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ABSTRACT 

We compare threshold results for the deterministic and stochastic versions of the 

homogeneous SI model with recruitment, death due to the disease, a background death 

rate, and transmission rate @W/N. If an infective is introduced into a population of 

susceptibles, the basic reproduction number, R or plays a fundamental role for both, 

though the threshold results differ somewhat. For the deterministic model, no epidemic 

can occur if R, d 1 and an epidemic occurs if R, > 1. For the stochastic model we find 

that on average, no epidemic will occur if R, G 1. If R, > 1, there is a finite probability, 

but less than 1, that an epidemic will develop and eventuate in an endemic quasi-equi- 

librium. However, there is also a finite probability of extinction of the infection, and the 

probability of extinction decreases as R, increases above 1. 

1. INTRODUCTION 

A fundamental concept that has come out of the deterministic mathe- 
matical theory of epidemics is that of the basic reproduction number [2-4, 
18, 19, 24, 25, 351. The basic reproduction number is the number of cases 
generated by one infective over the period of infectivity when that infective 
is introduced into a large population of susceptibles. 

More precisely, the basic reproduction number is defined as follows. Let 
c be the average number of persons contacted per person per unit time, 
and let p be the probability of transmission per contact between a suscepti- 
ble and an infected. The combined parameter A = c/3 has units time-’ and 
is called the number of effective contacts per person per unit time. Let D 
be the mean duration of the infectious period. Then the number of contacts 
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effective in transmission per infective if all contacts are with susceptibles is 
R,, the basic or initial reproduction number, where 

R, = c/30. 

Note that R, is a dimensionless number. 
If the population is a large population of susceptibles and we introduce 

one infective who is just beginning the infectious period, R, must be 
greater than 1 for an epidemic to take off. 

cpD-l>O. 

Thus we have the concept of a threshold for epidemic takeoff directly 
related to the basic reproduction number. If R, > 1, an epidemic starts; 
then as the fraction of susceptibles decreases the epidemic slows, more so if 
those who recover are immune to the disease. If new susceptibles are 
introduced at a constant rate, an endemic steady state can occur when 

R = R,S = 1. 

Here S is the fraction of susceptibles in the population. R has also been 
called the reproductive number or replacement number [24, 2.51. Note that 
R changes as the fraction of susceptibles changes. 

Macdonald [35] first introduced the term reproduction rate for this 
quantity, although the existence of thresholds that are directly related to 
the reproduction rate had been demonstrated earlier by Kermack and 
McKendrich [31] and by Ross [44]. Dietz [18, 191 used the term reproduc- 

tion rate for R. Anderson and May used intrinsic reproductive rate for R, 
[3] and also basic reproductive rate for R, and effective reproductive rate for 
R [4]. Hethcote [24, 251 used the term replacement number for R and 
contact number for R,. 

This simple idea has had a profound effect on epidemic theory. It 
appears to be a global insight that cuts through the details of the transmis- 
sion process. However, it originated from consideration of deterministic 
models of homogeneous populations with random mixing. In a previous 
paper, Jacquez et al. [29] summarized the work on homogeneous popula- 
tions, and Simon and Jacquez [47] examined the extensions of this idea to 
deterministic models of heterogeneous populations with random and non- 
random mixing. In this paper we examine its extension to the stochastic 
versions of the deterministic models for sexually transmitted diseases in 
homogeneous populations that are summarized in [29]. 

A considerable literature has accumulated on stochastic epidemic the- 
ory. The definitive review covering work published up to about 1974 is 
Bailey’s book [6]. The review by Lefevre [33] introducing the proceedings of 
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the Luminy conference [20], and the other papers in that volume give a 

good picture of the present status of the field. 
Comparing corresponding deterministic and stochastic models, one can 

say in general that if the model is linear, the deterministic equations are the 
same as the equations for the means of the stochastic model, SO the two 
have the same solutions [6, 36, 381. The stochastic model is then a linear 
birth-and-death model. That is not true for nonlinear models; then the 
stochastic mean number of infecteds usually falls below the number of 
infecteds for the deterministic model [6]. However, for many nonlinear 
models, for any finite interval [0, t], the equations converge on those of a 
birth-and-death process as the initial size of the population, N, increases 
[7, 121. The simulations on our model show that property very nicely. 

