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For lack of alternatives. longitudinal data are often analyzed with cross-sectional statistical methods, 
for instance, r-tests, ANOVA and ordinary least-squares regression. Appropriate statistical software has 
been generally unavailable to investigators using serial records to study growth and development or treat- 
ment effects. In an earlier paper (Schneiderman and Kowalski. Am. J. P11y.s. Anthropol.. 67 (1985) 

323-333.) we described a suitable method, Rao’s polynomial growth curve model (Rao. Biametrika. 46 
(1959) 49-58). and provided an SAS computer program for the analysis of a single sample of complete 
longitudinal data. This method included the computation of an average polynomial growth curve. its 95% 
confidence band, its coefftcients and corresponding confidence intervals. The present paper extends this 
method to accommodate a sample with observations made at unequal time-intervals. Significant im- 
provements in the accessibility, operation and user-friendliness of the program have been made, facilitated 
by recent advances in microcomputer technology. This stand-alone GAUSS program (no compiler 
necessary) runs on PC-compatibles and is available at a nominal cost. In this report we provide an over- 
view of the statistical model, the general structure of the program, and give an example in which a 
developmental variable (human upper incisor angulation) is analyzed. Ease of installation and use, speed 
of execution and color graphic displays of growth curves and confidence bands, and most importantly. 
suitability to longitudinal data, make this method/program a potentially valuable tool for those interested 
in growth, development, and treatment effects in humans and other species. Some areas in which this 
method will have immediate applications are orthodontics, maxillofacial surgery and pediatrics. 

Keywords: GAUSS; Polynomial growth curves; Longitudinal analysis: Unequal-time intervals: Generaliz- 
ed least-squares 

Introduction 

In an earlier paper [l] we described Rao’s one-sample polynomial growth curve 
model [2], provided an SAS program (Statistical Analysis System, SAS Institute 
Inc., Box 8000, Cary, NC 27511, U.S.A.) for carrying out the associated computa- 
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tions, and illustrated both the method and the program on a longitudinal data set 
consisting of mandibular ramus height measurements. Given longitudinal 
measurements made at equally spaced time points, this program (1) determined the 
lowest degree polynomial to adequately Iit a single-sample of longitudinal observa- 
tions, (2) estimated the coefficients for this fitted average growth curve (AGC), and 
their confidence intervals, (3) obtained the confidence band for the AGC and (4) 
plotted individual growth curves, the AGC and its associated confidence bands. 
Subsequently, we described a closely related method of fitting polynomial growth 
curves in the one-sample situation [3], that due to Hills [4] and provided an interac- 
tive GAUSS program (GAUSS Matrix Programming Language, Aptech Systems, 
Inc., 26250-196th Place S.E., Kent, WA 98042, U.S.A.). This program determined 
the coefficients of the lowest degree polynomial adequate to lit the AGC and com- 
puted explicit measures of velocity and acceleration for both the sample as a whole 
and on an individual-specific basis. 

User reaction to these programs indicated that while many wanted to obtain the 
output corresponding to Rao’s approach [2], few had both access to and sufficient 
familiarity with SAS and the mainframe computing environment to do so. The 
earlier program required generous amounts of mainframe computer time (potential- 
ly expensive, depending upon the manner in which a given mainframe installation 
is funded). The plotting capabilities of SAS were also quite limited [I]. In marked 
contrast, the new software program, written in GAUSS, runs on a stand-alone basis 
on inexpensive personal computers (IBM-PC family of compatible computers). 
There is no need to purchase additional software (e.g. compilers or programming 
language) to run this program. No knowledge of the GAUSS system is required; 
only a modest understanding of MS-DOS, the de facto universal microcomputer 
operating system, is needed. Installation and execution of our program are 
straightforward. The color graphics, error checking routines, easy-to-use menus, in- 
creased speed and publication quality graphics (with a laser printer, if available) 
make it a potentially valuable tool for those interested in analyzing developmental 
data, These features enable investigators to perform a simple (from the user’s 
perspective) yet appropriate analysis that addresses the unique properties of 
longitudinal data. Finally, the program is made available at a nominal cost (see 
Appendix). 

