameters are 
Mi = 0.1, 10.0; qi = 0.1, 0.5, 0.4; Cc, = 10.0; 
Ca, = M, Ca, ; and E = 0.1. The amplitude of the 
initial disturbance is 5% of the steady-state solution. 
The gap between the die walls is kept constant. The 
initially disturbed thickness profile quickly ap- 
proaches and remains at the steady-state value. The 
disturbance travels with constant amplitude along the 
length of the die, indicating that the system is 
neutrally stable. Similar observations were made for 
the range of viscosity ratios equal to 0.001-20.0, for 
the range of Ca, equal to 10-6-100.0, for the range of 
qi equal to 0.005-0.995, and for the linearly varying 
gap between the die walls with slopes up to 0.4~ for up 

to seven layers. The amplitude of the disturbance 
h arn*l is varied from 2% to 20% of the steady-state 
solution, and the wavenumber N is varied between 0.5 
and 10.0. In all the investigated cases, the flow was 
neutrally stable. 

Since in this analysis we have used the lubrication 
approximation, the inertia effects are neglected. The 
linear stability analyses of plane Poiseuille flow of two 
or three layers of different viscosities, carried out by 
Yih (1967) and Joseph et al. (1984), suggest that the 
flow is unstable in certain configurations at Re + 0. 

However, when inertia effects are neglected (i.e., in 
their analysis, when Re = 0), the exponential growth 
factor in their linear stability analyses was zero. 
Therefore, according to the linear stability analysis, 
for negligible inertia effects, the flow is neutrally stable 
for Newtonian liquids. The above theoretical predic- 
tion is supported by our transient analysis. Moreover, 
the conclusion of neutrally stable flow is extended for 
multiple layers with various configurations over 
a wide range of viscosity ratios, capillary numbers and 
flow rates. Obviously, the known instabilities related 
to the inertia and to the density stratification are not 
observed in our analysis due to the limitations of the 
lubrication approximation. 

0.27 
t=o 0.01 0.02 0.03 0.04 0.05 

0.26 

h 
o.25 _ Steady-slate solution 

x 

Fig. 7. Evolution of thickness profile with time for initial 
sinusoidal disturbance to three layers. The other parameters 
are M, = 0.1; M, = l/M,; Cu, = 10.0; Ca, = M,Ca,; 
E = 0.1; qi = 0.1, 0.5, 0.4, At = 0.001; hrmp, = 0.05. The gap 

between the die walls is constant. 



Lubrication theory for n-layer thin-film flow 3279 

4.2. Multilayer coating 
In this analysis, we examine only the downstream 

development of the coating film, and not the entire 

coating flow. In all the computations on multilayer 
coating, the total thickness at x = 0.0 is fixed at 1.1. 
The finite-element domain is defined from x = 0 to 
x = xy such that the total thickness approaches 

a value of 1.0 at x = xf_ In Fig. 8, the thickness profiles 
of two-layer coating are shown. The viscosity ratio 
M, in Fig. 8(a) is 0.01 and in Fig_ 8(b) is 10.0. The 
other parameters are Coi = 10.0, lo-‘; E = 0.1; and 
qi = 0.8.0.2. The thickness profiles approach constant 
values asymptotically at x = 1.0, which are equal to 
the volume fractions of each layer. Thus, as expected, 
the plug-flow region is approached at the downstream 
of multilayer coating. In the case of high viscosity 
ratio, this approach is slower than in the case of low 
viscosity ratio. However, the thickness profile in the 
plug-flow region is independent of the viscosity ratio. 

The surface tension of the liquid in the outer layer 
also plays an important role in multilayer coating. 
The effect of the capillary number of the outer layer 
on the profile of the total thickness is studied in Fig. 9 
for five-layer flow. In Fig. 9(a), the viscosity ratios and 
the capillary numbers are Mi = 0.2, 0.2, 5.0, 5.0 and 
Cc, = 10.0, 2.0, 0.4, 2.0; in Fig. 9(b) they are Mf = 5.0, 
5.0, 0.2, 0.2 and Cai = 1.0, 5.0, 25.0, 5.0. The other 
parameters are qi = 0.1, 0.05, 0.5, 0.05, 0.3; and 
E = 0.1. The length of the flow domain is extended up 
to xf = 2.0 for the total thickness to reach a value of 
1.0. As the surface tension of the outer layer increases, 
that is, as Ca, decreases, the rate of approach to the 
plug-flow region decreases. For negligible surface ten- 

tb) ‘li‘--1 

“::: 
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Fig. 8. Thickness profile of two-layer coating. The para- 
meters are Co, = 10.0, 10e2; *i = 0.8, 0.2. 
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Fig. 9. The effect of the capillary number of the outer layer 
on the profile of the total thickness in five-layer coating. The 

parameters are qi = 0.1, 0.05, 0.5, 0.05, 0.3; E = 0.1. 

sion of the inside layers, from eq. (ll), it is expected 
that the curvature should increase with Ca, for the 
same pressure. Similar to the conclusion in Fig. 8, for 
the same Cu,, the approach to the plug-flow region is 
slower for the flow of low viscosity liquid in contact 
with air. 