A major part of the work on stochastic epidemic models has been on the 
general stochastic epidemic, a name given by Bailey [5] to the stochastic 
version of Kermack and McKendrick’s deterministic model [31]. The 
Kermack-McKendrick model is an SI model with removals from the 
infected class but no competing causes of death and no recruitment into the 
population, so the population is bounded. More important, the rate at 
which susceptibles are converted into infectives is given by a quadratic 
expression, AXY, in which X and Y are the numbers of susceptibles and 
infecteds, respectively. Commonly, A is treated as a constant. That differs 
from our models [29, 471 in which the rate at which susceptibles are 
converted into infecteds is given by a homogeneous rational expression of 
degree 1 in the susceptibles and the infecteds. There is now a considerable 
body of work on finding solutions for the probabilities, p,,(t), that the 
population has x susceptibles and y infectives at time t [14, 21, 22, 32, 46, 
481, the maximum size [lo, 161, the final size [34], and the duration of the 
epidemic [ll]. Metz [39] examined the model when there are several classes 
of infectives, and Ball [8] looked at several classes of susceptibles; also see 
161 and 1201. 

There has also been considerable work on deriving thresholds for the 
general stochastic epidemic. For the linear birth-and-death process approx- 
imation, that is, N large, let Y, be the initial number of infectives and k 
the removal rate constant for removal of infectives. Then, if k/h < N, the 
probability of extinction of the infection is (k/AN)&; if k/h > N, the 
probability of extinction is 1. Whittle [51] and Williams [52] obtain some- 
what different versions of the threshold theorem for large N. Ball [7] uses 
the convergence to a linear birth-and-death process to obtain similar 
results. Also see Martin-Liif [37]. 

Less work has been done on the general epidemic with recruitment, and 
that primarily in the context of modeling recurrent epidemics such as 
measles. Bartlett [13] compared deterministic and stochastic general epi- 
demics with recruitment. Ridler-Rowe [43] worked with the general epi- 
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demic with recruitment of susceptibles and infectives and with deaths of 
infectives only. Stirzaker [49] used the same model but with recruitment 
only into the susceptible class. Again, Bailey symmarizes work up to about 
1974 [6]. 

The work on the general epidemic model has generated a useful body of 
theory and methods. However, there are a couple of problems with the 
basic assumptions of the model whose full import have not always been 
appreciated. One concerns the rate at which susceptibles are converted into 
infectives. That rate is AXY, and A is usually treated as a constant. We can 
rewrite the rate in the form AXY = (hN)X(Y/N) = (hN)Y(X/N). Inter- 
preting that expression, each susceptible makes AN contacts per unit time 
that transmit, the fraction Y/N being with infectives, or alternatively, each 
infective makes AN transmitting contacts per unit time, but only the 
fraction X/N are with susceptibles. Mollison 1421 points out that the 
assumption that A is constant makes R, proportional to N. But it seems 
unreasonable to assume that the contact rate increases with N. It is more 
likely that the transmitting contact rate becomes constant for populations 
above some size. Anderson [l] presents data on childhood diseases that 
show that contact rates can be only weakly dependent on the population 
size, and Schenzle and Dietz [45] conclude that contact rates are indepen- 
dent of population size. Hethcote and Van Ark 1251 and de Palma and 
Lefevre [17] discuss the implications of model formulation with A set 
constant or a function of l/N. 

In the general epidemic model A is assumed constant and the popula- 
tion size N remains constant as the epidemic process unfolds for any 
particular population. Thus for any particular run, A and AN are constant. 
However, for populations with different N, one may index the populations 
with N and have A, change with N. The asymptotic results on the general 
epidemic model, such as those of [7] and [ll], depend on making A, 
proportional to l/N. 

Another problem is that the general epidemic model does not distin- 
guish between the effects of removal by death and those of removal by 
recovery with immunity. The dynamics of the epidemic process differ 
markedly depending on whether or not there are deaths due to the disease 
and on whether or not immune individuals appear. 

In this paper we examine deterministic and stochastic formulations for 
the SI, SIS, SIR, and SIRS models for homogeneous populations; the 
dynamics for the deterministic versions is summarized in Jacquez et al. [29]. 
These models differ from the general epidemic in that there are recruit- 
ment of susceptibles, deaths due to the disease, and competing causes of 
death. In addition, the assumption on contacts is that the contact rate per 
person, c, is constant. If p is the probability of transmission per contact 
between an infected and a susceptible, the infection rate is then &XY/N, 
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so that A = PC/N. In relation to that, we refer the reader to an interesting 
paper by Gani and Purdue [23] on the general stochastic epidemic but with 
a generalized infection rate, f(X,Y), replacing AXY. Gani and Purdue 
apply Whittle’s stochastic threshold theorem to this more general form of 
the general stochastic epidemic. Furthermore, in our model N does not 
remain constant as the epidemic unfolds because there are deaths due to 
the disease. In addition, the SIR and SIRS models clearly distinguish 
between the effects of death due to the disease and recovery with immu- 
nity. 