As has been noted earlier, methods and computer programs designed explicitly for 
the analysis of longitudinal data have remained inaccessible to most investigators 
[1,3,5], the major commercial statistical packages have consistently neglected this 
area. The purpose of the present paper is to illustrate and make available a user- 
friendly program for this purpose. A human dentofacial variable is used for illustra- 
tion. We refer the reader to our earlier work [l] for the details of Rao’s method. 

Materials and Methods 

The method we present here is applicable to investigations where the passage of 
time (i.e. ordering of observations) is a relevant factor. Subjects need not be growing 
to be analyzed with this approach. What is important is that the phenomenon of in- 
terest occurs over time. For instance, this program can be applied to problems con- 
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cerning short- and long-term treatment effects with different surgical, medical or 
orthopedic therapies. It is also suitable for longitudinally following the progression 
of disease processes or behaviors, such as bruxing. In addition to the dental areas 
of orthodontics and maxillofacial surgery, this method is also appropriate for ques- 
tions encountered in pediatrics and obstetrics. 

For an example, we apply the method to a longitudinal human craniofacial data 
set derived from the University School Growth Study at The University of Michigan 
[6]. In particular, we evaluate developmental changes in upper incisor angulation 
(Atlas Variable No. 53 from that study: the angle between the sella-nasion line and 
the long axis of the central incisor) in 22 boys between the ages of 6 and 14 derived 
from that study. The raw data are not presented here to conserve space. 

In short, the steps involved in the statistical method are as follows. A step-up pro- 
cedure is used to determine the polynomial that adequately fits the data using the 
fewest number of parameters (lowest order). This involves fitting increasingly higher 
order polynomial equations to the observations, beginning with the linear or first 
order. Each successive equation is evaluated for adequacy using a goodness-of-fit 
criterion. When this is met, the estimates of the parameters defining the AGC are 
then used for subsequent computations. In particular, a class of simultaneous confi- 
dence intervals for the AGC are calculated. These express the precision of the 
estimate of the AGC. 

One factor makes this statistical model different from ordinary polynomial regres- 
sion, and for that matter, all cross-sectional analyses. The variance-covariance 
matrix of the original observations is used in estimating the vector of parameters. 
In ordinary polynomial regression, the parameters are modelled simply as a function 
of the observations themselves and the times of observation (design matrix); the 
covariances among variables (i.e. dependencies among means for the T time-points) 
are implicitly zero. In contrast, the interrelationship among observations, within and 
between individuals is explicitly incorporated into the longitudinal statistical model. 
We thus compute the best linear unbiased estimators of the parameters (polynomial 
regression coefficients) defining the AGC using generalized least-squares (Eqn. 3 in 
Ref. 1). At each step of the procedure, a scalar quantity G is computed; this reflects 
the goodness-of-lit of that particular equation to the data. The value G is adjusted 
for sample size, number of parameters and time points, yielding an F-statistic that 
is then evaluated for significance; if less than the critical value of the F-statistic for 
the appropriate degrees of freedom and chosen significance level (e.g. 0.05) then that 
equation is designated to be an adequate fit. If the equation is not an adequate fit, 
the next higher order polynomial is used, and a new G is calculated. The method in- 
volves stepping up through the equation having one less parameter (P) than time- 
points (7). 

Structure of program 
The analysis begins with a longitudinal data set, multiple serial observations 

made on the same subjects. The method requires that the data be complete, i.e. all 
time-points represented by all subjects (N). Time-points (times of measurement) can 
be equally or unequally spaced. Three or more time-points are required. Also, there 
must be considerably fewer time-points than subjects. The method is multivariate in 
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the sense that the measurements made at the multiple time-points are considered 
simultaneously, however, only a single anatomical, physiological or behavioral 
measurement (variable) is considered in an analysis. The only assumption concern- 
ing the sample is that it be derived from the multivariate normal distribution. No 
assumptions are required concerning the structure of the variance-covariance matrix 
(C). The implications of the structure of C, a key element in multivariate methods, 
is discussed elsewhere [7]. 

