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Immunosensors for the detection of small analytes 
that use analyte-enzyme conjugates as signal genera- 
tors require special attention if operated under nonequi- 
librium conditions. If  the size of the analyte and the an- 
alyte-enzyme conjugate differ substantially, the two 
antigens do not diffuse at the same rate. This can cause 
time-dependent shifts in the sensitivity of competitive 
immunoassays. Therefore, immunosensors operating 
at short incubation times require precise timing that 
meets closely the specifications for which the sensors 
were calibrated. As an example, we have analyzed ki- 
netic binding curves for the quantitative determination 
of progesterone with an immobilized monoclonal anti- 
body and a conjugate between horseradish peroxidase 
and progesterone as signal generator. Mathematical 
paradigms have been developed to simulate the diffu- 
sion, antigen-antibody complex formation, and compet- 
itive binding processes in this analytical system. Dose- 
response curves obtained under nonequilibrium 
conditions can vary substantially from those obtained 
at equilibrium of antigen-antibody interaction. The de- 
gree of this variation depends on the performance char- 
acteristics of the major components of the immunosen- 
sor. The developed mathematical solutions reflect 
experimental results and can be used to model optimal 
conditions for immunosensors operating under nonequi- 
librium conditions. In this paper (Part I), we report on 
the mathematical modeling of the interaction between 
analyte, analyte-enzyme conjugate, and an immobi- 
lized antibody. In Part II (W. Schramm and S.-H. Paek 
(1991) Anal. Biochem. 196), we present experimental 
results and compare them with the theoretical mod- 
els. 0 1991 Academic Press, Inc. 
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In the area of sensor technology, one of the perfor- 
mance characteristics is the “response time.” For many 
sensors, a fast response time is desirable. Obviously, the 
definition of “fast” is relative, depending on the particu- 
lar problem to be solved by a measurement and on the 
technique used for analyte detection and signal genera- 
tion by a sensor. Recent developments in sensor technol- 
ogy (1,Z) use biomolecules for the detection and quanti- 
tative determination of analytes in solutions. In 
physiological systems, the natural function of biomole- 
cules is to control regulatory mechanisms that extend 
frequently over time periods of minutes or even hours. 
However, their often inherent slow response times can 
cause limitations if used in biosensors. 

One class of biomolecules used in sensors designed to 
detect complex organic molecules is the immunoglobu- 
lin (immunosensors (3,4)). With the immunoassay tech- 
nique that forms the basis for immunosensors, incuba- 
tion times of several hours, even days, are not 
uncommon. The antigen-antibody complex formation 
(a) is a reversible process and (b) obeys an equilibrium 
reaction that follows the law of mass action. The num- 
ber of antigen molecules bound to immunoglobulins in- 
creases asymptotically over time to reach a state at 
which the number of molecules associating with the anti- 
bodies and those molecules dissociating from the anti- 
bodies are equal. Many quantitative determinations 
with immunoglobulins are performed at this equilib- 
rium state. 

However, immunoglobulins can be used in the non- 

’ Part II: Experimental Determination of Performance Character- 
istics. 
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equilibrium state to reduce response times in immuno- 
sensors. In this communication (Part I), we outline 
some of the problems to be considered for the engineer- 
ing of immunosensors operating under nonequilibrium 
conditions, and we also present solutions for calculating 
the performance of the sensors under these conditions. 
The theoretical determination of kinetic variables using 
mathematical models permits the appropriate selection 
of immunoglobulins and the synthesis of analyte-en- 
zyme conjugates with optimal binding characteristics. 
In a subsequent paper (Part II) (5), we analyze how the 
models predict experimental results. 

