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Abstract: This paper considers an aut°2 optimal control problem for sampled-data systems. After defining a new ~2 norm for 
sampled-data systems, we give a state space solution to the optimal controller synthesis problem. We show that the -'~2 optimal 
control problem for a sampled-data system is equivalent to a standard ,9~' 2 optimal control problem for a related discrete-time 
system. 
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1. Introduction 

For analytical design of control systems, it is often convenient to measure system performance in terms 
of norm of the closed loop system from the exogenous signals to the regulated variables. After choosing a 
suitable norm and a synthesis model for the plant, the control system synthesis proceeds by finding a 
controller that optimizes the norm of the closed loop system. The synthesis model includes the plant as 
well as weighting functions that reflect the design objectives. This approach has turned out to be quite 
successful as shown by the development of off2 or LQG (Linear Quadratic Gaussian), Jg'~, d I control 
theories. 

While the ~°2, .~¢'~, and t'~ control theories are well understood for finite dimensional linear 
time-invariant (FDLTI)  systems, there has been relatively little work on the corresponding theories for 
sampled-data systems. By a sampled-data system, we do not mean a discrete-time system. Rather, a 
sampled-data control system means a continuous-time plant connected to a discrete-time controller using 
D / A  and A / D  devices. (In this paper, we will assume that the D / A  and A / D  devices are ideal zero order 
hold and ideal sampler respectively. We will not take into account the fact that these devices also involve 
quantization in magnitude.) Thus, in the study of sampled-data systems, it is important to analyze the 
behavior of the closed loop system with continuous-time inputs and outputs. This in particular implies that 
the inter-sample behavior must be taken into account. 

There have been some studies of the linear-quadratic regulator problem for sampled-data systems 
taking inter-sample behavior into account, see for example [15,6,13]. Recently, Chen and Francis [5] have 
formulated and solved an 9¢' 2 optimal control problem for sampled-data systems, while the )V~ optimal 
control problem has been investigated by Kabamba and Hara [9,10], Chen and Francis [4], Toivonen [17], 
and Bamieh and Pearson [2]. Recently, we have given an explicit formula for the £~°~-induced norm for 
sampled-data systems [16]. 

One common measure of performance for a linear time-invariant system is the ~'¢'~2-norm of its transfer 
function. This is the norm that is optimized in the LQG controller design. For linear time-invariant 
systems, there are many (equivalent) ways of defining the ~"2 norm. One deterministic definition is to 

* Supported in part by National Science Foundation under grants no. ECS-9001371, Airforce Office of Scientific Research under 
contract no. AFOSR-90-0053, Army Research Office under grant no. DAAL03-90-G-0008. 

016%6911/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved 



426 P.P. Khargonekar, N. Sivashankar / ~ ,  optimal control for sampled-data systems 

take the input to be a Dirac delta function at t = 0 and define the ~ 2  norm to be the square root of the 
integral square of the output. (This is for a single input system. For a multi-input system, one applies delta 
functions at each input channel and then take the square root of the sum of integral squares of the 
resulting outputs.) Chen and Francis [5] generalize precisely this concept of the Jt~2 norm to sampled-data 
systems and solve the corresponding optimal control problem. 

However, the interconnection of an FDLTI  continuous-time plant and a finite dimensional linear 
shift-invariant (FDLSI) discrete-time controller via sample and hold devices leads to a closed loop system 
which is periodically time-varying. In view of this fact, it seems unnatural to apply the impulsive input only 
at t = 0. Rather, it is more natural to examine the effect of an impulsive input at any arbitrary time. 

Motivated by the recent work of Chen and Francis [5], in this paper, we define a new ,~2 norm for 
sampled-data systems. We begin by considering a general exponentially stable linear periodic input-output 
system, and define an Y2 norm for it. This notion seems to be a natural generalization of the Y¢'2 norm 
for linear time-invariant systems. Although in this paper we will take a purely deterministic approach, it is 
interesting to note that this definition is also equivalent to the stochastic definition of the ~ 2  norm. This 
notion of the 9F= norm for periodic systems leads to a suitable definition of the ~= norm for 
sampled-data systems. Our notion of the ~ 2  norm is also closely related to the work of Juan and 
Kabamba [7] who have investigated the use of Generalized Sampled-Data Hold Function (GSHF) control 
to optimize quadratic performance measures for sampled-data systems. 