The development is given in some detail for an SI model that is a 
simplified version of the model we have used to model the spread of HIV 
[28]. One of our purposes here is to provide background on the properties 
of the stochastic model in homogeneous populations before going on to 
heterogeneous populations. Stochastic modeling of the spread of HIV has 
really just begun. See Isham [26] for a review of AIDS modeling up to 1988. 
Tan and Hsu [50] used a modification of the general stochastic epidemic 
model for a homogeneous population to model spread in a homosexual 
population. They use the assumption that the number of susceptibles is very 
large and can be treated as a deterministic rather than a stochastic 
quantity. Mode et al. [40, 411 use Monte Carlo simulation to show that for a 
nonlinear stochastic AIDS model the expected number of infectives is not 
as large as is given by the deterministic model. Blanchard et al. [15] 
introduced modeling of an AIDS epidemic on a random graph. 

II. THE HOMOGENEOUS SI MODEL 

1. MODEL 

The basic SI model with recruitment into the susceptible class, compet- 
ing deaths, and deaths due to the disease is diagrammed in Figure 1. This 
state-transition or compartmental diagram describes the deterministic and 
stochastic models. 

2. THE DETERMINISTIC MODEL 

Notation 

X,Y the number of susceptibles and infecteds, respectively. Both are 
continuous, nonnegative variables. 

u a constant rate of recruitment of new susceptibles into the popula- 
tion. 

/I the rate constant for competing deaths, assumed to be the same for 
susceptibles and infecteds. Thus, the rate at which susceptibles die 
due to all causes is pX. 

k the rate constant for deaths due to the disease. 
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FIG. 1. State-transition diagram for the SI model with deaths due to the disease. 

C the mean number of persons contacted per person unit time. These 
contacts are, by definition, the type of contacts that can potentially 
transmit the disease. 

P the probability of transmission of the disease for a contact of a 
susceptible with an infected. 

The Deterministic Equations. The total number of persons contacted 
per unit time by all susceptibles is cX. Assuming that the contacts are 
randomly distributed over susceptibles and infecteds in the population, the 
fraction Y/(X + Y - 11 of these contacts is with infecteds. In the determin- 
istic theory, it is standard to use Y/(X + Y) in place of Y/(X + Y - 1) 
because X and Y are continuous variables. It makes little difference for 
X + Y large, and the use of Y/(X + Y - 1) leads to difficulties for X + Y < 
1. For comparison with the stochastic model in which X and Y are counted 
in integral units, we use Y/(X + Y - 1) in the deterministic model and 
avoid the region X + Y < 1. Then, since p is the fraction of contacts 
between susceptibles and infecteds in which there is transmission, the rate 
at which susceptibles are infected must be 

CP 
XY 

x+y-1’ 

Thus the differential equations for X and Y are 

and 

dX XY 
dt=-cPx+y_1-CLX+U (1) 

(2) 

Global Stability and the Basic Reproduction Number. If we use X + Y 
instead of X + Y - 1 in the denominators of the first terms in (11 and (21, 
Equation (2) becomes 

dY XY -- -=cPx+y (k+P)y. dt CW 
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Then if 

cP R,=- k+p Cl, 

167 

(3) 

the disease-free equilibrium is globally stable [44]. That result is obtained 
directly by factoring (2a) as in 

dY 
z= @X+Y 

--(k+p)]Y 

and noting that since X/(X + Y) < 1 for Y > 0, if cp -(k + p) < 0, the 
derivative of Y is always negative except at Y = 0. 

The result for Equation (2) is slightly different. Factoring (21, 

-(k +p)]Y. 

At the disease-free equilibrium, X = U/CL, Y = 0, and 

X 
x+y-1 LJ”p, 

=- 

Now, one obtains 

Ro=(&)(g+ 

(5) 

as the condition for global stability of the disease-free equilibrium. Usually 
U s p, so there is little difference between the R,‘s obtained from (3) and 
from (6). We continue to use the notation R, = cp/(k + p) and point out 
that the first factor in (5) gives R, when Y = 1. 

