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We use a simplified analysis of gain saturation in longitudinally pumped lasers or amplifiers to study the effect of the relative 

pump and laser beam size. We derive a simple rule of thumb allowing one to optimize the efftciency. 

End pumped or longitudinally pumped solid-state 
lasers have proven to be very efficient sources. They 

differ from side pumped lasers, regardless of the na- 
ture of the pump, by the fact that the gain is con- 
centrated in a very well defined region. Furthermore 
the gain exhibits a transverse profile directly related 
to the pump beam profile which induces new re- 
quirements on the relative sizes of the pump beam 
and cavity mode. For example when an amplifying 
medium is pumped by a gaussian beam the unsat- 
urated gain is higher on axis than on the edges of the 
gain profile. The average gain seen by a beam sent 
through this amplifier becomes a function of the 
beam size: the smaller the beam, the higher the small 
signal gain but also, the higher the saturation. There 
is then a trade-off between large small signal gain (i.e. 
small beam) and little saturation (i.e. large beam). 
Modeling of longitudinally pumped lasers has been 
extensively worked out [ l-61. The optimization of 
the different parameters influencing the efficiency of 
those lasers has been studied. In general it leads to 
complicated relations between these parameters 
which are difficult of use. We used a simplified anal- 
ysis of gain saturation including transverse profiles 
of both pump and laser beams in order to find a sim- 
ple rule of thumb giving the optimum ratio of the 
pump and laser beams sizes. This rule is found to 
work with gaussian and super-gaussian pump beams. 

We consider a laser medium of length 1 pumped by 
a beam which transverse profile isf( r). Only beams 
with cylindrical symmetry are considered in the fol- 
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lowing. The intensity of the pump beam is written as 

ZiJ(r) =ZKlf(r) , 

where Z,, is the pump intensity on axis. 

(1) 

This laser medium is used to amplify a laser beam 
which is supposed to be gaussian with an intensity 

ZL(r, z)= [2PL(z)/nwt] exp( -2r*/wt) , (2) 

where PL is the average power of the beam, wL is the 
amplitude radius at 1 /e and z is the coordinate along 
the axis of propagation. 

In this simplified study we assume that the size of 
both the pump and the laser beam are constant over 
the length of the amplifying medium. We also ne- 
glect the loss of the medium at the laser wavelength 
and assume a small gain per pass. We can define a 
local small signal gain coefficient as 

G(r, z) =a (A,Zp(r)lLZsat) exp( -a~) , (3) 

where (Y is the absorption at the pump wavelength, 
Ap and AL are the pump and laser wavelengths and 
Z,,, is the saturation intensity of the amplifying me- 
dium (Z,,,= h u/a7 wherev is the laser frequency, cr 
is the emission cross-section at the laser wavelength 
and 7 is the fluorescence lifetime). The laser inten- 
sity in the amplifying medium can be described by 

i1-51 

%(r, z) G(r, z) Mr, z) -= 
aZ 1 +sZ,(r, z) ’ 

where s is the saturation parameter: s= l/Z,,,. The 
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intensity after one pass through the amplifier is ob- 
tained by integration of (4). In the case of small gain 
per pass one obtains 

/ 

z,_(r, z=f) = s G(r, z) 
ZL(Y, z=O) dz 

1 +sz,(r, z=(I) . (5) 
0 

Substituting (3 ) in (4 ) yields 

ZL( r, z=f) 

=Slp(T)[l-exp(-a!Z)]i’.F 
ZL(T, z=O) 

Ai. 1 +sz,(r, z=O) . 

(6) 

The average power in the laser beam is 

PL(z)= 7 2arl,(r, z) dr. 
0 

(7) 

One can then define an average gain for this partic- 
ular combination of pump and laser beams by 

G 
a” 

= PL(z=Z) 
P LO 

f(r) ew( -2r2/wt) 
1+ (2sPLo/71wi) exp( -2r2/wt) 

2nr dr , 

(8) 

where PLO = PL (z = 0 ) is the input laser beam average 
power and go is the unsaturated gain on axis: 

gO=.sZpo$ [l-exp(-cuf)]. 
I. 

(9) 

All these expressions have been derived for cw beams 
but the results are the same for pulsed beams. If the 
laser and pump pulses are shorter than the fluores- 
cence lifetime of the amplifying medium, one can 
obtain the average gain by replacing the laser and 
pump intensities (Z, and Zp) by the corresponding 
fluences (J= 2E/rw2 for a gaussian beam with E the 
pulse energy) and the saturation intensity I,,, by the 
saturation fluence J,,, = h v/o. 

These expressions can be used to optimize longi- 
tudinally pumped amplifiers or lasers. First, one can 
use eq. (4) to show how the gain profile in an am- 
plifier is reshaped by saturation. Fig. 1 shows the 
evolution of the gain profile as the average power of 
the beam to be amplified increases. The amplifier is 
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pumped by a gaussian beam and the size of the laser 
beam is half that of the pump beam. One can see that 
saturation first flattens the gain profile and ends up 
digging a hole on the axis. Note that most of the am- 
plifiers work in the saturation regime which corre- 
sponds to the last part of fig. 1 where the gain is min- 
imum on axis. 