We then consider the synthesis problem for Jt~2 optimal control of sampled-data systems. More 
specifically, we give a complete state space solution to the problem of finding a stabilizing FDLS1 
discrete-time controller for an FDLTI  continuous-time plant such that the ,,~2-norm of the closed loop 
system is minimized. In the problem formulation, we also allow for (discrete-time) measurement noise. We 
show that this problem is equivalent to a standard FDLSI  discrete-time Jd' 2 synthesis problem. Under 
standard assumptions on the given continuous-time plant, the resulting FDLSI  discrete-time ,8" 2 synthesis 
problem turns out to be an LQG problem for which an optimal controller exists. Thus, if we find the -)if2 
optimal FDLSI discrete-time controller for the equivalent FDLSI  discrete-time plant, then we have a 
solution to the main synthesis problem. The problem of finding a'ff= (or LQG) optimal controllers for 
FDLSI discrete-time systems is by now a classical problem [14,1]. 

In the next section, we define the ,~2-norm for sampled-data systems and also pose the main synthesis 
problem. In Section 3, we solve the optimal control problem in state-space form. We conclude the paper 
with some remarks regarding current and future research directions. 

We end this section with some remarks on notation. Let W" denote the space of continuous functions 
from the time set [0, oo) to N n, and let ~zcE" denote the space of piecewise-continuous functions from the 
time set [0, oc) to R" that are bounded on compact sets of [0, ~ )  and are continuous from the left at every 
point except the origin. As usual, £,°~[0, zo) denotes the Lebesgue space of measurable functions f(t) from 
[0, ~v) to R" which satisfy 

(So II f I1.<~ := II f ( t )  IJ 2 dt < oc 

where II • II is an appropriate spatial norm on N". Similarly, in discrete-time 5 #" denotes the space of 
R"-valued sequences defined on the time set {0, 1, 2 . . . .  }, l~ denotes the set of all sequences ~ in Y "  
which satisfy 

=,o ) 1/2 
IlEll<~:=k(k=o y" II~(k)l12 <oc. 

Let ~ denote a banach space. Now define 

IJ:= {x,: x , ~ ;  IIx~ll/= < ~} .  

where the spatial norm is the appropriate norm on ~ .  If  ~ =  R" then we write /~ instead of l~". We will 
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be mainly interested in I f  ~'t°'rl in this paper. We will drop the superscript n in the subsequent sections as 
the dimension of the signal space will be clear from the context. As usual the transpose of a matrix A is 
denoted as A' and the adjoint of an operator E is denoted as E* .  

2. Problem formulation 

Since sampled-data systems are time-varying periodic systems, we begin by defining the Jff2 norm for 
periodic systems. Later, we will derive an explicit expression for the ~ff2 norm of sampled-data systems. 

2.1. 3f:, norm for periodic systems 

Consider an exponentially stable linear continuous-time periodic system Y whose input-output  
equation is given by 

f0 l z ( t )= h(t, r )w( r )dr .  

Here, h(t, r) is the weighting function or the impulse response of the system. Let T be the period of the 
system. The Jd  2 norm of this linear time-varying periodic system is defined as 

[1 ) 
11-Y-112 := -T t race(h( t ,  r)h'(t ,  r)) dt d r ]  . (1) 

The J:2 norm defined above has the following interpretation as an average value of the Za 2 norm of 
the output. For simplicity, consider a single input system. Suppose we apply a Dirac delta function at the 
input at time t ~ [0, T]. Then the 9ff 2 norm defined above is the square root of the average of the integral 
square of II z(t)II. Also, if the input is a zero mean Gaussian stochastic process of unit covariance, then 
the above norm is the average variance of z in steady state. 

Notice that if g-  is an LTI (linear time-invariant) system, then the above definition gives us the 
standard formula for the Off2 norm of an LTI system, namely 

][.Y"II2 = { fo~trace( h ( t ) h " ( t ) ) d t ) 1/2. 