3. THE STOCHASTIC MODEL 

Notation and Transitions. Now x and y are the numbers of susceptibles 
and infecteds, respectively, and are restricted in values to zero and the 
positive integers. The following list defines the probabilities for the various 
transitions; however, the terms of order o(At) have been dropped because 
they disappear in the subsequent limit process. 

[cpxy/(x + y - l)] At is the probability that a susceptible is converted 
to an infected in At. In that transition x decreases by 1 and y increases by 
1. This transition probability must be zero whenever y = 0 and whenever 
x = 0. In particular, whenever x + y < 1, there can be no transmission, so 
this expression has to be assigned the value zero when x + y < 1. 
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UAt is the probability that x increases by 1 in At, by recruitment. 
PX At is the probability of losing one susceptible to a competing cause 

of death in At; x decreases by 1. 
py At is the probability of losing one infective to a competing cause of 

death in At; y decreases by 1. 
ky At is the probability of losing an infective due to the disease, in At; y 

decreases by 1. 

The Stochastic Equations. Define p,,(t) as the probability that the 
population has x susceptibles and y infectives at time t. We write out in 
full the expression for pxy(t + At), following the approach of Bailey [6], to 
show the derivation of the differential equation for p,,(t). 

Pxy(t + At) = + ~x+l,y-I 
c~(x+l)(y-l)A~+p 

.X+y-1 x,y+dk + P)(Y +l)At 

+ p,-,,,UAt + P~+I,~F(x + l)At 

+pxy I-- 
[ 

x;Pyv_lAt-(k+p)yAf-UAI-pxAt 1 ’ (7) 
Rearranging and taking limits gives the differential equation for pXy, 

dpxy 
dt= 

v 
Px+l,y-1- x+y-Pxy 1 + G-l,, - Pxyl 

Note that there cannot be a negative number of susceptibles or infectives, 
so pij = 0 if i < 0 or j < 0. 

Initial Conditions. If no infectives are present, the number of suscepti- 
bles is given by a linear death process with immigration. We assume that 
that process is at equilibrium when the infectives are introduced. At that 
point, E[x] = m, = U/p, so we choose for initial condition n susceptibles, 
where n is the integer closest to U/p. To such a population, we introduce 
m infecteds. That gives for initial conditions, 

P,,(O) = 1, 

P,,(O) = 0, x+nory#m. 

We will be most interested in the case m = 1. 

Ranges ofx and y. Because of the recruitment, x and y have ranges 
(O,m), but the probabilities pXy are infinitesimal for x and y much larger 
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than IZ. This means that in numerical work, solving the system of ODES (8), 
only a finite subset of the pXY are nonnegligible. 

Remarks. It is worth emphasizing that Equation (8) differs considerably 
from the corresponding equation for the general stochastic epidemic, with 
or without recruitment [6]. The appearance of rational expressions in x and 
y in the first term in (8) makes it extremely difficult to obtain probability- 
generating functions from Equation (8). 

It is also worth noting that the deterministic model consists of two 
simultaneous nonlinear ODES whereas the equations for the state probabil- 
ities in the stochastic version consist of an infinite set of linear ODES. 

4. THE MEAN NUMBER OF INFECTEDS 

We will want to compare the time courses of the mean number of 
infecteds from the stochastic model with the time courses of the number of 
infecteds from the deterministic model. By definition, the expected values 
are given by 

my(t) = EM = C C YP&) (9) 
x=oy=o 

and 

m,(f) = E[xl= C C wXY(t>s 
x=0 y=o 

We have tried the generating function approach to find equations for 
the mean values but have failed with it. However, one can generate the 
differential equations for the mean values, 

and 

e&f Ey!Ip, 
x=oy=o 

(11) 

(12) 

directly from the definitions of the transition probabilities. 
Starting with the system in state (x, y), we calculate the expected value 

of y(t + Ar> - y(t), 

E[y(f+At)-y(t)lx,y]=cp x+~_lA’-(k+~)yAt+O(At). (13) 
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Taking expected values and using the usual limit process as At + 0 gives 

Hence, 

In similar fashion one obtains 

dmx - 
dt 

-cpei: xy 
x=oy=Ox+Y-~PXY (16) 

x=oy=o 

Equations (15) and (16) can also be obtained directly by substituting (8) into 
(11) and (12), though with somewhat more effort. 

