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Abstract 

Effective “breaking-in” of lubricated steel surfaces has been found to be due primarily to 
the rate of growth of “protective” films of oxides and compounds derived from the lubricant. 
The protection afforded by the films is strongly dependent on lubricant chemistry, steel 
composition, original surface roughness and the load/speed sequence or history in the 
early stages of sliding. Given the great number of variables involved it is not possible to 
follow more than a few of the chemical changes on surfaces using the electron, ion and 
X-ray column analyticaf instruments at the end of experiments. Ellipsometry was therefore 
used to monitor the formation and loss of dual protective films in real time, and detailed 
chemical analysis was done at various stages to calibrate the ellipsometer. This work is 
reported in three interlinking parts: I, functional nature and mechanical properties; II, 
chemical analyses; III, real-time monitoring with ellipsometry. 

1. Introduction 

Many phenomenological studies had been done, mostly by chemists on the chemical 
compositions required in oil for successful functioning as a lubricant at high severities 
of sliding. It had been generally agreed that a “protective” film forms on well functioning 
sliding surfaces, but the composition and structure of the adsorbed substances remained 
obscure. There were two reasons for this uncertainty. Firstly, only a small amount of 
material was gathered from the films for analysis by some inst~ments (IR, X-ray 
d~raction). Secondly, for those analytical instruments that use the electron, ion or 
X-ray column, samples must be rigorously cleaned, which removes much of the interesting 
material. Ellipsometry does not have this limitation. 

The chemical analysis of surface films is of great interest in studies of boundary 
lubrication. However, the major problem in the use of analytical instruments is that 
the act of removing the specimens from the tests for analysis produces changes in 
the films that are different from the changes that occur during continued sliding. Thus 
a method was required to monitor some aspects of chemical changes in the films 
during sliding. Realistic sliding tests cannot be done in the (vacuum) environment of 
the analytical instruments. Ellipsometry was chosen for real time, real environment 
monitoring of the sliding surfaces. The analytical instruments were used to “calibrate” 
the ellipsometer. 
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Conventional ellipsometry could not be used because the sliding surfaces are 
rough, and because the films formed during sliding are composed of several, or a 

gradation of, compositions from the metal surface outwards. Thus complete (four 
Stokes parameter) ellipsometry was used in an automated instrument for real time 
measurements. 

The application of ellipsometry in tribology has so far been limited to “off-line” 
analysis, that is a specimen is removed from the friction machine and cleaned of 
liquids before measurement [l-3]. On-line analysis of lubricated sliding surfaces was 
delayed by the non-ideal effects from liquid lubricant and surface roughness which 
cannot be accommodated in conventional ellipsometry. Recently, some theoretical 
studies 14-71 focused on the effect of the surface roughness, and some opticaf models 
[8, 9] were proposed. However, as shown by Ramsey [lO], no published optical model 
truly represents the surface roughness for ellipsometry. 

In this study, ellipsometry is used in an on-line analysis of the lubricated sliding 
of steel surfaces, Some computational considerations and effects of the lubricant and 
surface roughness are discussed. 

2. Polarized light 

Light waves can be described as sinusoidal variations in the magnitude of an 
electric field E propagating in the z direction. The electric field vector can be resolved 
into orthogonal components E, and E, in the p and s direction as shown in Fig. 1. 
Their magnitudes vary harmonically, and can be represented by [ll]: 

total beam 

Azimuth 

“p” component 
in plane view end view ~ 

(a) (b) 
““‘~~~‘--~-~~~~~~~-~~~~--------~~~~~ 

“9” component 

“p” components are in the plane 
of incidence, “3 components 

arepei-pendic.ldar 

(cl specimen (reflecting) surface 

Fig. 1. Graphical representation of plane polarized light and its p and s components, shown 
relative to the plane of incidence: (a) linearly polarized light; (b) s and p components of a 
linearly pofarized beam; (c) plane of incidence of light relative to the s and p components. 
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Ep = E, cos(ri- 6,) E, “Es cos(7-t 4,) (11 
where ~=(%nzlh) - wt, the wave propagation term, and h and w are the wavelength 
and frequency of the light wave, and (&- 6,) =i S, is the phase difference. 

