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Note 

A Numerical Method for 
the Self-Similar Hypersonic Viscous Shear Layer 

1. INTRODUCTION 

In laminar fluid motion at high Reynolds numbers, viscous effects are important 
primarily in thin layers described by the boundary-layer approximation to the 
Navier-Stokes equations. If the Mach number in the inviscid flow above such a 
shear layer is very large (hypersonic), the layer will be very hot and the nondimen- 
sional temperature on one or both boundaries, scaled by the peak temperature in 
the layer, will approach zero in a first approximation. The problem to be con- 
sidered here, which arises in an asymptotic description of “hypersonic strong 
viscous interaction” [l] in the presence of large surface mass injection [2], is 
concerned with a self-similar free shear layer for a limiting case in which the 
uniform inviscid stream above has infinite Mach number and zero scaled-tem- 
perature, while the gas below the layer is at rest, also with zero scaled-temperature. 
The desired solution has a self-similar form, and so the partial differential equations 
describing the flow are reduced to a system of ordinary differential equations. The 
two-point boundary-value problem to be solved is one in which the location of one 
boundary, at which the solution is singular, is not known a priori, and is deter- 
mined by imposing boundary conditions which require that the solution have the 
correct asymptotic behavior as the boundary is approached. Our purpose here is to 
describe a Newton-based finite-difference method utilizing continuation which was 
applied successfully to this particular problem. An appropriate choice of continua- 
tion path which accounts for the singular nature of the solution is shown, and the 
behavior of neighboring solutions, which are relevant to hypersonic flow, is 
illustrated. The numerical formulation may perhaps be useful in solving other 
boundary-value problems whith similar features. 

If a nondimensional streamwise coordinate x and stream function $ are adopted 
as independent variables, the boundary-layer equations expressing conservation of 
momentum and energy for a fluid element may be written respectively as [ 1,2] 

u,+-T*=p(T”-‘uu,), 
YPU dx 

T -(Y-l)Tdp 
x --=P(T-’ 

YP dx 
uT$)J, + (Y - 1) PT” - ‘+d2, 
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where U, T, and p(x) are the nondimensional streamwise velocity component, 
temperature, and pressure, respectively; y is the ratio of specific heats (assumed 
constant); the Prandtl number has been taken equal to one; the viscosity coefftcient 
has been assumed proportional to T”, with i < o < 1; and the gas is assumed to 
obey the perfect-gas law. The quantities x, II/, U, T, and p are referred to A’,, 
M;*P~u~X,, u, M&T,, and pm, respectively, where X, is a reference length 
C21, and M,, pm, u,, T,, and pm are the Mach number ( B l), density, speed, 
temperature, and pressure, respectively, in the undisturbed stream above the layer. 
For the special case in which the pressure varies as a power of the distance x, the 
solution has a self-similar form. In particular, if the pressure is p = (const)xb, the 
similarity variable is [ = (const)$/x” + b”2 and (lt(2) are reduced to the ordinary 
differential equations 

where u = u(c), and T= T(i); for the case to be considered here [2], b = - i. 
The boundary conditions for (3) and (4) will typically be given at two values of 

<, say [ = co, which in physical space corresponds to the upper “edge” of the 
viscous layer, and [ = CL, where the value of CL depends on the problem considered; 
typically CL corresponds to the location of a solid surface, in the case of a boundary 
layer, or to the location of the lower “edge,” in the case of a free shear layer. (In 
the limit of high Mach number, the upper and lower “edges” of the shear layer are 
located at finite values of the scaled distance coordinate [ 1,2], as a consequence 
of the extremely low density of the fluid in the layer and the strong decrease in dif- 
fusion near the edges.) For a boundary layer along an impermeable surface, CL = 0; 
if the surface is permeable with a suitably small mass flux normal to the wall 
varying as a particular power of x, then CL is related to the (specified) rate at which 
mass is added (CL < 0) or removed (CL > 0) at the surface. For the larger mass flux 
considered here, the viscous boundary layer is “blown away” from the wall as a free 
shear layer [2], and CL = lo, where co is an unknown negative constant related to 
the amount of mass (smaller than the total injected mass) entrained in the lower 
part of the shear layer. The unusual combination of conditions u = 0 and T = 0 at 
the lower boundary arises because an asymptotic solution is sought in the limit as 
M, + co, and the velocity and temperature are of higher order below the layer in 
comparison with their values in the layer. To define co uniquely, however, it is not 
sufficient simply to specify u = T = 0 at the lower boundary, since in general there 
exist infinitely many solutions with arbitrary values of CL which satisfy this condi- 
tion. (These correspond to a boundary layer with mass transfer at the wall, as 
mentioned above.) The desired solution may be identified by the way in which 
u + 0 and T + 0 as the lower boundary is approached. Since u and T are zero at 
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c=cO, the coefficients of U” and T” in (3) and (4) also vanish at that point. The 
asymptotic behavior as c + co is given by 