III. RELATIONS BETWEEN STOCHASTIC MEANS 
AND DETERMINISTIC VARIABLES 

1. REPRODUCTION NUMBER AND GLOBAL STABILITY: R, < 1 

Rewrite Equation (15) in the form 

$+(k+p) g E [g&(x+;_l)-l]YPxy. (17) 
x=oy=o 

Assume that R, - 1 = [pc/(k + EL)- l] < 0. We know the initial value, 

m,(O), is finite. Now we show that the derivative of m,,(t) is negative for all 
t <m and that its asymptotic steady value is zero. 

The Derivative of my is Always Negative. Consider Equation (17) for 
t > 0. All terms for which y = 0 are equal to zero, so in the summations we 
need only consider the terms in y for y > 1. For all y > 1 and all x > 0, 

X 

xfy-1 < 1, 

and the equality sign holds only when y = 1 and x # 0. Hence, if R, - 1 < 0, 
all coefficients of yp,, in (17) must be negative for y > 1. Therefore the 
derivative of my is always negative and my must always decrease. 
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The Equilibtium State Value of my is Zero. Now we seek the equilib- 
rium state solution for Equation (15), rn:, for which 

dmY dt=O (19) 

when R, < 1. For the equilibrium state, Equation (17) can be written 

R,?? ’ 
cc 

x=Oy=Ox+Y-l YP~,= C C yp,,=m;. (20) 
x=oy=o 

The double sum on the left-hand side may be written 

5 Ifi SXYYPXY~ 
x=Oy=l 

(21) 

where 

O<(,, 61. (22) 

Hence there exists (“, 0 < 5’ < 1, such that 

IT 5 SXYYPXY =5’ f- e YPxy. (23) 
x=Oy=l x=Oy=l 

Thus, (20) becomes 

( Rot’ - 1) m;, = 0. (24) 

By hypothesis, R, < 1, so the first factor in (24) cannot be zero. Hence, 
me=0 

Y . 

In summary, if R, - 1 < 0, the equilibrium state for Equation (15) has 
for solution rnz = 0, and the derivative of my is always negative. Since y is 
a nonnegative variable, if its expected value goes to zero, all probabilities 
pxy for y > 0 must go to zero, and hence all higher moments must also go 
to zero. Hence, the disease-free equilibrium is globally stable for the 
stochastic model. We obtain the same results as for the deterministic 
model. 

What of the case R, = l? For x = 0, tXY = 0, and for y = 1, tXY = 1; for 
all other x and y, 0 < eXY < 1. Hence, some of the coefficients in (17) are 
negative and others are zero. And, except for the unusual circumstance 
p,,(t) = 0 for y f 1, there exists te, 0 6 5’ < 1, such that (23) holds, so that 
the conclusion m’y = 0 still holds. 
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The Equilibrium State Value of m,. From (161, at the steady state we 
obtain 

For R, < 1, m’y = 0, so 

m”,=U/p. (26) 

2. INITIAL TIME COURSE OF THE EPIDEMIC 

For the early time course, as long as y ==K x, pXY will be negligible for 
large y. Then, for all terms in (15) for which p,, is significant, 

X 

x+y-1= 
1. (27) 

Under that constraint, Equation (15) reduces to 

dm 
$=[pc-(k+~)l g f w,y=[Pc-(k+cL)lmy. (28) 

x=0 y=o 

Initially, my grows or decays exponentially; it grows if R, > 1, it decreases 
if R, < 1, and it is stationary for a time if R, = 1. How long this approxima- 
tion holds depends on how long relation (27) is satisfied. Obviously, the 
larger the initial size of the population, the longer relation (28) will be 
valid. 

With the approximation of (27) and (28), the epidemic becomes a 
birth-and-death process. For the general epidemic, the birth-and-death 
approximation holds until about n ‘I2 of the susceptibles become infected 
[9]. We do not know if that holds for this model in which the size of the 
population decreases as the epidemic spreads. 

3. ENDEMIC EQUILIBRIUM STATE: R, > 1 

As we did in Equation (23), we define a mean value 5, 0 < l(t) < 1, as in 
(29) and explicitly show its dependence on t. 

c c [x/(x + Y -l)lYPxy 
s(t) = 

x=0 y=l 
c c YPX, . 

(29) 

x=Oy=l 

t(t) is a weighted average of x/(x + y - 1) with weights yp,,(t). Using 
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(29), rewrite (15) and (16) as in 

%=(k+p)[R,((t)-l]my 
dt 

and 

dm x 
dt 

At the equilibrium state, 

= = - cp[( t)m, - pm, + U. 