For sampled-data systems, we need a somewhat more general framework. In particular, we will consider 
a periodic system with a continuous-time input w and a discrete-time input v. For simplicity, and this will 
be sufficient for our purposes, we will assume that the discrete-time input is also of period T. (The 
discrete-time input u will represent an exogenous signal entering the controller.) Now consider the 
input-output equation for such a linear periodic system: 

k 
z(t) = fo'hw(t, r )w(r)  d r +  E h , ( t - i T ) v ( i ) .  

i=0 

Here, hw(t, r) is the weighting function for the continuous-time input and h,(t) is the pulse response 
function for the discrete-time input v. Assuming that the system is exponentially stable, the ~g'2 norm of 
this sampled-data periodic system is defined as 

= )So=  IlJ-II2 -'= trace(hw(t, r )h ' ( t ,  r)) dt d r +  trace(h.(t)h'(t)) dt]  1/2. (2) 
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2.2. Sampled-data systems 

Consider the sampled-data feedback system in Figure 1. Here G is a FDLTI  causal continuous-time 
plant, K is a FDLSI causal discrete-time controller, w ( t )  ~ R m' is the exogenous input, u( t )  ~ R "2 is the 
control input, z( t ) ~ R p~ is the controlled output, y (  t ) ~ R p2 is the measured output, and o( k ) ~ R "~ is 
the discrete-time measurement noise. The block labeled as S T represents the sampling operator with time 
period T defined as follows: 

S t :  <~m_ ~Spp~_ : y ~ S r y  : ( S r y ) ( k )  = y ( k T ) .  

The system block denoted by H r represents the (zero-order) hold operator with time period T: 

H r: ,~,,,2 __,~c~,,,,_ : q ~  HT+:  ( H T ~ ) ( t )  = + ( k ) ,  k T <  t<_ ( k +  1)T. 

Consider the transfer function representation of G: 

z = Galw + G12u, y = G21w + Gz2 u. 

In Figure 1, since the measured output y is sampled, it must be continuous. To ensure this, it is sufficient 
to assume that G21 is strictly proper. We will also assume throughout this paper that G22 is strictly proper 
to ensure the well-posedness of the feedback system. Also, for the 9~ 2 norm of the closed loop system to 
be bounded, it is necessary that Gll be strictly proper. 

Now consider a state space representation of the systems given in Figure 1: 

G: A c = A x + B l w + B z u ,  z=Clx+D12u, y=C2x, (3) 

K: ~ ( k + l ) = ~ ( k ) + r n ( k )  4 ~ ( k ) = O ~ ( k ) + T ~ ( k ) .  (4) 

Let the state-dimension of G in (3) be n and that of K in (4) be h. The input to the controller, o(k) ,  is the 
sampled output measurement corrupted by discrete by discrete-time noise, i.e., 

n ( k )  = C 2 x ( k T  ) + D2v(k  ). 

And the control input is generated by a zero-order hold: 

u ( t ) = ~ b ( k ) ,  k T < t < ( k + l ) T .  (5) 

The feedback interconnection (G, HTKST)  is called internally asymptotically stable if the associated 
autonomous discrete-time system with the state 

) 
is asymptotically stable. If the sampled-data system is internally asymptotically stable then it is also 
exponentially stable. 

w i c . z  
u y 

K 

02// 

Fig. 1. 
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In Figure 1, since u is the output of a (zero-order) hold operator as given in (5) it follows that 

x( (k+  1) r )  = eArx(kr) + eA r- )B,w(kr+ s) as +  ,(r)B2u(kr), 

z ( kT  + t) = C,emx(kT)  + fotCl eA¢'-')Blw(kT + s) ds + [C, ep(t)B 2 + D12 ] u(kT) ,  

where ¢ ( t ) : =  fd eACd¢ and t ~  [0, T]. 
A compact way of writing the above system is as follows: 

x ( (k  + 1)V) = earx(kT)  + Blwk + ep(T)B2u(kT ), 

z k = Clx(kT)  + L)11Wk Jr- T)12u(kT), 

where w k, z e belong to ~ [ 0 ,  T], ~'mr02 t , T] respectively, and are given by Wk(t ) := w(kT+ t), zk(t ) := 
z (kT+ t), t ~ [0, T]; and B 1, C 1, Dll and D12 are linear operators defined as follows: 