If E, and ES are either in phase, or 180” out of phase, the resultant vector traces 
a planar path through space, which is called linear polarization. If, on the other hand, 
the relative phase of the components is either + 90” or - 90”, and amplitudes E, and 
Es are equal, the tip of the E vector traces a circle with time, and is called circular 
polarization. In the most general case of different amplitudes E, and Es, coupled with 
an arbitrary phase difference S, the tip of the vector wit1 trace the pattern of an 
ellipse. 

A light beam directed onto a surface is referred to as an incident beam, Reflected 
light can be treated in the same way as the incident light. An E, component of light 
that is incident to the surface at an angle +1 will reflect as linearly polarized light 
which is called R,. In general, there will be a change in both phase and amplitude 
of light upon reflection. The ES component will have a separate but similar effect. 

The relationship between the incident (i) and reflected (r) waves is defined by 
“reflection coefficients”. Since relative amplitude and phase information must be 
expressed, a complex number representation is a convenient form for a reflection 
coefficient. Thus, reflection coefficients for p or s polarization can be written as: 

The absolute phase difference between corresponding incident and reflected 
components is not a readily measurable quantity, but it is possible to determine the 
ratio of reflection coefhcients. This ratio is: 

R,IR, 
E&s 

-tan Jr 

and 

then 

p= tan ffi exp(jA) (6) 

This is the fundamental equation of ellipsometry. I# and A are differential changes in 
amplitude and phase respectively. They can be measured by conventional ellipsometry. 

One type of conventional null ellipsometer consists of a light source, a polarizer, 
a compensator for the reflecting specimen surface and a an analyzer, which is essentially 
also a polarizer. The compensator is usually a quarter-wave plate which can be placed 
between the polarizer and specimen (or specimen and analyzer). Measurement is done 
by adjusting the azimuth angles of two of the three optical components, i.e. the 
polarizer, compensator and analyzer, and keeping the third component at a fixed angle 
so that no light passes through the analyzer. In the fIxed polarizer case, a plane 
polarized light with its vibration direction inclined at 4.5” to the Plane of incidence is 
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usually used. The reflected light is generally elliptically polarized and, since the 
amplitudes of the two incident components are equal (where the azimuth of the 
polarizer is 459, the differential ampiitude change is given by tan $=R,JR,. If a phase 
difference equal and opposite to that occurring at the surface is introduced by the 
compensator, plane polarized light emerges upon reflection from the specimen surface 
and can be extinguished by the analyzer. The analyzer setting thus yields II/ and the 
compensator setting A. In the fixed compensator case the compensator is usually set 
at a fixed azimuth .of i-45” or -45”. Then, the light is extinguished by alternately 
adjusting the polarizer and the analyzer. The analyzer setting yields $J and the polarizer 
setting A. 

It should be noted that since the operation of null ellipsometry is based on 
extinguishing the reflected light no attempt is made in the above to include the 
amplitude of light, or size of the ellipse, only the form. Stokes developed four parameters 
whereby the total state of polarization, including amplitude for monochromatic light, 
may be expressed: 

So=Ep2+E, 

S1 = E,= - Es2 

Sz = 2E,E, COS( 8, - 6,) 

S3 = I?.E,E, sin{& - 6,) (7) 

The amplitude is included in these equations, and these four parameters may be 
loosely connected with four attributes of elliptically polarized light: 

(1) the size of the ellipse (or the total amplitude A=(EpZ+E:)lR; 
(2) the ratio of minor axis length to major axis length EJE,; 
(3) the orientation or tiit of the major axis relative to the s direction, azimuth 