(Rat’-l)mz=O 

and 
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(30) 

(31) 

(32) 

me, = 
U - (k + p) R,[‘m’, 

P 
(33) 

With R, > 1, Equation (32) can in general have two solutions, but now 
me, # 0. We note that Equation (30) has a solution for dm, /dt = 0 at which 
dm, / dt f 0. That is the peak in the curve of my shown in the simulations, 
Figures 5 and 6. For the equilibrium, we obtain 

5’ = l/R,, (34) 

me = 
U-(k+p)m’, 

x p . (35) 

These can be compared with results on the deterministic system, 

X” 1 
X”+y”=R,’ 

xs= U-(k+cL)y” 
P . (37) 

4. SIMXA TIONS 

In this work we have generated the state probabilities, the means, and 
the means conditioned on nonextinction by direct integration of the set of 
ODES for the state probabilities. For simulations of the general stochastic 
epidemic and comparison of results with those of the linear stochastic 
approximation and a multivariate normal approximation, see the paper by 
Isham in this volume [271. 

The state probabilities pXy were generated for R, = 0.5, 2.0, 8.0 and 
n = 10, 30, 100, and 300, with use of a SUN SPARC station, with double- 
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precision arithmetic. To integrate Equations (8) for the pxY, the pxY were 
set to zero for x and for y greater than certain maximum values. These 
maximum values for x and y were 30 for n = 10, 70 for n = 30, and 140 for 
n = 100; for n = 300, the maximum value for x was set to 400, the maximum 
value for y was 200 for R, = 0.5 and 2.0 and 300 for R, = 8.0. At each time 
point a check sum of the p,, was calculated to see that Cp,, was less than 
0.01 from 1.0. The check sum always started at 1.0, fell slightly to 
0.9999-0.99999, and then rose slowly above 1.0. The latter resulted from 
the accumulation of truncation errors in the calculations. The calculations 
were not accepted when the check sums rose above 1.01. 

Figures 2-4 compare the time courses of the fractions infected for the 
deterministic model and for the means of the stochastic SI models. In the 
figures, straight lines connect the plotted points; the curves are actually 
smooth. The curves for n = 10 in Figures 3 and 4 do not go out to the full 
time scale because the check sums failed at the times the curves stop. 

A number of points should be noted in Figures 2-4. 

FIG. 2. Comparison of the time courses of the fraction of infecteds, Y/(X + Yl, for 

the deterministic models and m,/(m, + m,) for the stochastic models, for the SI model 

for R, = 0.5. The initial population sizes were n = 10, 30, 100, 300, respectively, for 

cp = 0.16, p = 0.02, k = 0.06. For each case, U = nj~, so n is the equilibrium value for the 

number of susceptibles in a disease-free population. In the plotting routines, straight lines 

connect the plotted points. 
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Rat,0 of Infected5 t” Total POpUlatlOn -- R0=2 0 

‘T 
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FIG. 3. Comparison of the time courses of the fraction of infecteds, Y/(X + Y), for 

the deterministic models and my /cm, + m,) for the stochastic models, for the SI model 

for R, = 2.0. See also Figure 2. 

Rat10 of lnfecteds to Total POPulation -- Ro=8 0 

FIG. 4. Comparison of the time courses of the fraction of infecteds, Y/(X + Y), for 

the deterministic models and my /Cm, + m,) for the stochastic models, for the SI model 

for R, = 8.0. See also Figure 2. 
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1. For R, = 0.5, there is a progressive fall of the deterministic ratio 
Y/(X + Y) and of the ratio of stochastic means, my /(m, + m,), toward 
zero. 

2. The time courses of the corresponding deterministic and stochastic 
models are the same early in the process, and the length of time that holds 
increases with n. That defines the length of time the linear birth-and-death 
approximation holds and fits in with previous results on other stochastic 
models of nonlinear systems [6, 71. 

3. The means for the stochastic epidemics follow time courses that are 
similar in shape to those of the deterministic models after the early linear 
phases, but the stochastic ratios fall below the deterministic ratios, in some 
cases well below, for example, for R, = 2. At the meeting in Skokloster 
someone commented that in gathering data one would perforce collect data 
only on realizations that gave epidemics, a point that Kendall [30] had 
emphasized. We note that for R, > 1 there is still a nonzero probability of 
extinction and that those realizations of the stochastic process in which the 
infection quickly died out would not be counted as epidemics. The mean 
my is 

c c YPXY 
x=oy=o 

my = c c pxy = .co y~oypxy~ 
x=0 y=o 

(38) 