B," .£azm' [0, T] --+ n"  and B,w = £Tea{T-s)B,w(s) ds, 

C-1 :R" ~ q ~ f ' [ 0 ,  T] and (CIX) ( t )  = C 1 eAtx, 

D,, :  X'2"[0, r ]  --+ £azP~ [0, T] and  ( D l l W ) ( t )  ~-- fotC1 e A(t ")B,w(s) ds, 

D~2:R"~-+.~q'zm[0, T] and ( D 1 2 u ) ( t ) =  [Clq~(t)B2+D~2]u. 

This is quite similar to the lifting technique described in [2,17,18]. 
If the controller is given by (4) then it is easy to verify that the closed loop system with inputs w e, v(k) 

and output z e and a combined state vector (x ' (kT)~ ' (k ) ) '  has the form (in the packed matrix notation): 

[; 
where 

F := [ eAr+q~(T)B2TCzFC2 q~(T)B20 ] 

H"= [C, + D,2TC2 .D120], Jw:= Dn, 

(6) 

Jv := Da2TD2. 

Ev:= -eP(T)FB2T]D2, 

2.3. ~ norm for sampled-data systems 

Now for all t, z ~ [0, T] define (with a slight but suggestive abuse of notation): 

D12(t) := [Cldp(t)B 2 + Dlz], 

H(t):=[C1 em +l)12(t)TC2 D12( / )O] ,  

Jo ( t ) := D12 ( t ) TD2 , 

JwJw*(t, '7"):~-- fmin(t, r ) c  1 eA( t_s)n ln;  eA,(r_s)c;  ds ,  
"o 

where JwJw*(t, r) is the kernel of the operator JwJ*: 

J . , J*  : £~'m[02 t , T] --.£e,m[02 t , T] .  

(7) 

(8) 

(9) 

(10) 
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Now consider the asymptotically stable discrete-time system (6). The inputs to this system are %,  v. 
The Controllability Gramian of the system in (6) with respect to the input w~ is defined to be the unique 
solution Lc,. to the Lyapunov equation 

FLcwF' - L~w + E~E~* -- 0. (11) 

Note that 

E,*:R"+~,L~a2m'[0, T ] ' ( ~ ) ~ ( B ~ e  A''~ o)(X~)=B~eA'~x,  a n d O < s < _ T .  

Thus, EWE,* is an (n + h) × (n + h) square matrix of the form 

EwEs* = 0 0 " 

where 

U := eA"B1B( e A's ds. 

Similarly, define the controllability Gramian of the system in (6) with respect to the discrete-time input v 
as the unique solution L~,, to the Lyapunov equation 

F L ~ , F ' -  L~,, + E~,E,; = 0. (13) 

The Gramians L~w and Lc,, can be easily computed using standard matrix algebra software. 
The next result gives a formula for the ./t°2 norm of the sampled-data system in terms of the plant and 

controller data. 

Lemma 2.1. Consider the system given in Figure 1, where G and K are as defined by (3)-(4), and suppose it is 
internally asymptotically stable. Let 3-  denote the closed loop input-output operator with inputs w, v and 
output z. Then the Of' 2 norm of the closed loop system is 

[{Jo } IJo / IlYlI2 '= trace J , , ( t ) J , , ( t ) d t  +t race  rH( t )Lc , ,H  ( t ) d t  

+trace - T f  ° (JwJ~*(t, t) + H ( t ) L c w H ' ( t ) )  dt , (14) 

where Lc,, and L~,, are the controllability Gramians of the closed loop feedback system as defined above in (11) 
and (13) respectively and H(t),  Jr(t) and JwJ~*(t, t) are as defined in equations (8)-(10). 

P r o f .  This lemma follows by a direct application of (2). It is straightforward to verify that 

(JL,(t) for 0 < t < T, 
h,,(t) { 

~ H ( t - k T ) F k - I E , ,  f o r k T < t < ( k + l ) T a n d k > _ l .  