8; 
(4) the direction of rotation of the E vector, right-hand or clockwise rotation is 

defined as positive. 
For completely polarized light: 

s,z = si* f sz2 + sx* (8) 

and for incompletely polarized light: 

so2 > s12 + sz2 + ss2 (9) 

The Stokes equations provide a convenient comparison between historical ellip- 
sometry and modern ellipsometry. A major difficulty in early ellipsometry was the 
unavailabili~ of stable light sources and photometers. Thus it was convenient to ignore 
amplitude, and coincidenta@ the ellipsometers that were developed on this omission 
required less tedious calculations. Unfortunately, a major limitation of older ellipsometers 
is that it is not possible to determine from the results whether non-ideal effects of 
the reflecting surface exist such as depolarization, cross polarization and change in 
ellipticity. Depolarization and other effects are common with non-homogeneous reflecting 
substances and with rough surfaces [ll]. 

3. Mueller matrix elIipsomet~ 

With the advent of computers it is possible to speed up calculations considerably, 
and also to take data so quickly that drift in the light source and the light sensors 
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have small effects. A new computerized ellipsometer was constructed in our laboratory 
and its principle of operation is conveniently described in terms of the Stokes parameters 

WI. 
The four Stokes parameters can be conveniently grouped as a vector quantity S, 

where they are arranged as: 

(10) 

We can define one Stokes’ vector for the incident light as St, and another vector 
for reflected light Sa. For any linear optical system, these two vector quantities may 
be related by a simple 4 X4 matrix, as 

!&=MSr (11) 

This equation is an example of the Mueller calculus and M is a 16-element transformation 
matrix. 

For an ideal reflective system a Mueller matrix can be derived in terms of the 
ellipsometric parameters A and JI: 

1 -cos 2* 0 0 

rp2 rs2 + - M= cos 2* 1 0 0 

2 0 0 sin 2+ cos A sin 2$ sin A 

0 0 -sin 2+ sin A sin 2JI cos A 

1 
(12) 

where rp and r, are scalar amplitude reflection coefficients. 
The new ellipsometer is capable of accommodating some unpolarized component 

in the light. The basic optics scheme was outlined in detail by Hauge [13] and is 
illustrated in Fig. 2 of Part I [14]. It consists of a tunable laser which directs light 
through a fixed polarizer and a rotating compensator, onto the specimen. With each 
rotation of the compensator, every possible state of polarized light is directed to the 
specimen. Reflected light passes through a second compensator, through another fixed 
polarizer (analyzer) and into a light-detecting diode. The second compensator rotates 
exactly five times as fast as the first compensator, which rotates at about 1 rev s-l. 
The light-detecting diode receives a time-varying intensity of radiation, which function 
is operated upon by a Fourier transform, producing 25 coefficients. These coefficients, 
together with information on the wavelength of light, the instantaneous angular positions 
of the two polarizers and the two compensators, and the angle of incidence are used 
to provide the 16-element Mueller matrix. 

For mildly non-ideal surfaces the matrix is not exactly symmetric (in absolute 
values) about the diagonal and for such cases the values of A and tj may be calculated 
as follows; 

JI=os cos-l [( -M(O,l) -M(1,0))/2] (13a) 

A = tan-’ [(M(2,3) -M(3,2))l(M(2,2) -M(3,3)] (13b) 

The Mueller matrix representation of the surfaces also allows one to identify 
some of the non-ideal effects produced by surfaces by analyzing the asymmetry of the 
matrix. Williams [ll] defined several parameters using the Mueller matrix formulation 
in order to quantify the non-ideal effects due to surface irregularities such as de- 
polarization, cross-polarization and change in ellipticity of initially totally polarized 
light. The degree of non-ideal effects in our data will be discussed in this paper. 
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4. Calculation of substrate and film parameters with ideal interfaces 