The effects of the surface tension between the 
liquids of the multilayer coating can also be studied. 
The thickness profile of the inner layer in two-layer 
flow is plotted in Fig. 10 for various values of Ca, . In 
Fig. 10(a), the viscosity ratio M, is 0.1 and in 
Fig. to(b) it is 10.0. The other parameters are qi = 0.8, 
0.2; E = 0.1, and Ca, = lo-‘. The thickness h, re- 
mains constant at x = 0 for various values of Cut. 
However, the approach to the plug-flow region is 
gradual for low values of Ca, for constant Ca,. Simi- 
lar effects of Ca, on the total thickness profile are also 
observed. The comparison of Figs 9 and 10 suggests 
that the effect of the capillary numbers of the inner 
layers are not as pronounced as the capillary number 
of the outer layer. From this analysis, it is concluded 
that the capillary numbers, the viscosity ratios, and 
the flow rates of all the layers play important roles in 
determining the thickness profiles of all the layers. For 
polymer melts, the effects of any surface tension are 
negligible. 

An initial sinusoidal disturbance is applied to the 
thickness profiles of all the layers and their evolution 
with time is investigated by solving the unsteady-state 
equations. Similar to coextrusion, a time-step is 
chosen such that any further reduction in time-step 
does not change the solution at a given time. In 
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Fig. 10. The effect of the capillary number of the inner layer 
in two-layer flow. The parameters are 4, = 0.8, 0.2, E = 0.1; 

Ca, = 10e2. 

Fig. 11, the total thickness profile is shown at various 
times for three-layer flow and the time-step is 0.001. 
The other parameters are Mi = 0.1, 10.0; qi = 0.2,0.4, 
0.4; Cai = 10.0, 1 .O, 1 O- 2 ; and E = 0.1. The amplitude 
of the initial disturbance equals 5% of the steady-state 
solution for the unknowns. The thickness profile ap- 
proaches the steady-state value and remains there. 
The above computations are carried out over the 
same range of Mi, Cai, qi, hampI, and N as those in the 
time-dependent analysis of multilayer extrusion. Simi- 
lar to coextrusion, the stability of the multilayer coat- 
ing flow can be attributed to the limitations of 
lubrication approximations and also to the fixed con- 
tact line. 

sdutian 

0 0.4 0.8 1.2 1.6 2 

x 

Fig. 11. Evolution of the total thickness profile with time for 
initial sinusoidal disturbance to three-layer flow. The para- 
meters are AU, = 0.1, 10.0; Ca, = 10.0, 1.0, lo-+; e = 0.1; 

qr = 0.2, 0.4, 0.4, At = 0.001; h_,, = 0.05. 

Besides, the ribbing instability observed in coating 
is a three-dimensional phenomenon that cannot be 
analyzed by two-dimensional disturbances considered 
here. In single-layer coating, Pearson (1960) used re- 
sults from the lubrication analysis to carry out three- 
dimensional linear stability analysis. When the 
wavenumber in his linear stability analysis was equal 
to zero, which is equivalent to two-dimensional dis- 
turbance, the growth factor was always negative 
(stable flow) or close to zero (neutrally stable flow) in 
a wedge-shaped spreader. Thus, the results of our 
nonlinear stability analysis of multilayer coating com- 
pare well with the linear stability analysis of single- 
layer flow. A three-dimensional linear stability analy- 
sis is also feasible using the theory developed in this 
paper for multilayer flows. 

All the above results of multilayer extrusion and of 
multilayer coating are based on the lubrication ap- 
proximation. Therefore, inertia effects are neglected 
and the analysis is valid only for thin-film flows. 
Consequently, the interfacial instability observed in 
coextrusion due to nonzero inertia terms or due to 
density stratification cannot be predicted. Similarly, 
only the downstream development of the coating film 
could be analyzed by this analysis. 