Then by the property of trace(.) and the definition of controllability Gramian L .... it follows that 

fo trace(h~(t)h~,(t)) dt 

T oc ,. T t 
= t r a c e r  J,,(t)J~'(t) dt  + trace ~ [ C k + l ) - H ( t -  kT)Fk- IE , ,E ,~(F  k-x) H ' ( t -  k T )  dt 

ao k = 1 a k T  

fo ( f T  , E~E~(F k 1) H ' ( r )  dr  = trace(./,, ( t )J , , ( t ) )  dt + trace r) E Fk-1 ' 
"0  k = l  

=traCefoV(J[( t )Jv( t ) )  at + t race for t t ( r )Lc , ,H ' ( r  ) dr.  
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Similarly, notice that for 0 < • _< T, 

t C eA{t-~)B1 for 0 < r < t < T, 

hw( t' ~ ) = ~ H(  t - k T ) F k  ~( emr-~)B1)0 for k T  <_ t < ( k + l ) T  and k > l .  

Then, using the definition of controllability Gramian Low, a calculation as above gives 

-JoI  1 ( J0 / 1 T trace(h~(t, "~)h'.,(t, r))dt  dr=trace "T (JwJ~*(t, t )+n(t)LcwH'(t ) )dt  
T 

Proof is completed by using the definition of the ~"2 norm for periodic systems in (2). [] 

In case there is no measurement noise, which can be obtained by taking D 2 = 0, the above formula for 
the ~ 2  norm simplifies to 

1 r • 
I [Yl l2:  = t r a c e - ~ f  ° (JwJw (t,  t l + H ( t ) L c w H ' ( t ) l d t ]  '/2. (15) 

Now we can pose the main synthesis problem addressed in this paper. 

Given a continuous-time plant G as in Figure 1, find a discrete-time controller K such that the closed loop 
feedback system is internally asymptotically stable and the .~2 norm of the closed loop system is minimized. 

A solution to this problem is given in the next section. 

3. '~2 optimal controller synthesis 

Consider the sampled-data system in Figure 1. Given a continuous-time plant G with an internally 
stabilizing discrete-time controller K as in Figure 1, we will analyze the ~ 2  performance of this system. 
We will see that a solution to the synthesis problem posed in the previous section falls out naturally from 
this analysis. 

Let Gz2 d := STG22H r represent the discretized version of G22. Clearly, G22 d is a linear finite-dimen- 
sional discrete-time system. It is standard to verify that the state space representation of G2z d is: 

G22 d = [ C2 

Suppose (A, B2, C2) in (3) is stabilizable and detectable. Let T be the set of sampling periods T i such 
that either (e AT', dp(~)B2) is not stabilizable or (C2, e AT') is not detectable (in discrete-time). The set T is a 
discrete set (see [11]). Thus, if the sampling time T is chosen outside T then Gz2a is also stabilizable and 
detectable. In this case, G22 d admits an internally stabilizing controller. The following result follows 
directly from [5]. 

Theorem 3.1. Consider the system in (3). Assume that (A, n2) is stabilizable and (Cz, A) is detectable and 
the sampling time T is outside T. Then there exists a discrete-time controller K which internally stabilizes G. 
Moreover, a discrete-time controller K internally stabilizes G iff K internally stabilizes Gz2 d in discrete time. 

We will next introduce a few matrix factorizations. Let S 1 be a Pa × rl real matrix such that 

1 T * 1 r T  rt , 
S i S  1 = "~ ( JwJw ( t ,  t ) d t  = -~ ~ ] C 1 eACB, B( e A "C( d r  d t .  

ao ao ao 
(16) 



432 P.P. Khargonekar, N. Sivashankar / ~ optimal control for sampled-data systems 

Define 

H,(t)  .'= ( C , ( t )  D12( t ) )  = (C, e A' Clep(t)B 2 + D,2) (17) 

and let W be an r 2 × (n + m2) real matr ix  such that  

T t 
w ' W =  fo I-1, ( t) H,( t ) dt. (18) 

Now parti t ion W as 

W=:  (R  $2) (19) 

where R is r 2 × n and S 2 is r 2 × m 2. Finally, let Q be an n x r 3 real matr ix  such that  

1 1 fo r QQ'= -~ U= ~ eA~B1B( e A'' ds .  (20) 

Note  that the matrices R, Q, S 1 and $2 depend only on the plant  data  given in (3) and the sampling 
time T. 