The computer file containing the data to be analyzed should be organized such 
that each row is a subject and each column is a time-point. Thus, we use an N x 
T matrix X with elements x0 corresponding to the value of the measurement under 
consideration for individual i (i = 1,2,...,N) at timej (j = 1,2,...,7). This data set can 
be in ASCII (American Standard Code for Information Interchange) format, as one 
might typically generate using a word processor or a cephalometric analysis pro- 
gram, for example Ceph-Master Software (Trilobyte Software, 15894 Northville 
Rd., Plymouth, MI 48170, U.S.A.). Data can also be in GAUSS format, which re- 
quires additional steps to create, but is simpler to use, once created. The program 
release notes, supplied with the software, give more detailed information on the lat- 
ter format. 

The program is then invoked with a single command: gaussrun gca7. Soon there- 
after, the program menu appears. The user is then prompted for the location of the 
data files, which can be on a different drive (floppy or hard disk) or directory from 
the program itself. The indicated directory is searched and the names of those data 
files in either GAUSS or ASCII format are displayed. The user then highlights the 
file of choice using the cursor arrow keys and selects the file with the return key. 
Using this menu, the user supplies various simple pieces of information concerning 
the structure of data, and the manner in which it is to be analyzed. These options, 
implemented in the form of questions, include: 

(1) Are the observations (measurements) made at equal time points? That is, are 
the time intervals between each data collection point t the same? If not, the user is 
prompted for each of the time-points. Fractional time-points (i.e. 1.3, 12.65) are 
allowed. If the time-points are equal, the user is given the option of starting at 1 
(default) or any other starting time. The interval between data points can also be 
specified by the investigator, using whatever units are desired. 

(2) What level of significance (a) does the user wish to use? Usually, (Y is initially 
set at 0.05. After each run of the program, the user may supply a different (Y, if 
desired, and rerun the program. 

A further feature of the menu is an error checking routine which detects keyboard 
entry errors, rejects the erroneous entry, and prompts for a correct response. This 
helps prevent annoying program crashes. After the menu is completed the computer 
starts the numerical portion of the program. The numerical output is shown on the 
screen and is also written to a disk file called gca7.out which may then be printed 
for a hardcopy of the program output. This output file can be readily modified, 
highlighted etc., using a word processor. Finally, the graphics part of the program 
generates full color plots of the data and confidence bands. An example of the pro- 
gram output is given below. 
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Results 

Although the program generates internally all the intermediate statistics presented 
in our earlier SAS program [1], we have rewritten the GAUSS program to deliver 
the edited output in a concise, tabular format which is easier to read. The output 
starts with a header which includes the date and the time the program was run, and 
proceeds with the analysis. What follows is an abridged version of the numeric and 
graphic output generated by the program. 

Program output 

DATA FILE : UIEiM .ASC 

DATA SET NUMBER: 1 

DATA FORMAT IS ASCII 

NUMBER OF SUBJECTS: 22 

TIM!?, POINTS: 9 

TIME POINTS ARE EQUALIY SEWED. 

HIGHEST POTENTIAL EQUATION IS THE 7th_deg 

SAMPLE MEANS FOR EACH TIME POINT: 

92.708 96.531 99.716 103.82 103.8 103.64 103.07 

102.45 102.3 

N= 22 

T= 9 

TEST FOR ADEQUACY OF FIT OF A LINEAR EQUBTION 

F-statistic : 18.188 

Probability : 2.86013-006 

LINEAR equation of this data is inadequate. 

QUADRAD equation will now be examined. 

TEST FOR ADEQUACY OF FIT OF A QUADRAD EQUATION 



F-statistic : 2.789072 

Probability : 0.04723166 

QUADFND equation of this data is inadequate. 

CUBIC equation will now be examined. 

TEST FOR ADEQUACY OF FIT OF A CUBIC EQUATION 

F-statistic : 2.170228 

Probability : 0.1059535 

CUBIC specification is OK. 

COEFFICIENTS FOR XJERAGE GROWTH CURVE 

TAU 

1. 1.472 

2. 26.29 

3. -2.227 

4. 0.06196 

AVERAGE GROWTH CURVE 

Time 

Point 

AGC Length of 95% Confidence 

Half Band Band 

6.00 92.41 6.931 05.40 - 99.34 

7.00 97.61 5.33 92.28 - 102.9 

8.00 101 5.225 95.74 - 106.2 

9.00 102.8 5.275 97.56 - 108.1 
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10.00 103.6 5.423 98.17 - 109 

11.00 103.6 5.727 97.89 - 109.3 

12.00 103.3 5.891 97.39 - 109.2 

13.00 102.9 5.652 97.3 - 108.6 

14.00 103 5.949 97.04 - 108.9 

The graphic output, which is displayed as a high resolution color image on an EGA 
or VGA monitor, is presented in Figs. 1-3. The graphs were produced directly by 
the program on a laser printer, and merged with the numerical output using a word 
processor - two very simple steps. 