ANALYTE-ENZYME CONJUGATE AS 
SIGNAL GENERATOR 

For the majority of analytical systems that use immu- 
noglobulins as bioreceptors, binding of an antigen to an 
antibody cannot be directly monitored because the re- 
sulting complex does not usually provide a suitable phys- 
ical signal. Therefore, for many applications, “labels” 
are used for signal generation. For many years, radioiso- 
topes have been the most popular labels but these are 
often replaced today by other molecules such as lumines- 
cent and fluorescent markers. One of the most com- 
monly used labels is enzymes. Enzymes can generate 
either a photometrically or an electrochemically detect- 
able signal. We will investigate the kinetic reactions 
with enzymes as signal generators and we have selected 
the competitive immunoassay as an example. Similar 
considerations might apply for other types of antigen- 
antibody binding reactions used for the construction of 
biosensors. We have used a solid-phase immunoassay as 
a model which is probably representative for most im- 
munosensors. In a solid-phase assay, one of the compo- 
nents participating in the analytical reaction is immobi- 
lized on a solid matrix, e.g., on an electrode or an optic 
fiber. For the investigated example, the immunoglobu- 
lin is immobilized. 

If an enzyme-labeled antigen is used for signal genera- 
tion in immunosensors, the size of the label can sub- 
stantially differ from that of the native antigen (ana- 
lyte). This has consequences for the kinetics of the 
different binding reactions. A competitive immunoas- 
say as shown in Fig. 1 implies that the analyte competes 
with the analyte-enzyme conjugate for binding sites on 
the antibody. This happens only if the two species are 
reasonably equally recognized by the antibody. Pro- 
vided that is the case, binding over time for the native 
antigen is different than for the enzyme-labeled antigen 
if their molecular masses vary substantially because the 
smaller molecule diffises faster to the immobilized an- 
tibody than does the larger conjugate. Therefore, we 
have a sequential immunoassay where one of the two 
competing components (i.e., the analyte) reaches the 
antibody first to initiate the binding reaction that culmi- 

FIG. 1. Competitive binding assay. Analyte (dots) from the sample 
competes with the enzyme-labeled antigen for binding sites on the 
antibody (immobilized on a solid matrix). If the amount of antibody is 
constant and limited (with regard to the antigen), and a constant 
amount of enzyme-labeled antigen is added, the amount of analyte in 
the sample determines the quantity of enzyme label bound to the 
antibody. Thus, the signal generated from the enzyme label is in- 
versely proportional to the amount of analyte in the sample. 

nates in the equilibrium state where the on-rate and the 
off-rate for the analyte-antibody complex formation 
are equal. The other antigen (the larger conjugate) 
reaches equilibrium later. It is the combination of these 
two superimposed, temporarily delayed equilibrium re- 
actions that determines the performance characteris- 
tics of the immunosensor. 

This is of little consequence if the incubation time is 
long enough to permit both antigen species to reach 
binding equilibrium. However, if the immunosensor is 
operated under nonequilibrium conditions to reduce the 
response time, the different kinetics of the two binding 
reactions have to be taken into consideration for calibra- 
tion purposes. We have made an attempt to model the 
response time of the described type of immunosensor 
under nonequilibrium conditions. 

THEORETICAL DETERMINATION OF 
KINETIC VARIABLES 

Many performance characteristics of immunosensors 
can be predicted by theoretical models. In this section, 
we introduce the mathematical model for the theoreti- 
cal determination of kinetic variables and present two 
approaches to calculate the binding of antigen to anti- 
body over time. However, to execute the calculations 
according to the model, a minimum of independent vari- 
ables need to be experimentally determined (see Part 
II). This is comparatively simple for variables derived 
from labeled antigens since these are directly generat- 
ing a measurable signal. The native antigen, however, 
cannot be measured directly in many designs of immu- 
nosensors and some kinetic parameters need to be indi- 
rectly determined. 

Mathematical Model 

For the development of the mathematical model we 
have selected the geometry of a microwell (Fig. 2). An 
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FIG. 2. Geometry of a microwell. For the definition of the symbols 
see Table 1. 

antibody is chemically bound to a surface area con- 
tacted by 200 ~1 of medium. These same conditions were 
used for the validation of the theoretical predictions by 
experimental studies. The symbols and dimensions 
used for the model are described in Table 1. 

Diffusion of molecules and binding of antigens to the 
immobilized antibody at the liquid-solid interface are 
the two processes that are mathematically described. 