Introduce the F D L S I  discrete-t ime plant  67 given by: 

(Y (*  + 1) = eATy(k) + (Q 0) i f ( k )  + eo(r)B2fi(k) ,  
i 

~ y ( k  ) = C2Y(k ) + D2v(k ). 

Here  ~ ( k )  is an ( r 3 + q ) - v e c t o r ,  2 is an ( r 2 + p l ) - v e c t o r ,  and the zero matr ices are of  compat ib le  
dimensions. N o w  we have the following proposi t ion.  

Proposit ion 3.2. Consider the continuous-time plant G given by (3) and the discrete-time plant 67 given by (21) 
where the matrices R, S], S 2, and Q are as defined in (19), (16), (20). Suppose the discrete-time controller K 
given by (4) internally asymptotically stabilizes G. Then 

II °Jll2 = II~ 112. (22) 

where ~ is the closed loop feedback system of 0 and K as represented by Figure 2. 

Remark.  Note  that  ~ is a s tandard F D L S I  discrete-t ime system and [I ~ []2 is the usual aCP2-norm for 
F D L S I  discrete-t ime systems. 

Proof.  The proof  is in two steps. The first step is to compute  11..¢']12 and the second is to compute  

II ~ [12. 
Step 1. Set 

(, o) 
Hf = TC 2 

Let L~w and Lc,, be the controllabil i ty Gramians  defined in (11) and (13) respectively. 

Fig. 2. 
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From Lemma 2.1, we can express the square of the W2 norm of the closed loop system as 

[Yll 2 =  [trace{ forJ'(t)Jv(t ) dt} +trace{ foTI-I(t)LcvH'(t ) dt} 

+trace -Tfo (JwJw (t, t) + H(t)LcwH'(t)) dt 9 

First note that 

T,  [foT(Cadp(t)B2 + )'(Cldp(t)B2 + D12) dt]TD 2 . (23) fo J'' (t)J,~(t) dt = D2T' D12 

Then using the factorization defined in (18)-(19), 

traCefoTJ / (t)Jv(t) dt = trace( D 2 T'S2S2TD2). 

Similarly, using (16), 

1 T • 
fo JwJ~. (t, t) dt trace ~ = trace( S 1S(). 

Next, note that 

1 T t 1 T t t 
t r a c e ~ f  ° H(t)L~wH (t) d t = t r a c e T f  ° Hi(t)HfL~wHtH i (t) dt 

1 _LT , / , L~w , 
= -T-u trace(H i (t)H~(t)HfLcwH[) dt = trace[W WHf--T-H f ) 

= trace( WHf(-L-'~ )H;W ' ) 

where the third equality follows from (18). Similarly, it is easy to verify that 

T t t t 
trace f0 H( t ) L~vH ( t ) dt = trace( WHfLcoH f W ). 

Thus, 

II J [I 2 = trace(D;T'S2SzTD2) + trace(WHfLcoH/W') 

+ trace( S,S; ) + trace( WHf(-L-~ ) H[W'). (24) 

Step 2. The closed loop system consisting of (G, K) in Figure 2 has the following state space representa- 
tion: 

~(k + 1) cc~ ~(k) o rD2 ~(~) ]' 

R + S2YC2 
~ ( k )  = 0 

Setv 

L:= ~ +Lcv. 

(25) 
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L 
F L F ' -  L = F ~  F ' -  - -  

= _(U/To 

= 

Now using the standard definition of the 9f' 2 
norm of the system in (25) is 

I1 ~ 112 = trace(CdLCd' + DaDd) 

where 

Ca== 0 and 

We claim that L is the controllability Gramian of the system (25). To see this note that using (11) and 
(13) we get 

LC w 
+ FLc,,F' - L~,, T 

- FD 2 ( D~ T'B2gP' ( r ) D~ F' ) 

O(T)B2TD2][(  Q O) O(T)B2TD2]' 

FD e j[ 0 FD2 J" 

norm for discrete-time systems, the square of the )f'~= 

0 S2TD 2 ] 
Da:= (0 S,) 0 " 

(26) 

Some simple algebra shows that the right hand sides of (26) and (24) are equal. This completes the proof. 
[] 

The following theorem gives a solution to the optimal ~2  sampled-data controller synthesis problem. 