However, only y >, 1 contributes to the summation in the numerator. Let us 
define a mean for y >, 1, 

c c YPxy c c YPX, 
x=Oy=l x=Oy=l 

mT = c c Pxy = l- c Pxo 
x=Oy=l x=0 

Here, Cp,,(t) is the probability of extinction at t. Figures 5 and 6 compare 
the time courses for the deterministic number of infecteds and my and mf 
for R, = 2 and R, = 8, respectively. As might be expected, rnz is much 
closer to the deterministic than is my. However, in the early linear phase of 
the process where Y and my correspond, mf is higher and later crosses the 
deterministic time course, but by the plateau rnz and Y are very close 
indeed. This is more obvious for R, = 2; for R, = 8 the probability of 
extinction is small, so the deterministic Y, my, and mf all eventually run 
close together. One cannot be certain from the numerical results whether 
or not Y and mf eventually become equal because of truncation errors in 
the calculations. The truncation errors accumulate as I increases and the 

check sum, CCp,,, slowly drifts above and away from 1. Nonetheless, the 
results suggest the conjecture 

lim [m;(f)-Y(t)] =o. 
t-m 
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FIG. 5. Comparison of the time courses for the deterministic number of infecteds Y, 

the stochastic mean my, and the renormalized mean for y 3 1, rnz, for R, = 2. 
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FIG. 6. Comparison of the time courses for the deterministic number of infecteds Y, 

the stochastic mean m,,, and the renormalized mean for y, m$, for R, = 8. 
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III. SIS, SIR, AND SIRS MODELS 

The analytical results for SIS, SIR, and SIRS models are much the same 
as for SI models. The main results without details or derivations are given 
in Appendix A. However, we have not explored the SIS, SIR, and SIRS 
models with use of simulations. 

IV. DISCUSSION 

R, plays much the same role in defining thresholds for epidemic takeoff 
in deterministic and stochastic models. 

For the deterministic model, if R, < 1, the disease dies out; if R, > 1, 
there is an epidemic takeoff that eventually settles down to an endemic 
equilibrium. 

The results for the stochastic models are similar but now have to be 
interpreted in probabilistic terms. We have shown that if R, < 1, the 
stochastic mean number of infecteds goes to zero. The total probability for 
all states can be written 

c &o(t)+ c c P,,(f) =l. 
,X=0 x=Oy=l 

(40) 

The first term is the extinction probability P,,(t) at t, the second the 
probability of nonextinction, Pend(t). Since P,,,(t) + 0 in t, for R, < 1, 

lim P,__(t) = 1. 
t-m 

(41) 

Figure 7 shows the simulation results; P,,(t) + 1 and follows essentially the 
same time course for IZ = 10, 30, 100, 300. 

For R, > 1, the stochastic mean approaches some equilibrium value. 

(44 

At the endemic equilibrium, we must have 

c c Pxy f 0, 
x=Oy=l 

but not 1. There is some probability of extinction, P& < 1. Figure 7 also 
shows the simulation results for P,,(t) for R, = 2 and 8. As R, increases, 
Peti decreases. For R, = 2.0, the curves for n = 100 and 300 follow the same 
time course but those for n = 10 and 30 seem to be going toward higher 
levels. However, the check sum hits 1.01 at t = 40 for n = 10 and right after 
t = 60 for n = 30, whereas the check sums for n = 100 and 300 show a much 
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FIG. 7. Plot of the probability of extinction calculated in the simulations for R, = 0.5, 
2.0, 8.0. 
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lower error, so the deviations might be due to the error accumulation. The 
curves for R, also show a small deviation for n = 10 at t = 30 and for 
n = 30 at t = 60, again when the check sums show a 1% deviation. 

The results for R, > 1 seem at first to be counterintuitive. They predict 
that the probability distribution for the states of the system eventually 
becomes stationary with a nonzero total probability, P,, < 1, for the states 
for which y = 0, that is, no disease present. In terms of realizations, does 
that mean that all realizations will die out? No, because there is always a 
nonzero probability associated with the states for which disease is present. 
For the realizations for which the disease dies out, the die-out occurs early 
before the epidemic has built up much. In part the counterintuitive nature 
comes from the difference between the distributional viewpoint and the 
viewpoint from realizations of the process, and the latter perhaps comes 
more easily to us. 