Discussion and Conclusions 

This method and program provide explicit and reliable information concerning 
the measurement being analyzed. An average growth curve, represented by a 
polynomial regression equation is generated. The lowest order equation (i.e. having 
fewest terms) is determined. Thus, the program will first attempt to tit a linear equa- 

6 Original Observations 

z4 6 8 10 12 14 
age in years 

Fig. I. Upper incisor angulation relative to the sella-nasion line in boys. This is variable No. 53 from Ref. 
6. Unfitted growth curves for 22 subjects having complete longitudinal data. 
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r Conventional Means 

:- 
;;14 6 6 10 12 14 

age in years 
Fig. 2. Conventionally calculated means for each of the nine time points at which upper incisor angle was 
measured. 

-Average Curve 8c 95% Confid. Band 

Ki 
;;14 6 6 10 12 14 

age in years 
Fig. 3. Average growth curve and 95% confidence band for upper incisor angle estimated using Rao’s 
polynomial growth curve model. 
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tion. If, as in the case of our example, neither the linear or quadratic equation meet 
the goodness-of-fit criteria, the program will go on to fit a cubic equation. Thus, a 
sigmoidal curve as defined by a cubic equation (i.e. two inflections) is suitable. The 
curve is expressed by its coefficients rlrr2,..., r,,, or alternately by the average values 
at any of the T (or other) time-points. 

A set of simultaneous 95% confidence intervals are computed for the average 
growth curve. Together these define a confidence band or region around the AGC. 
The explicit interpretation is that we have 95% confidence that the true population 
growth curve falls within the band. For example, we have 95% confidence that the 
true curve for upper incisor angulation is between 95.74 and 106.2 degrees at 8 years 
of age (ts). 

Many of the popular commercial statistical packages now offer sophisticated pro- 
cedures such as repeated measures ANOVA and ordinary polynomial. regression, 
which would appear to be suitable for the analysis of longitudinal data. However, 
these procedures should not be mistaken for true longitudinal methods; they make 
explicit assumptions about the correlation/covariance structure of the data that can 
not be expected to hold true with most longitudinal data sets. Repeated measures 
ANOVA assumes uniformity of covariance, i.e. the requirement that all correlations 
between measurements be equal. Methods based upon ordinary least-squares (OLS) 
require that all the correlations between pairs of measurements be zero. With serial 
measurements made on the same individuals it is highly unlikely that these condi- 
tions will be satisfied. The exact operational differences between Rao’s approach [2] 
and these more familiar methods are addressed in a recent paper [8]. Included in this 
paper is the quantification of error introduced by the inappropriate use of cross- 
sectional methods. As has been shown using simulated [9] and real data [8], the error 
is of sufficient magnitude to warrant concern. The method we present here is a 
straightforward tool for analyzing longitudinal data correctly, thereby eliminating 
this error. 
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Appendix 

Obtaining the program 
This software can be obtained on 5.25 in. 360K floppy disk by sending US%10 to 

defray the cost of handling and licensing fees. The program will run on an IBM- 
PC/XT/AT or 80386 compatible computer. The computer must be equipped with a 
numerical coprocessor from the 8087 family and 640K of memory. The computer 
must be configured so that at least 430K of memory is available, i.e. not tied up with 
memory resident programs such as Windows. For an operating system, MS-DOS, 
version 3.3 or higher is required. EGA or VGA graphics capability is required to 
display the color graphics. No additional software is required (other than what one 
would normally use to enter a data set); run-time modules are supplied with the pro- 
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gram so that no compiler or interpreter is necessary. The program, written in 
GAUSS, version 2.0, revision 20, requires no additional installation or modification, 
and is run with a single command. When requesting the program, address inquiries 
to the first author, and make checks payable to Baylor College of Dentistry. 
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