Theorem 3.3. Consider the FDLTI continuous-time plant G given by (3). Let ( A, B 2) be stabilizable and 
(C2, A) be detectable. Construct the FDLSI discrete-time plant G given by (21). Assume that the sampling 
period T is outside the set T. Then the following statements are equivalent: 

(i) The discrete-time controller K described by (4) internally asymptotically stabilizes G as in Figure 1 and 
minimizes ~2 norm of the closed loop system. 

(ii) The discrete-time controller K described by (4) internally stabilizes G as in Figure 2 and minimizes the 
standard discrete-time) ~2 norm of the closed loop system. 

This result follows from Theorem 3.1 and Proposition 3.2 by noticing that K internally stabilizes G iff 
~t internally stabilizes G22 = G22a- From the above theorem the solution to the synthesis problem is 
obvious. 

Given a continuous-time plant G, construct the discrete-time plant G as in (21). This construction only uses 
the plant parameters and the sampling period T. Now solve the ~2  optimal control problem for this 
discrete-time plant G. Then the controller that we obtain is also the Jt~2 optimal discrete-time controller for the 
plant G. 

Although we have stated the above result for optimal controllers, it is easy to see using Proposition 3.2 
that a similar result also holds for suboptimal controllers. 

Existence of the optimal controller 

Consider the problem of finding an internally stabilizing controller K for the discrete-time plant G that 
minimizes the 9ff 2 norm of the closed loop system with exogenous inputs ~, v and the controlled output 
Z. If the system for 5 to £ has no invariant zeros on the unit circle and if the system from (~5, v) to 37 has 
no invariant zeros on the unit circle, then it is a well known fact that the ~2  optimal controller exists. If in 
addition, the transfer function from (~, v) to )7 has full row rank on the unit circle and the transfer 
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function from fi to ~ has full column rank on the unit circle, then the optimal controller is unique, and can 
be obtained by solving two discrete-time algebraic Riccati equations. 

Thus, a relevant question here is under what conditions on the continuous-time plant G are the above 
invariant zeros and rank conditions on G satisfied. 

Suppose the continuous-time plant (3) satisfies the following (standard) assumptions: 
(a) (A, B 2, C2) is stabilizable and detectable and the sampling time T is chosen outside the set T. 
(b) D12 is full column rank, C(D12 = 0, and (C1, A) has no unobservable modes on the imaginary axis. 
(c) D 2 is full row rank and (A, B1) has no uncontrollable modes on the imaginary axis. 
Then it is not difficult to verify that for the resulting FDLSI discrete-time system G, the aforementioned 

invariant zeros and rank conditions are satisfied and the J~2 optimal controller exists and is unique. Of 
course, these are only sufficient conditions for the existence of optimal controllers. 

4. Conclusions 

We have formulated and solved an ~2  optimal control problem for sampled-data systems. We have 
shown that this problem is equivalent to a standard discrete-time ~ 2  or LQG optimal control problem. 
Explicit state equations for this equivalent discrete-time system are given. 

Chen and Francis [3] have shown that, in general, a time varying controller gives a better ~2  
performance than the optimal LSI controller for their definition of ~'~'2-norm. Now if the controller is 
time-varying then the resulting closed loop sampled-data system is not necessarily periodically time-vary- 
ing. Thus, the definition of the ~ 2  norm should be suitably changed. One possibility would be to apply 
an impulsive input at an arbitrary instant of time (not necessarily during the first sampling interval), and 
then take the square root of the average of the £a 2 norm of the resulting output. It is believed that with 
such a definition of the ~2  norm, linear time-invariant controllers yield the best possible performance. 
Also, one could pose the multi-rate sampled-data synthesis problem where the measured outputs and 
control inputs of the plant operate at different sampling frequencies. A complete investigation of this is 
left for future research. 

After this paper was completed, we received [19] where results similar to those in this paper are 
obtained. 
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