u = (&31/m- 1) (wo+wJ+wJ2+ -.} (5) 
T= (53)‘/‘2”- 1) {s~+s~[+s2c2+ ... >, (6) 

where C= -(i - &,)/[,, and wO, s,,, wl, etc., are constants which depend on 6, o, 
and y; the convection, pressure-gradient, and diffusion terms are then of the same 
order in [ - c,,, and the shear stress and heat-transfer rate vanish at the lower 
boundary, as expected from a physical point of view. If o -+ 1, a logarithm also 
appears, whereas if o -+ 4, then [,, + -co and the behavior is exponential rather 
than algebraic. The boundary conditions to be used for (3 k(4) when i < o < 1 are 
then 

i+i0: u - (const)([ - [0)w/(2w-‘1), T- (const)(c - &)1’(20-11) (7) 

c-+00: u--, 1, T+O. (8) 

Several numerical techniques have been used to solve the self-similar form of the 
compressible laminar boundary-layer equations, and the need to specify asymptotic 
boundary conditions for uniqueness has been encountered before in computing 
boundary layer solutions with b >O (e.g., Ref. [3]). Early solutions with CL =0 
were computed by Cohen and Reshotko [3] using a successive-approximation 
scheme. For the case where CL is a large negative number (with CL specified 
explicitly), shooting from the interior was found successful by Nachtsheim and 
Green [4] as was the Newton-iteration finite-difference method described by Liu 
and Chiu [S]. Nachtsheim and Swigert [6] developed a shooting method to 
handle asymptotic boundary conditions. Initial attempts at solving the present 
problem using a shooting method combined with the known asymptotic behavior 
and certain invariance properties of the system were unsuccessful. An approach that 
was successful is described below. 

2. NUMERICAL METHOD 

To handle the difficulties at the lower boundary, a continuation method is 
employed with the location CL of this boundary treated as a free parameter. (co 
denotes the value of CL for which (7) is satisfied.) To identify a feasible continuation 
path, several trial solutions were computed for various values of CL with u(c=) = 0, 
T(cL) = TL, ~(24) = 1, and T(24) = 0, where 0 < TL 4 1. It was found that solutions 
with CL c &, and TL = 0 could not be computed directly since a discontinuity in the 
behavior of the solution appears at &,. . the trivial solution u = T= 0 occurs for 
< < co, and the desired fractional-power behavior (7) occurs for 0 c c - &, 6 1. Thus, 
for any o in the specified range i < o < 1, derivatives of u and T of sufficiently high 
order are discontinuous at c = lo, and one may expect computational difficulties if 
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FIG. 1. Trial numerical solutions (broken lines) and the desired solution (solid line) for u (a) and 
T (b) near [=&,. With TL=O: CL= -3.2 (--); cL=-3.4 (----). With cL=-5: TL=10-4 
(----); TLC 10-S (---). 

an assumed location for the lower boundary in some iterative numerical scheme is 
less than co (that is, if co lies within the computational domain). Figure 1 provides 
an illustration of such behavior for the case y = 1.4, o = a, and b = - f. The two 
curves to the left are typical of solutions with TL > 0, CL < co, and the two curves 
to the right are typical of solutions with T, = 0, CL > co; note that as T, -+ 0, u -+ 0 
and T+Ofor [L<5<io. 

The problem is now reformulated as follows. The new independent variable 

(9) 

is introduced, and solutions are considered on the truncated domain 0 < x 6 xo, 
where xu is chosen large enough that (8) is satisfied within a specified tolerance 
(both 1 --u and Tare O(X-~/(~--O)) as x + cc ). The system (3)-(4) will be written 
in terms of x as a two-element vector equation in the form 

r(s; id = 0, (10) 

where sT E (u(x; CL), T(x; iL)) an r is the appropriate vector differential expres- d 
sion. The boundary conditions 

x = 0: u = 0, T=O (11) 

x=x”: u= 1, T=O (12) 
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are now adopted, together with the additional condition 

(13) 

where g is a function which measures the agreement between the numerical and 
asymptotic solutions near the lower boundary, vanishing when (7) is satisfied. (The 
form for g is not unique; a convenient choice will be described later.) Starting with 
an initial guess @‘I > co, the numerical procedure is to march in CL, solving 
(lo)-(12) at each step and approaching [,, from above so that the singularity at [,, 
lies outside the computational domain. Marching is terminated when (13) is 
satisfied within some desired level of accuracy. 