Differential rate equation for diffusion. If an immu- 
nosensor with an immobilized antibody on the surface is 
exposed to the solution that contains the analyte to be 
measured, a concentration gradient of the analyte (anti- 
gen) ensues. The analyte is removed from the bulk solu- 
tion by binding to the antibody. As a dynamic equilib- 
rium process, the antigen-antibody binding rate is 
determined by the on- and off-rate, i.e., the association 
of the antigen with the antibody and the dissociation 
from the antigen-antibody complex. The question 

arises: Is the approach to equilibrium limited by the abil- 
ity of the antigen molecules to reach the antibody on the 
solid surface? In other words, is the establishment of 
equilibrium diffusion limited? In practical terms, the 
investigator wants to know if a certain design of an im- 
munosensor can be operated with or without agitation. 
Diffusion of reagents on solid-liquid interfaces of mi- 
crowells toward the formation of antigen-antibody 
complexes without agitation was previously described 
(6). We are theoretically investigating the diffusion pro- 
cesses under agitation. In Part II of this study, we de- 
scribe the experimental results for diffusion processes 
under agitation. 

Diffusion is the transport of a constituent from a re- 
gion of higher concentration to that of a lower concen- 
tration. This process consists of three components 
which are described in the context of an immunosensor 
with an immobilized antibody on a solid surface and a 
binding reaction at the liquid-solid interface (for review 
see (7)): 

1. Convective diffusion, the movement of molecules 
(or particles) from the bulk solution to the surface. This 
is a three-dimensional process (8,9). 

2. Lateral diffusion, the movement of molecules on 
the surface of the solid phase toward an immobilized 
immunoglobulin. This is a two-dimensional process 
(10,ll). 

3. Rotational diffusion, to direct the antigen spatially 
toward the idiotypic site of the immunoglobulin so that 

TABLE 1 

Symbols and Their Descriptions Used for the Theoretical Determination of Kinetic Variables by Mathematical Models 

Symbol Description Dimension 

a 

WI, WI, 
Thickness of penetration layer 
Density of binding sites of antibody on the solid surface (subscript f stands for unoccupied 

and t for total binding sites) 

mm 
mol mrne2 

[A&, l-%1,, l&l, 
[Ab:Ag] 
B 
c 
D 
h 

Jim Jm 
kc 
k 0x7 
k 

&lb, tNAglp 

ND, 

Ii 
t 

T 
T 
V 
x 

Concentration of antigen (subscript b in bulk solution, s on solid surface, and t for total) 
Density of antigen-antibody binding complex 
Amount of antigen bound to antibody 
Defined by Nn&~f(l + 2X)l(rh)) 
Effective diffusion coefficient of antigen 
Height of liquid head in microwell 
Influx and efflux across a defined boundary 
Convective mass transfer coefficient (D/a) 
Off-rate constant of antigen from antigen-antibody complex 
On-rate constant of antigen for antigen-antibody complex formation 
Amount of antigen in bulk solution (b) and penetration layer (p) 
Dimensionless Damkoehler number (k,[Ab],lk,) 
Inner radius of microwell 
Surface area of microwell that is covered with liquid 
Time 
Total amount of antigen 
Total amount of binding sites 
Volume of liquid in microwell 
Ratio of h/r in microwell 

mol rnrnv3 
mol mm+ 
mol/well 

mm’ s-l 
mm 
mol mm-’ s-i 
mm a-’ 
SC’ 

mm3 mol-’ s-l 
mol 

mm 
mm2 
s 
mol/well 
mol/well 
mm3 
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FIG. 3. Diffusion and reaction processes that are involved in leading to the formation of the antigen-antibody complex. The two-dimen- 
sional diffusion consists of lateral and rotational diffusion (see text). The three diffusion processes result in the formation of the encounter 
complex which is the precondition for the formation of the antigen-antibody complex. 

binding can occur. This is also a two-dimensional pro- 
cess (12). 

These three diffusion processes lead to the establish- 
ment of an encounter complex which is the precondition 
for the antigen-antibody complex. The relative rate of 
formation of these two complexes indicates if the sensor 
is diffusion controlled or reaction controlled. 