Second, using eq. (8) one can try to determine 
what is the optimum size of the laser beam to be used 
for a given pump beam profile and radius. In order 
to be able to predict what happens with gaussian 
pump beam as well as with uniform (or “top hat”) 
pump beam we used the following super-gaussian 
profiles: 

f(r)=ew[--2(rlwpYl, (10) 

where wp is the amplitude radius of the pump beam 
and n the order of the super-gaussian. We compared 
three different beam profiles: a gaussian beam ( n = 2 ) 
and two super-gaussian beams (n = 4 and n = 8 ). For 
n= 8 the beam is almost uniform over the range 

{-WP, + wp}. The input laser beam is gaussian. As 
a practical example we consider a longitudinally 
pumped Ti : A1203 rod. The pumped beam radius wp 
is 50 urn and the incident laser power is in the range 
O-10 W (typical intracavity power in a cw laser). 
The on axis small signal gain is constant (g,= 0.25) 
which means that the average small signal gain in- 
creases with the order n of the super-gaussian profile. 
Fig. 2 shows the average single pass gain versus the 
size wL of the laser beam for three laser average pow- 
ers and three pump shapes. One can see that there 
is an optimum value of wL which gives the highest 
gain. This beam size depends on the shape of the 
pump beam and on the laser power. It does not de- 
pend on the small signal gain as long as the approx- 
imations used in the calculations stay valid. The 
presence of a maximum in the curves of fig. 2 means 
that, in order to obtain the best gain from a highly 
saturated amplifier, one has to calculate the opti- 
mum size of the beam. In any case, the best solution 
is almost never to use an equal beam size for the 
pump and the laser. 

One can also use these results to optimize the av- 
erage power obtained from a longitudinally pumped 
laser. In a cw pumped laser the steady state round 
trip gain in laser power equals the loss due to mirror 
transmission T plus unwanted losses L. Neglecting 
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Fig. 1. Transverse gain profile as a function of the average power PL of the laser beam. The pump beam and the laser beam are gaussian. 

The laser beam radius is half that of the pump beam. The graph is normalized in units of &_,,/I,., where Zu, is the laser beam intensity on 

axis (ILO=2PL/7rwt). 
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Fig. 2. Saturated gain of a single pass amplifier versus laser beam 

radius for three pump beam profile and three laser average power. 

The pump beam amplitude radius at I/e is 50 urn. The amplify- 

ing medium is Ti:AlzOJ (1,,=300 kW/cm’). The three sets of 

curve correspond to a laser average power of 0 W, 3 W and 9 W. 

For each average power we considered three super-gaussian pump 

beam profiles with respectively n = 2, n = 4 and n = 8. 

spatial hole burning and assuming a small value of 
L+ T, the intracavity power PL under equilibrium 
conditions can be calculated using the following 
equation: 

L-!- T=G,, 

f(r) exp( -2r2/wt) 
1+ (2sP,/nwi) exp( -2r’/wt) 

2nr dr . 

(11) 

Eq. ( 11) is an implicit relation between the intra- 
cavity power P,_ and the size of the beam wL in the 
amplifying medium. Note that in the case of a stand- 
ing wave laser the constant s has to be replaced by 
2s to account for the presence of two counterpro- 
pagating beams in the cavity, both of which saturate 
the gain. For given values of the gain, the loss, the 
pump beam size and for a given pump beam shape, 
one can use this equation to find what is the laser 
beam size which leads to the highest average power. 
In fig. 3, we have plotted the ratio between the laser 
beam radius w,_ giving the highest average power and 
the pump beam radius wp, as a function of the ratio 
between the losses L+ T and the gain g,. We have 
found that there is a linear relation between these two 
quantities. We have tried different conditions (gain, 
pump beam size, losses) and have found that, as long 
as the ratio of gain to loss is less than 10, this relation 
is very well verified. The small discrepancy between 
the points presented in fig. 3 and a straight line comes 
from the limited precision of the numerical proce- 
dure used to solve eq. ( 11). The slope of the linear 
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Fig. 3. Ratio of the laser beam size giving the highest average 

power to the pump beam size versus the ratio of the unsaturated 

gain to the total loss of the cavity. Three super-gaussian pump 

beam profiles with respectively n = 2, n = 4 and n = 8 have been 

considered. The points correspond to the optimum laser beam 

size determined from eq. ( 1 I ). One set of points (same symbol) 

is obtain by varying the cavity losses. The different sets of points 

correspond to different small signal gains, pump beam sizes or 

pump beam shapes. Straight lines are least squares tit to these 

data. 

relation depends on the exact shape of the pump 
beam. We found that in the case of gaussian or super- 
gaussian beams the linear relations can be approxi- 

mated by 

$l.l(l- $5) (12) 

where n is the order of the super-gaussian (n = 2 for 
a gaussian ). These results show that a laser has to be 

optimized for a given pump power and pump beam 
profile. One cannot use the same cavity adjustment 
for a lower power laser and a high power laser re- 
gardless of the problem of thermal lensing. 

In summary we developed a simple analysis of 
longitudinally pumped amplifiers and lasers. This 
analysis shows that for a given pump beam there is 
a laser beam size which optimized the gain in the case 
of an amplifier or the average power in the case of 
a laser. A very simple rule of thumb giving the op- 
timum beam size has been found. Such a simplified 
model cannot perfectly account for the complicated 
mechanisms occuring in the saturated amplification 
of light, but we think that, at least, it gives to ex- 
perimenters a rough idea of the best parameters to 
use in longitudinally pumped amplifiers or lasers. 
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