To solve the boundary-value problem (lo)-(12) at each iteration level in iL, a 
Newton-based method is adopted, utilizing second-order finite difference and a 
nonuniform computational grid. On the basis of the first two terms in the 
asymptotic expansions for u and T as i--f Co, it is found that (7) is an accurate 
representation of the solution with maximum fractional error of order 10e3 over 
the small interval 0 < i - co 6 E,, where E, is of order lop3 for w = a. To resolve the 
solution in this small region without requiring an excessive number of grid points, 
the “exponential” grid 

Xj=X()+$+AX,. j=l,...,N, 
a (14) 

is employed, where x,=0; Ax,, = x1 -x0 is specified (typically of order 1O-4 to 
10e3); and the constant a - (xj+r - Xj)/(Xj -Xi-r) > 1 ( Z 1.03, for example) 
satisfies 

aN-1 XN -=- 
a-l Ax, (15) 

with xN = xu specified ( x 24, typically). 
The system (10) may be written in a form suitable for numerical solution: the dif- 

fusion terms are expanded and all negative powers of u and T are factored away to 
avoid possible floating-point overflow during iteration and inaccuracies associated 
with computing ratios of terms that vanish near &,; first and second derivatives are 
then replaced with three-point central-difference formulas appropriate for the grid 
(14), e.g., 

du/dxl,=, zuX, = 
uj+1+(c+1)uj-a2uj-, 

dXj-lCt(l +cI) 

d2u/dx2& xu,,, =‘j+’ 
-(a+ l)Uj +CrUj-1 

(AXj- 1)2 a( 1 + a)/2 ’ 

(16) 

where Axjpl =xj -xi-,. The errors are O((AX~)~) in (16), and if a = 1 + O(Axj), in 
(17) as well. The numerical approximation to system (10) thus reads 

rj = rj(sj- 1) Sj, Sj+ 1; CL) = O((Axj)2), (18) 
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where the first element of rj is given by 

r I, = Tj uJ%,,, (w-l)T,r,~j+T’Mx,+ ~(x~+I~)T~~-~)}uII(~,-~T:~-~) 

(19) 

and the second by 

r2, E TjujT,, + (CD- 1) Tx,Uj + Tju, + y(, +[L)Tj2-w) 

+(Y- 116 
Y 

Tj3pW)+ (y- 1) Tjuju;, 

with the subscript j denoting evaluation at xj. Requiring (18) to vanish at the N- 1 
interior grid points and using the boundary conditions (llt(12), one obtains the 
nonlinear algebraic system 

WC CL) = 0 (21) 

sit = (0, 01, sT,=(LO), (22) 

where ST=ST(IL)=(s1,s2,..., sN-r), and the “residual vector” RTr (rr, r2, . . . . rNP1). 
Given a value of CL and an initial distribution S(O), the system (21t(22) may be 

solved using a variant of Newton’s method which reads at the kth iteration level 
(as denoted by superscript k) 

(aR/&)‘k’ Ack’ = -Rck) (23) 

Sck + 1) = S(k) + @’ A’k’ 9 (24) 

where (c?R/c?S)‘~’ is the 2(N- 1) x 2(N- 1) Jacobian matrix associated with RCk), 
and A@) is the solution of the linear system (23) (the estimated required change in 
Sk) to give R tk + ‘) = 0). The “relaxation factor” c’:’ is included in (24) to limit the 
maximum fractional change in any element of SCk) over one iteration cycle, a device 
which aids convergence when the kth iterate is not suffkiently close to the correct 
solution; the factor is defined by 

a’:)zmin(l, G/max Idlk)/Sjk)l), (25) 

where 6 is a specified constant ( z 0.3, typically), and Aik’ and Sik’ are the ith 
elements of ACk) and SCk), respectively. The iterate SCk) is considered converged when 

max IA$k+‘)/S$k+l)l GE, < 1, (26) 
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where ei is specified (typically cz 10P4). The matrix ~R/c% is of block-tridiagonal 
form with the jth 2 x 2 subdiagonal, diagonal, and superdiagonal blocks given by 
&,/as,- i, arj/asj, and arjfasj+ i, respectively; system (23) may thus be solved 
efficiently using a routine such as that listed in [7]. 