It is difficult to measure the diffusion processes sepa- 
rately, but the overall (effective) diffusion coefficient 
can be experimentally determined. Alternatively, the 
effective diffusion coefficient can be calculated if the 
molecular dimensions of the antigen(s) participating in 
the antigen-antibody reaction are known. However, 
these calculations are complicated by the effect that re- 
pulsive forces (e.g., charge interactions) and nonsym- 
metric configurations of molecules in solution and on 
the surface can have on the diffusion of molecules. 

For this model, we have not taken into consideration 
the surface charge of the antigen and the surface area. 
The electrostatic forces between the surface and anti- 
gen is inversely proportional to the distance. Therefore, 
the three-dimensional diffusion is not substantially af- 
fected by charges. The antigen present near the solid 
surface may interact with the charged surface, the 
strength of repulsion or attraction depending on the 
charge density. These forces can affect the lateral diffu- 
sion rate (13). 

Three-dimensional diffusion can be accelerated by ag- 
itating the incubation mixture so that molecules reach 
the surface faster. However, even with most vigorous 
agitation, this type of diffusion can never be completely 
abolished. Near the surface, a layer of water and me- 
dium components forms that is organized by electro- 
static forces resulting from the interaction of the sur- 
face and the components of the medium, including the 
diffusive substance (i.e., antigen). This is called the pen- 
etration layer or hydrodynamic layer (a in Fig. 2 and 
Table 1; (8)). The diffusive substance may only margin- 
ally affect the thickness of the penetration layer if it is 
vastly outnumbered by other medium components (e.g., 
gelatin used in incubation buffers). 

The formation of the encounter complex (Fig. 3) fin- 
ishes the process of diffusion and initiates the formation 

of the antigen-antibody complex, for which the kinetics 
are determined by the reaction rate (k,, and It,,). 

Equations for two of the three other diffusion rates 
are difficult to formulate (lateral and rotational). There- 
fore, we developed an equation only for three-dimen- 
sional mass transfer [9]. This expression requires the 
diffusion coefficient, D, for the solution (12, = D/u). How- 
ever, we entered into [9] the effective diffusion coeffi- 
cient (i.e., the sum of the three diffusion processes). 
Three-dimensional mass transfer seems to contribute 
the largest component in D [9] so that potential devia- 
tions in the following calculations are negligible. This 
was finally confirmed by the good correlation of the the- 
oretically developed and the experimentally determined 
data for kinetic binding curves (Part II). 

In Eqs. [l] to [9] we explain the formation rate of the 
encounter complex (Fig. 3). Although the microwell has 
the geometry of a cylinder, we will treat all surfaces as 
one plane. The thickness of the penetration layer for 
diffusion (8 to 9 X 10e2 mm) is much smaller than the 
radius of the microwell (3.3 mm). Since we are working 
under stirring conditions, molecules in the bulk solution 
are uniformly distributed and diffusion takes place only 
in the thin penetration layer that is at first approxima- 
tion independent of the well geometry. The efflux of 
antigen from the bulk solution equals the influx into the 
penetration layer, while the efflux from the penetration 
layer reflects binding to the antibody, i.e., withdrawal of 
the antigen from the system. Two material balance 
equations for the penetration layer [5] and the bulk so- 
lution [8] are developed and then combined to obtain 
the diffusion rate that reflects the formation of the en- 
counter complex over time [9]. 

For the determination of the concentration of antigen 
in the penetration layer, the influx of antigen from the 
bulk solution is proportional to the diffusion coefficient 
(D) and the concentration gradient ({ [Ag],, - [Ag],}la) 
(Nernst equation (8)). 

Jin = (Dla)([&l, - [&I,) = &([&I, - [&la)* [J-l 

The efflux of free antigen (withdrawal from the diffi- 
sion process) by binding to the immobilized antibody 
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follows the binding rate (based on a monovalent binding complex which is the precursor for antigen-antibody 
of antigen to antibody): complex formation. 

Jout = k,,[Abl,[&l, - h&b:Agl. PI 

To calculate the accumulation of free antigen mole- 
cules in the penetration layer, we estimate an average 
concentration derived from that of free antigen on the 
solid surface and that found in the bulk solution (assum- 
ing a linear gradient in the penetration layer). 