Now let us consider an ambient-substrate system {no film) as in Fig. 2(a). By 
assuming that the interface between the ambient and substrate is mathematically sharp 
and smooth, and by applying appropriate boundary conditions to the solutions of 
Maxwell’s equations, the reflection coefficients can be written in the following form 
[15] (subscript 1 refers to the “medium” above the reflecting surface, subscript 2 refers 
to a film and subscript 3 refers to the solid substrate): 

121 cos h-r23 cos #l 
Tp= 

nl COS &i-n3 COS 4, 

These forms of r,, and r, 
corresponding Snell’s law 

P 

n1 cos #l--r23 cos & 
r, = 

nr cos C#Q +rl3 cos & 
(14) 

are referred to as the Fresnel reflection coefficients. The 
is: 

P 

Fig. 2. The reflection, refraction and transmission of an incident light beam: (a) an am- 
bient(l)-substrate(3) system, and (b) an ambient(l)-fiIm(2)-substrate(3) system. 
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sin C$~ n3 

sin & = G 
(15) 

From the measured values of A and $, and using eqns. (4), (6), (14) and (15) 
the complex index of the substrate can be calculated by: 

[ 

4p sin* dI 1 
l/7. 

n3=n1 tan 4r l- (P+l)2 (16) 

For an ambient-film-substrate system (Fig. 2(b)), the multiple reflections of light 
within the film must be considered. The Fresnel reflection coefficients for the ambient-film 
interface are: 

n1 cos c& -n2 cm & n, cos & -n2 cos A 

rlzp= n, cos &+n2 cos +1 

r 

12*= n1 cm &+nz cos 6 

and the corresponding Snell’s law: 

sin & n2 -=- 
sin & nl 

Finally, the Fresnel reflection coefficients for the film-substrate interface are: 

n, cos c/+ -n3 cos & n, cos & - n3 cos & 
r 
“‘= n, cos i&+n3 cos 4 r23S= n, cos & +n3 cos & 

(17) 

(18) 

(19) 

and the corresponding Snell’s law: 

sin & n3 -=- 
sin $j n2 

(20) 

As in Fig. 2(b), the light will undergo multiple reflections and upon each reflection 
at the ambient-film interface a fraction of light will be transmitted and a fraction will 
be reflected. Likewise, at the film-substrate interface a fraction will be transmitted 
and a fraction reflected. 

The phase and amplitude of the total reflected beam emerging from the specimen 
are given by the Drude equations: 

r12p + r23p exd -jo> 
rp= 1 +rlzprup exp( -jD) 

rlh + r23s exp( -PI 
rs= 1 +r12sr23s exp( -jD) 

(21) 

where D is the phase lag of the light due to the film: 

D = (4v/A)n2 d cos A (22) 

where A is the wavelength of the light. Hence, the fundamental equation of ellipsometry 
is again: 

p = 5 = tan + exp(jA) 
r, 

(23) 

The refractive index of the substrate, n3-jk,, can be found from eqn. (16) by 
taking an ellipsometric measurement on the bare substrate. The parameters of a non- 
absorbing film, i.e. n2 and d, can be calculated by replacing A and $ values measured 
on the film-covered surface and using eqns. (17)-(23). Since p is a complex number, 
eqn. (23) gives two equations: one for the real part and the other for the imaginary 
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part. If the film is absorbing, i.e. if the refractive index of ftlm is in the form nz-jF;,, 
in order to calculate three unknowns, IZ~, k2 and d, additiona elhpsometric measurements 
must be made. This can be done by taking measurements at different angles of 
incidence and/or different wavelengths of light which usually produces more equations 
than the number of unknowns. A least squares fitting procedure must be used to 
resolve the overdetermined system of equations as described in the paragraph on data 
analysis below. 

5. Calculation of film parameters in an oil medium (non-ideal interface) 

In our study, mineral oils were used as lubricants in friction tests. The oil medium 
added some difficulties in the calculation of the film parameters nz, kz and d because 
hydrocarbon molecules of oil orient themselves towards the steel surface at the oil-steel 
interface. For the calculations of thickness and optical constants of the films in an 
ideal case, one only needs to replace the refractive index of the oil medium in the 
above equations. However, the refractive index of oil, which can be measured by 
reflection from the surface of a bulk oil, does not represent the real refractive index 
of oil at the oil-specimen interface and therefore does not give accurate results. 