Given the start-up values I;p) and cr) (both > co, e.g., 0.01 and 0), the (m + 1)th 
iterate [(Lm+ ‘) is computed using a variant of the secant method 

CL 
(m + 1) = gm, _ @?“’ 

g’“’ 
(g’“‘-g’“-l’)/(~~“‘-~t”-l’)’ (27) 

where gCm) E g([p)) is evaluated from S([p’), the solution of (21k(22) computed 
by solving (23k(24) with CL= [y’ and the initial distribution S(Cp”-‘I). The 
relaxation factor, 0 < c$~“’ < 1, is included to avoid overshooting co and is adjusted 
during marching based on the number of iterations required to solve (21)-(22); 
specifically, if (27) gives a value of CL (m + i) for which (23)-(24) does not converge 
within a specified number of iterations, oz cm) is replaced with a lower value such as 
(r~$~))~, (27) is then reevaluated, and the (m + 1)th iteration restarted. It is found 
numerically that (23 k(24) will not converge in the sense of (26) when CL < to; thus 
the inclusion of CJ$~) in (27) is a necessity. The iterate [(Lm) is considered converged 
when 

where e2 is specified (typically z 10e5). 
To compute S(@)), (23)-(24) may be solved starting with the simple piecewise 

linear distributions u = x/6 for x < 6, u = 1 for x 2 6, and T = T,( 1 - x/x”); con- 
tinuation is then applied as the lower boundary temperature TL is incrementally 
reduced from an initial value 0.02 (say) to 0, thus providing an initial distribution 
to begin marching in CL. 

The choice of the function g is arbitrary and need only provide a sufficient condi- 
tion for satisfying (7). One might, for example, select g(c,J = dE/d[,, where E is the 
square of the &-norm of the relative error between the asymptotic and numerical 
solution evaluated over the small interval 0 < x d E,; g vanishes when E is a mini- 
mum, i.e., when CL = co. Since (23)-(24) will not converge when CL < &,, one may 
define a simpler criterion on CL > co alone. A possibility which works well for o 
near i is 

idid = 
T,(l +a)‘- T, 

dx,a(l + Cx) ’ il. 2 ill (29) 

which is a second-order forward-difference representation of dT/dx(O; CL) with 
To = 0; this expression is particularly well suited for the case o = $, since (7) gives 
T= 0(x*) for 0 <x + 1 when CL = co, and such quadratic behavior may be com- 
puted exactly by (29). 
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3. RESULTS 

A typical solution computed using (29) is illustrated in Fig. 2 for y = 1.4, o = $, 
b= -1, N=200, Ax,,= 10P3, and x,=24 (ctz 1.034). Both u and T versus x are 
plotted with most of the computational domain shown in part (a), and a blowup 
of the region 0 <x ~0.02 shown in part (b). For comparison, the second-order 
asymptotic solutions (5k(6) are also plotted in part (b), where relative errors 
between the numerical and the asymptotic solutions are seen to be of order 2% for 
0 <x < 0.01. (The values of the constants appearing in (5) and (6) for this case are 
w. = 0.128087, w1 = -0.0969801, w2 = 0.022671, s0 = 0.00430664, s1 = -0.00500391, 
s2 = 0.00577530.) The good agreement provides a partial validation of the numerical 
results. For the case shown, solutions computed with larger N indicate that 
N = 200, (which required approximately 3 min to compute on an Apollo DN 4000) 
gives an accuracy of approximately four significant figures over regions where the 
solution is of order 1, falling to approximately two significant figures near x = 0; the 
computed location of the lower boundary, to = - 3.683, is believed to be accurate 
to within less than 0.1%. 

The rather large value of N required for reasonable accuracy, even with the use 
of grid (14), is dictated by the need to resolve the solution near x = 0. When the 
grid was overly stretched (a too large), accuracy was degraded and it proved dif- 
ficult to obtain converged solutions; the allowable amount of stretch is therefore 

" 

or 

TxlO 

" 

or 

TxlO 

FIG. 2. (a) Profiles of u (A) and TX 10 (0); (b) Comparison with second-order asymptotic 
solutions for u (~ ) and T (--) near x=0. 
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limited and since Ax0 must be quite small, N must be large. If c,, were known a 
priori, then the required resolution near x = 0 would not be as great, and N z 50 
with the same xo and o! (but larger Ax,) would have provided an equivalent level 
of accuracy over most of the grid for the case illustrated in Fig. 2. 

The replacement of asymptotic boundary conditions with numerical boundary 
conditions plus a sufficient condition g = 0, e.g., the replacement of (7) with (11) 
plus (29), appears to offer a useful general technique. In the example presented 
here, a particularly simple function g could be defined since the behavior of 
neighboring solutions was well understood after computation of several trial 
solutions. Possibly the general case might best be handled with g based on some 
least-squares error measure, similar to the ideas presented in [6]. 
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