Equation for antigen-antibody binding reaction. The 
rate of formation of antigen-antibody complex, 
[Ab:Ag], (reaction rate) is a function of the concentra- 
tions of the unoccupied binding sites, [Ab],; the antigen 
at solid surface, [Ag],; and the antigen-antibody binding 
complex, [Ab:Ag] . 

d[Ab:Ag]ldt = Iz,,[Ab],[Ag], - k,,[Ab:Ag]. [lo] 

d[N,,],ldt = d{aS([Ag], + [Ag],)/2}ldt. i33 

The establishment of a linear gradient in the penetra- 
tion layer in a model similar to that discussed here has 
been described in detail (6,8,14). Under stirring condi- 
tions, the antigen molecules are distributed in a linear 
concentration gradient within the order of seconds after 
addition of antigen to the wells. This compares to times 
of >30 min to hours for reaching the state of equilibrium 
between immobilized antibody and antigen. 

By applying the conservation law of mass (accumula- 
tion = influx - efflux) we obtain 

Equutions for material balance (law of mass uc- 
tion). To solve Eqs. [9] and [lo] for the four unknown 
variables ([Ag],,, [Ag],, [Ab], and [Ab:Ag]), two addi- 
tional equations are required. These are provided by the 
material balance equations for the antigen and the anti- 
body binding sites. 

The total molar amount of antigen is the sum of the 
molar amount in the bulk solution, in the penetration 
layer, and the amount bound to antibody: 

V[Ag], = (V - uS)[Agh, 

+ uS{(M,, + PM,V2} + SbQ:Agl. WI 
d[NAglpldt = (Jin - Jo”,)S* [41 

Inserting Eqs. [ 11, [2], and [3] into [4], the sum of the 
change of concentration of the antigen in the bulk solu- 
tion and on the solid surface is 

The molar amount of antibody on the solid surface is 

[Ab], = [Ab], + [Ab:Ag]. WI 

4&l&t + d[AglJdt = Wa)(M&& - Lkl,) 

- (k,,[Abl,[&l, - k,,W:Agl)I. t51 

The unknown variables ([Aglb, [Ag],, [Ab], and 
[Ab:Ag]) can be calculated from Eqs. [9] to [ 121 by either 
the analytical or the numerical method (see below). 

For the bulk solution, the net flux across the bound- 
ary between bulk solution and penetration layer [6] and 
accumulation within the bulk solution [7] are 

With these equations, the concentrations of antigen 
on the solid surface and bound antigen can be calcu- 
lated, provided that the independent kinetic variables 
are experimentally determined. 

Jin - Jout = -M&l, - LW,) 
d[N&ldt = d{ [Ag]JV - aS)}ldt. 

Equations [6] and [?I are combined 

PI 

[71 

Determination of Time-Variable Concentrations of 
Bound Antigen 

4AghJdt = -{WGV - aS)}([Agl, - [&I,). PI 

Inserting Eq. [8] into [5], the final differential equa- 
tion for the diffusion rate under stirring conditions is 

d[-kl,ld~ = k{Wd + S/(V - 4}bM, - t&l,) 

- W4Uq,,[Abl,[Agl, - k,[Ab:Agl). PI 

Equations [9] to [12] can be reduced to two differen- 
tial equations by substituting [Ag], and [Ab], in [9] and 
[lo] with [ll] and [12]. The two final differential equa- 
tions are nonlinear and, therefore, difficult to mathe- 
matically resolve for two dependent variables (concen- 
trations of antigen on the surface [Ag],, and the 
concentration of the binding complex [AbAg]). How- 
ever, if we apply two approximations (by assuming 
pseudo-steady-state antigen concentrations on the sur- 
face, and by neglecting the volume of the penetration 
layer), the equations become mathematically solvable. 

The concentration of antigen that reaches the surface 
by diffusion, [Ag],, represents that of the encounter 

The nonlinear equations can also be solved using a 
numerical method which requires different approxima- 
tions (see below). We have explored both approaches for 
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the kinetic study of antigen-antibody binding at liquid- 
solid interfaces. 