Therefore, we have followed a different approach, and delay the introduction of 
the refractive index of oil into the equations until these properties can be measured 
from the operating oil-specimen interface after the experiment has been done. The 
mathematical sequence we use is as follows. 

The Fresnel reflection coefficients are rewritten in the following form: 

cos &. -nz, cos #l cos c#Q -r& cos & 
r - 
lZP - cos & +nzm cos $61 

r12s = 
cos #I +n2, cos (bz 

n2m cos bLj-n3m cos & 
r 23p= 

n2m cos c& +nJm cos & 

nzm cos t& -n3m cos 6 
r23s = 

where 

n2m =n21nl rbrn =n31nl 

n2m cos &+n3, cos & (24) 

(25) 

In other words we treat the equations, at first, as if the medium were air (i.e. nl = I). 
If we rewrite D in the same form: 

D = (4~/~)~2~ d,,, cos & 

where 

(26) 

dm=nl d (27) 

and substituting eqns. (24) and (26) into eqn. (1) and then using eqn. (23), we can 
calculate n2m, kZn and d, which we call apparent parameters. The apparent refractive 
index of the substrate, ngm-jk3m, can be found by taking a separate ellipsometric 
measurement on the bare substrate in oil and rewriting eqn. (16) in the following 
form: 

l/2 
n3 n 3m= - =tan Cpr 

4p sin’ & 

nr i 
l- 

G+ V2 I 
When the refractive index of oil at the oil-steel interface n1 is known, the apparent 

parameters nzm, kzm and d, can be converted to the true values of rr2, k2 and d using 
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eqns. (25) and (27). The refractive index of oil at the oil-steel interface can be found 
as follows. First n3 and t13, are found from eqns. (16) and (28) by taking two ellips5metric 
measurements respectively, one in air (nr =nsir= 1) and one in oil on a bare substrate. 
Then, n1 =noir is obtained from n3/it3,,, using eqn. (28). An example of application on 
steel gave the following results: optical constants of steel in air n3 - j/c,= 2.67 - j3.44; 
the apparent parameters for steel in oil n3,,, - jk,, = 2.05 - j2.34; thus the optical constants 
of oil at the oil-steel interface ~tr -jkl = 1.40-jO.08. The refractive index of oil from 
the surface of a bulk oil was found to be 1.45 -jO.O02. As we see, the optical constant 
of oil at the oil-steel interface is different from that at the air-oil interface. 

6. Sensitivity and error analysis 

In order to gain a perspective on the accuracy of results a sensitize and error 
analysis was done. The sensitivity of A and I& values to changes in various parameters 
can be analytically or numerically analyzed f16, 171. A and Jt values are computed 
for the range of angle of incidences from 1” to 90” for given values of substrate and 
film parameters (n3, k3, n2, k2 and d) using eqns. (14)-(23). Then, the value of one 
of the parameters was slightly changed and A and 3/ values computed again for the 
same range of C/I. The difference between the first set of A and $ values and the 
second set gives the sensitivity of ellipsometric parameters to that slight change. The 
sensitivities are plotted as a function of angle of incidence. Two such sensitivity curves 
for A and JI are shown in Fig. 3. 

It is seen from Fig. 3(a) that the highest sensitivities of A and $ values to an 
increase of 1 A in the thickness of a 100 .& thick oxide film on a steel substrate are 
obtained at angles between 65” and 80”. Figure 3(b) shows the sensitivities of A and 
Ji values to the 0.01” error in the dete~ination of the angle of incidence. By comparing 
Figs. 3(a) and (b), it is seen that the sensitivities of A and J1 values to a 1 A increase 
in the film thickness is about four times higher than their sensitivities to a 0.01” error 
in the determination of the angle of incidence. In our ellipsometer, the angles of the 
polarizer and analyzer arms were set by stepping motorsautomatically with an accuracy 
of f0.005”. The error in A and JI coming from the inaccuracies of the angle of 
incidence is therefore negligible. As is shown in Fig. 3(b), A and I& become more 
sensitive to errors in the angle of incidence for higher angles of incidence than 75”; 
therefore, the use of angles of incidence greater than 75” should be avoided. 