The generation of a stationary distribution of state probabilities with 
P& > 0 arises directly from the recruitment into the susceptible group. If 
one examines the results for the same model but without recruitment, that 
is, U = 0, the results are intuitively obvious and by comparison shed light on 
the results for ZJ > 0. For R, < 1, the disease dies out in the same fashion 
as for (I > 0; the derivative of my is always negative, so my decreases 
monotonically to zero, from the start of the process. The results for R, > 1 
are quite different. At the start, dm,/dt > 0, so the curve of my increases 
to a peak value, but after the peak my decreases progressively, and in the 
limit, my = 0. In this case, the probability of extinction does eventually 
become 1. But note, m, also goes to zero; there is extinction of the 
population as well as the disease. 

APPENDIX A: RESULTS ON SIS, SIR, AND SIRS MODELS 

In this section we summarize results on SIS, SIR, and SIRS models. For 
the SIR and SIRS models, three subscripts are required for the probabili- 

ties, that is, pxyZ. However, the method is the same as that used with the SI 
model, the derivation of the differential equations differing only in details. 

1. SIS 

Figure 8 diagrams the SIS model. 

Deterministic Equations 

dX 
dt= -cpx+Y-l xY -/.&X+8Y+V, 

$=cPx+y-1 Xy -(k+/.L+??)Y. 

(AlI 

(A21 
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k 
U l x + Y 

P 

FIG. 8. State-transition diagram for the SIS model with deaths due to the disease. 

Stochastic Equations. The equation for pxy now becomes 

(X+l)(Y-l)P,+,,~_~-n+~_lP,, 
x+y-1 I 

+ W&-l,, - PJ + S[(Y + l)Px-1,,+1- YPX,] 

+(k+p)[(Y+l)Px,,+l-YP,,]+~[(~+l)Px+l,,-xP~J 

The differential equation for my becomes 

d% 
-;ri-=c 

X 
c[ pcx x+y-1 -(k+CL+fj) YP,,. 
Y I 

(A41 

As might be expected, (A4) is the same as the corresponding equation for 
the SI model, with the addition of the term due to the transition back to 
susceptibility. 

P 

2. 

The results are the same as for the SI model, but with R, = pc/(k + 
+ 6). The disease-free equilibrium is globally stable if R, - 1 < 0. 

SIR 

Figure 9 diagrams the transitions for the SIR model. 

Equations for the Deterministic Model 

(Ml 

(4 

(A71 

dx 
x=-cp XY 

x+y+z-1 -Px+u, 

XY 
Z=cPx+Y+z-l -(k+P+Y)Yy 

dZ 
-&=yY-/Lz. 
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k 

FIG. 9. State-transition diagram for the SIR model with deaths due to the disease. 

Equations for the Stochastic Model 

dpxyz +(_p (x+l)(Y -1) v -= 
dt x:+y+z-_l P~+l,Y-‘,z-~+y+z-1P~Yz 1 

+ w Px-l,y* - Pxyzl + cL[G + 1)Px+l,yz - SYZ] 

+(k+CL)[(Y+l)P*,y+l,,-YPxyz]+~[(z+l)p~,.~+l-zp~Y*l 

+ Y[(Y +l)Px,y+l,r+l - YPxyr]. (A81 

Now define my as 

my = C C CYPRUS. 
x Y 2 

(-9 

Its differential equation becomes 

~=~zc[,+~~z_, -v+P+y)]YPxyz. (A101 
x Y 2 

Again, the results on thresholds are the same as for the SI and SIS models, 
but now R, = PC/# + p + y). Note that the presence of immunes makes 
dm y / dt more negative. 
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U 

FIG. 10. State-transition diagram for the SIRS model with deaths due to the disease. 

3. SIRS 

Figure 10 diagrams the SIRS model. 

Equations for the Deterministic Model 

dX XY 
dt=- CPx+Y+z-l 

-px+lJ+Csz, 

dY 
z=cP 

XY 
x+y+z-1 -(k+CL+y)Y, 

dZ 
-&=yY-(pu+)Z. 

(All) 

(A 12) 

(Al31 

Equations for the Stochastic Model 

d&Z -= 
dt 

XY 
Xf ,Y 

1 _1 
,z- x+y+z-lPXYZ 1 

+ U[Px--l,YZ - Pxyzl + /J[(x + l)Px+l,yr - %YZl 

+(k+CL)[(Y+1)Px,y+l,z-YP*y*]+~[(z+1)Pxy,r+l-ZPxYz] 

+ Y[(Y +1)Px,y+l,r+l -YPxy,] +~[~~+~~Px--l,Y,z+l-~PxYzl~ 

(A14) 

The equation for the derivative of my is the same as fcr the SIR model, 
and the threshold results are the same. 
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