Analytical solution. By definition, a pseudo steady 
state exists when the diffusion rate of antigen from the 
bulk solution to the surface is equal to the reaction rate 
of antigen-antibody binding; no encounter complex or 
free antigen would have the chance to accumulate in the 
penetration layer. As we describe in Part II of these 
investigations, the assumption of a steady-state antigen 
concentration in the penetration layer is adequate if 
stirring conditions are used to facilitate the mass trans- 
port from the bulk solution to the solid surface (8). 
Since the influx (Eq. [l]) is equal to the efflux [2], the 
following equation replaces [9]: 

MA&, - [Agl,) = L[Abl,[Agl, - k,,[Ab:Agl. [I31 

We can simplify Eq. [ll] by ignoring the volume of 
the penetration layer (e.g., we have experimentally es- 
tablished that it is ~7% of the total volume under stir- 
ring conditions): 

V[Ag], = V[Ag], + S[Ab:Ag]. ]I41 

In Eq. [13], the concentration of antigen at the sur- 
face [Ag], can be expressed by [Ag],,, [Ab], and [Ab:Ag], 
and then [Ag],, is substituted with Eq. [14]: 

[&A = {kc{ [Agl, - ((1 + 2WWd) W&id} 

+ k,,[Ab:Agl}/(lz, + kJAbl3. [151 

[Ag], obtained from [15] is now used in Eq. [lo]. To 
solve [lo], [Ab], still needs to be replaced and is ob- 
tained from [12]. As a result, Eq. [lo] becomes 

d[Ab:Ag]ldt = Nn,k,[Ag],l(l + A$,,) 

- ({Nn,k,{(l + W/W)) + b}/ 

(1 + N,,)}([Ab:Agl). WI 

Equation [ 161 is now integrated in the range between 
[Ab:Ag] = 0 and [Ab:Ag] = [Ab:Ag],,,, and in the range t 
= 0 to t = t. BIT (bound over total antigen) is then 
determined. 

BIT = (S[Ab:Ag],=,)/(V[Agl,=,) 

= (1 - exp{-(C + k&/(1 + ND,)))/ 

(1 + kc,&-‘), 1171 

where 

C = Nn,k,((l + 2X)I(rX)}. WI 

Equation [ 171 is an analytical solution for the variable 
of interest, B/T, which is mathematically expressed as a 
function of time. 

Numerical solution. To circumvent the mathemati- 
cal approximations in the analytical solution, a numeri- 
cal method can be used for the theoretical calculations. 
Numerical methods are algorithms that use only arith- 
metic and certain logical operations such as algebraic 
comparisons (15). However, in calculating a function by 
computer-oriented numerical methods, errors might 
now be introduced by approximating the solution of a 
mathematical problem (truncation errors) and in oper- 
ating a finite number of digits (round-off errors). 

For the numerical solution, we use the fourth-order 
Runge-Kutta method (16) to simultaneously solve the 
two differential equations [9] and [lo] with two supple- 
mental equations [ll] and [12]. The purpose of the 
Runge-Kutta method is to obtain an approximate solu- 
tion of a system of first-order ordinary differential 
equations with given initial values. 

To calculate the variable of interest, i.e., the ratio of 
bound over total antigen (B/T) as a function of time, the 
major steps are: 

(a) Scale the variables in Eqs. [9] to [12] ([Aglb, [Ag],, 
[Ab:Agl, [AM, and LAbI,) by [Ad,. 

(b) Scale the time by (a/k,). 
(c) Define the scaled variables. 
(d) Rearrange Eqs. [9] and [lo] to introduce the 

dimensionless groups { (Iz,,[Ab],)lk,} and { (k,,V)/ 
(kn[Abl,S) 1. 

(e) Execute a computer program (e.g., by FOR- 
TRAN) for the solution of the equations by the numeri- 
cal method; i.e., calculate B/T at a given time interval by 
iterations. 

The numerical solution for the problem analyzed in 
this communication is in Part II and is compared with 
experimental results. 

We have calculated dose-response curves and kinetic 
binding curves for an immobilized antibody to the ste- 
roid hormone progesterone and a radiolabeled and an 
enzyme-labeled progesterone derivative in microwells 
by the methods introduced in Part I. The results are 
compared with experimentally obtained data in Part II 
of this communication. 
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