The standard random error in the dete~ination of J, was 0.02” and that of A 
was 0.2”. As seen from Fig. 3(a), this much error in A and JI values leads to an 
uncertainty of only j, 1 J% in the caiculations of film thickness. 

7. Data analysis 

As mentioned before, when there are more than two unknown parameters to be 
determined, the problem is a little more complicated. Additional equations can be 
provided by making measurements at multiple angles of incidence. In this case the 
number of equations usually exceeds the number of unknowns. Hence, the problem 
of the overdetermined system of equations occurs. 

A non-linear least squares fitting procedure (Marquardt method 1181) is used to 
calculate n, k and d of films by minimizing an error function G in the form of: 



angle of incidence 

Fig. 3, ~~asit~~~tjes of B (Upper curves) and $ (lower curves): (a) to an increase of 1 A in the 
thickness of a 100 8, thick oxide film WI a steel substrate, (b) to an error of 0.01” in the 
determination of the angle of incidence. 

where Arim and Jli” are measured and A: and t,!$ are computed values at the ith of 
na angles of incidence. The components of vector B represent the fitted and fixed 
parameters which are I*I, Ir, d of film or films and n, k of the substrate. In the 
computations the fitted parameters of vector B are change.d until a vector BO is found 
such that the sum of the squares of the residuals G is minimum. 

The success of this kind of iterative technique critically depends an the accuracy 
of the initial estimates for the solution [la]. To find the best initial estimates of 
parameters of an absorbing film on a substrate the following technique is used. 
Measurements at each angle of incidence give two equations. As described by McCrackin 
and Co&on t20], several values of k are assumed, and the other unknowns n and d 
are caiculated from the two equations for each value of k. These n and d values are 
plotted for a range of k values as in Fig. 4. 

The sets of curves for rr and d at different angles of incidence usuatiy do not 
intersect at a single point owing to the systematic and random errors and to non- 
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Fig. 4. (a) n VS. k solution cures for four angles between 65” and 72.5”, (b) d w. k solution 
curves for four angles, (c) y vs. k curve; minimum deviation -ymin occurred at k=0.003. 

ideal effects of the substrate surface (e.g. roughness). Curves of FE converge at high 
k values whereas curves of d converge at low k values. The errors and non-ideal effects 
shift the curves of different angles up or down rather than change their gradients 
significantly [21]. Therefore, the value of k which gives the minimum deviation among 
the n and d values for different angles is sought. The minimum deviation is defined 
as the minimum of the normalized multiplication product of the standard deviations 
of II and d values of different angles for a range of values of k. 

For each assumed value of k the averages of n and d are computed: 
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where m is the number of angles of incidence. Since the sensitivity of ellipsometry 
changes with the angle of incidence, the values of n and d at each angle of incidence 
must be weighted as proportional to A and J/ sensitivities at that angle. si is a weighting 
factor for each angle of incidence and is determined from Fig. 3(a). 

Standard deviations of n and d around the average values are found by: 

(31) 

Since d, n and k are all coupled in the equations the deviation to be minimized 
must be the normalized product of a, times ad: 

After finding the value of k which gives the minimum deviation (rmin), nav and 
dav at this value of k together with k are used in eqn. (29) as the initial estimates 
for the least squares fit, which in turn yields the solution set of fitted parameters 
which minimizes eqn. (29). In most of the cases minimum y was obtained for very 
small values of k, between 0.001 and 0.05 as shown in Fig. 4(c). 