5. CONCLUSIONS 

Thin-film flows of many layers in contact with each 
other are analyzed by means of the lubrication ap- 
proximation. A convenient local coordinate trans- 
formation gives rise to algebraically simple equations 
and the Reynolds equations for n-layer flow evolve 
naturally. This unified system of equations is used to 
analyze multilayer extrusion and multilayer coating 
flows. In solving the equations, the computational 
cost is considerably reduced by. appropriately de- 
coupling some of the equations. 

In the steady-state analysis, the thickness and the 
pressure profiles were computed for various operating 
conditions and material properties such as the viscosi- 
ties and the surface tensions. In the case of coating, the 
surface tension of the outer layer has the most pro- 
nounced effect’ on the thickness profile, compared to 
the effects of the surface tension of the inner layers. 
Surface tension is not expected to affect the thickness 
profiles under typical coextrusion conditions. 

The flow was found to be stable over a wide range 
of investigated operating conditions and rheological 
parameters within the limitations of the lubrication 
approximation, which does not account for destabil- 
izing inertia effects. 
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NOTATION 

a, b, c, d constant coefficients in eq. (Bl) 
A, B integration constants in eq. (4) 
CU capillary number 
f dimensionless total thickness 
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h 
h amp1 

H0 
HI 
J 
L 
M 
II 
N 

P 
Q 
R 
t 
u 

v vz 
;d 

wj 
x 

Xf 

z 

thickness of the individual layer 
amplitude of the initial disturbance 
total thickness at the inlet in coextrusion 
total thickness at x = 0 in coating ’ 
Jacobian matrix 
length of the die 
viscosity ratio 
number of layers 
wavenumber 
pressure 
flow rate 
residual load vector 
time 
vector of the nodal unknowns 
velocities along x and z 
dimensionless velocity and the substrate 
unknowns in eq. (Bl) 
coordinate axis along the direction of 
flow 
length of the finite-element domain in 
coating 
coordinate axis along the thickness 

Greek symbols 

ix Y variables in Appendix B 
E aspect ratio 

CL viscosity 

5 coordinate axis in isoparametric domain 

P density 
rs surface tension 

4 basis function 

Superscripts 
* dimensionless quantities 
m mth time-step 

Subscripts 
i ith layer 

j jth node 
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APPENDIX A 

In dimensionless form, 

where n and t arc the unit normal and tangent vectors to the 
surface and i and k are the unit vectors along the x- and 
z-directions respectively. The shear stress is defined as 
(a.T).t, where T is the total stress tensor. Thus, 

The pressure terms cancel out and the largest terms of 0(1/c) 
are collected. Since the dimensionless ah/&z is of O(l), the 
shear stress can be expressed as 

1 au, 
(a-T). t E Eaz. 

The stresses are continuous across the interfaces, and there- 
fore, 

avX,/az, = M,av,+>faz,+,, 
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whereas on the free surface, the shear stress is zero, i.e., 

av.Jaz, = 0. 

APPENDIX B 
Equation (5) or (6) can be represented in the form of 
a tridiagonal system: 

b,w, + ctwz = 1, d 

u2wI + b,w, + c2w, = d,, 

a3 wa + b,w, + cf w4 = jr d 

. . . 

stnwzn--l + bz,wrn = 4,. (Bl) 

The unknowns We in the above system of equations are 
correlated to the unknowns A, and Bi in eq. (5) or (6) by the 
relations 

Ai = w,, I?, = wj+ *, 

where i = (j + 1)/2 and i = 1,2,. . . , n. By comparing eq. (5) 
or (6) and eq. (Bl): 

h,, b,+ 1, dip di+l =I@,, PA. 
However, the coefficients at and cr (j = 1,2, . ,2n) are all 
constants. 

The complete algorithm for the solution of w in eq. (Bl) is 
given by the series of recursive formulae, whit 6, along with 

the formulae for the simultaneous computation of dw,/~%,. 
whereu=Cp,,..., p,, h,,. . .h,], are-given below. ” ‘_ 

Let us define pi and y, (j = 1,2. . . . , 24 and their derivat- 
ives w.r.t. ut such that: 

2 3.. ., i+ 
1,2,. . .,j 

j = 1,2, _ 

I (for odd j), 

(for even j) 

. . . 2n. 

Using flj and yJ (j = 1,2, . . . , 24, the solution of wj in 
eq. (Bl) is given by: 

w, = yJ - - 

awj _ arj 

au, au, 

1 = 1, 2.. . . ,2n, 

j = PI - 1). (2n - 2), . , 1 