8. Non-ideal et&cts of the ellipsometric measurements 

As previously stated the Mueller matrix representation of the surfaces enables 
one to analyze the non-ideal effects. Every measured Mueller matrix for the specimens 
given in Figs. 7-9 in Part I [14] was analyzed for non-ideal effects using Williams’ 
[ll, 221 parameters: a; p, PI, P2, P3, Al, AZ, As. The parameter a was defined to 
quantify the degree of cross polarization. It is an angle whose value describes the 
extent to which an incident beam of light plane polarized either within or perpendicular 
to the plane of incidence contains components after reflection which are perpendicular 
to its original plane of polarization. Ideally, in the case of perfectly smooth specimen 
surfaces, a! would be zero; an incident p- or s-wave would be reflected to produce a 
beam stilt polarized along the same direction. If reflection of such an incident beam 
resulted in light containing a component perpendicular to the original plane of 
polarization, then (Y would be non-zero. If such a reflection produced equal amounts 
of those two components, then a would be 90”. 

The parameter p was defined to describe the change in eliipticity of the light 
which occurs upon reflection. Perfectly smooth surfaces should have no tendency to 
produce circularly polarized reflected light when the incident beam is either a p- or 
s-wave. Such ideal behavior corresponds to a value of p equal to zero. If an incident 
p- or s-wave were reflected as right-handed circularly polarized light, then j3 would 
be +90”. Qualitatively, p can be regarded as measure of the right- or left-handedness 
of the surface. 

Polarization parameters, PI, Pz and P3, describe the extent to which the reflected 
light is depolarized. They are defined respectively as the fractions of the reflected 
light which remain polarized when the incident light is plane polarized at angles of 
either 0” or 90” (PI) (the p- or s-wave), plane polarized at angles of +45” or -45” 
relative to the plane of incidence (Pz), and right or left circularly polarized (P3). If 
the specimen surface were perfectly smooth, then all three parameters would be unity. 
If the reflected light were totally depolarized, they would all be zero. Al, AZ, and A3 
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represent asymmetry in the amounts of depolarization of the oppositely directed input 
vectors. These parameters follow the Stokes convention for the designation of polarization 
state of light. A more thorough definition of these parameters is given in ref. 11 and 
their practical applications on rough surfaces are given in ref. 22. 

In ref. 22 it was shown that the surface roughness effects are most pronounced 
at 70” angle of incidence. When A and + parameters are changed significantly owing 
to surface roughness effects, the non-ideal effect parameters are changed significantly 
too. In this way, the effect of surface irregularities on A and 4 parameters can be 
judged from the change in non-ideal effect parameters during sliding. The changes 

in non-ideal. effect parameters are given in Figs. 5(a), (b) and (c) for 45, 54 and 60 
HRC specimens respectiveIy for the 70” angle of incidence. P and A parameters were 
very close to the ideal values and did not change throughout the experiments. At the 
beginning of sfiding, a and /3 were a few degrees off from their ideal vaIue which is 
zero. Small changes in (Y and @ were observed throughout the experiments; however, 
in most cases the changes were towards the ideal. Therefore, we can conclude that 
non-ideal effects on the ellipsometric data due to changes in surface roughness during 
sliding experiments were minimal and did not interfere much with the calculation of 
film parameters. 

The Ohlidal-Lukes theory [21] predicts that the effect of surface roughness on 
A and + is comparable with random errors for root mean square slopes of asperities 
up to 0.01. For a root mean square slope of 0.04 the errors in optical constants 
determined by ellipsometry due to neglecting the roughness of the surface is less than 
1% (ref. 21). In our case, final root mean square slopes across the sIiding track were 
0.039, 0.19 and 0.011 for 45, 54 and 60 HRC specimens respectively. Along the sliding 
track the root mean square slopes were less than 0.01 for all three specimens. This 
means that the effect of surface roughness, theoretically, produces less than 1% error 
in our data analysis. 
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