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In this paper we continue our development of new methods for the analysis of broad band time series by deriving 
quantities which are able to indicate deterministic dependence of an element in one time series on elements in other time 
series. These methods are very broadly applicable and are particularly well suited to the study of continuous time series, in 
which the value of the function may depend on derivatives of the function itself, or on other quantities. We apply our 
methods to a number of mathematical examples including the Lorentz equation, the H6non-Heiles equations, the forced 
Brusselator and the Mackey-Glass equation. We show that our methods are very successful at indicating deterministic 
dependencies in these systems, even if the time series are highly chaotic. Statistical aspects of our procedure are discussed, 
as are a number of interesting and surprising epistomological implications. 

1. Introduction 

In a recent paper  [1] (hereinafter referred to as 
SG), we extended the methods of Brock, Dechert,  
and Scheinkman [2] by developing indicators for 
functional dependence among elements of a dis- 
crete time series. In SG we used conditional 
probabilities for the repetition of short sequential 
patterns of values in a time series to determine, 
quantitatively, the extent to which a term in the 
series is a function of previous elements of the 
series. In this paper,  we modify the methods 
developed in SG in order to be able to apply 
them to discuss conditional dependencies among 
elements of different time series. One particularly 
important application of this general idea is to 
the analysis of continuous time series in which 
the series may be generated by an underlying 
differential equation, as in the case of fluid flow. 
In such a case the series x(t) may have determin- 
istic dependence on (among other things) various 
derivatives of x. But the functions 2, 2, etc. are 
time series with different statistical characteristics 

than x(t) itself. Thus, a generalization of the 
methods of SG is necessary to treat this impor- 
tant case. In most of the rest of this paper  we 
shall use continuous time series with determinis- 
tic derivative dependence as examples to illus- 
trate and develop our methods. But it should be 
borne in mind that they are much more generally 
applicable. 

As with the methods in SG, the techniques 
derived here are particularly useful when applied 
to time series with broad band characteristics 
which may be the result of nonlinear processes. 
The analysis of such series by more traditional 
(linear) methods may fail to capture the presence 
of important nonlinear deterministic effects. 
Our methods are based on the use of certain 
kinds of conditional probabilities that can be 
constructed from vector generalizations of the 
Grassberger-Procaccia  correlation integrals [2]. 
As a result, the methods we derive are often able 
to capture deterministic effects which become 
apparent  only when viewed in an appropriately 
defined higher-dimensional space, analogous to 
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the  e m b e d d i n g  space  of  a chaot ic  a t t rac tor .  In 

this context  it is impor t an t  to d is t inguish be tween  

the absence  of  cor re la t ions ,  as ind ica ted  by the 

value  of  au toco r r e l a t i on  funct ions,  and  s tat is t ical  

i n d e p e n d e n c e .  It may h a p p e n  that  the  au toco r re -  

la t ion funct ions  of  a t ime series  are  zero,  while 

the  e l e m e n t s  of  the  series  have nontr ivial  s tat is t i -  

cal i n t e rdependenc i e s .  A s imple  example  is the 

t ime ser ies  g e n e r a t e d  by i t e ra t ions  of  the  tent  

map.  This  ser ies  has zero  au toco r r e l a t i on  func- 

tions, but  s ta t is t ical  indica tors  such as those  from 

SG, or  f rom ref. [2] indica te  the  s t rong under ly ing  

de te rmin i s t i c  dynamics .  

In the  next sect ion we shall  der ive  indica tors  

for d e p e n d e n t  der ivat ives  and also expla in  the i r  

appl icab i l i ty  to the  more  genera l  case of  depen -  

dence  among  o the r  sets of  con t inuous  t ime series.  

In sect ion 3, we shall  deve lop  a p red ic tab i l i ty  

index which cha rac te r i zes  the  extent  to which a 

con t inuous  t ime ser ies  is p r e d i c t a b l e  given knowl-  

edge  of  o the r  con t inuous  t ime ser ies  cons ide red  

as i n d e p e n d e n t  var iab les  in the  analysis.  In sec- 

t ion 4 we shall  apply  our  test  to several  cont inu-  

ous systems inc luding  systems with pe r iod ic  or 

o t h e r  s imple  asympto t ic  behav ior  as well as sys- 

tems which exhibit  chaot ic  behavior .  The  chaot ic  

systems examined  include the Loren tz  equat ions ,  

the  H 6 n o n - H e i l e s  equa t ions ,  and  the forced  

Brussels  osci l la tor ,  as well as the  M a c k e y - G l a s s  

de lay  equat ion ,  which inc ludes  non- loca l  effects. 

Sect ion 5 consists  of  a summary  and conclusions.  

Some technica l  issues are  r e l ega t ed  to an ap-  

pendix.  

a l though we cons ider  a special  case, the me thod  

we der ive  is app l icab le  to the more  genera l  case 

of  d e p e n d e n c e  among  different  t ime series  which 

are  not  simply der ivat ives  or  in tegra ls  of  each 

other .  

Cons ide r  a con t inuous  set of  da t a  x ( t ) ~  ~, 

0_< t  <oc with con t inuous  first th rough  ruth 

derivat ives.  We  deno te  these  der ivat ives  by x tk J(t) 

for k = 1 . . . . .  m. The  me thod  we deve lop  below 

will measure ,  quant i ta t ively ,  the  extent  to which 

the value of  x at t ime t is d e t e r m i n e d  by the 

values  of  the low-order  der ivat ives  of  x at t ime t ,  

i.e. the extent  to which 

x ( , )  : (l) 

for some funct ion F and some set {x[kl(/')} of 

der ivat ives  of  x of  o r d e r  less than or  equal  to m. 

Obviously  our  m e t h o d  will be most  successful  in 

analyzing t ime series  der ived  from a u t o n o m o u s  

local d i f ferent ia l  equat ions ,  which satisfy (1) by 

defini t ion,  though it is useful  in o the r  c i rcum- 

s tances  as well. Note ,  in par t icu lar ,  that  the argu- 

men t  of  x [k] is t ' ,  by which we mean  to include 

the  possibi l i ty  of  non- local  equa t ions  as well as 

d i f ferent ia l  equa t ions  that  are  strictly local in 

t ime.  In addi t ion ,  we shall  discuss the inclusion of  

explici t  t ime d e p e n d e n c e  in (1). 

Before  descr ib ing  our  p rocedure ,  it is useful  to 

review the m e t h o d  desc r ibed  in SG for the analy-  

sis of  d iscre te  t ime series.  F rom a d iscre te  t ime 

series  xi,  i = 1 . . . . .  N we fo rmed  d -d imens iona l  

vectors  

2. Indicators for dependent derivatives 

In o r d e r  to faci l i ta te  the  discussion of  our  

me thod ,  we first der ive  indica tors  for d e p e n d e n c e  

of  a con t inuous  t ime series  on its der ivat ives ,  as 

might  result ,  for example  from an under ly ing  

de te rmin i s t i c  d i f ferent ia l  equa t ion .  This  p rov ides  

a very fami l ia r  mode l  and also a more  d i rec t  

ana logy  with the der iva t ion  of  s tat is t ics  for dis- 

c re te  t ime ser ies  in SG [1]. K e e p  in mind  that  

v ( i )  = ( x , , x ~ _ ,  . . . . .  x i - J + , )  

= ( v , ( i ) , v 2 ( i )  . . . . .  v j ( i ) ) .  (2)  

In SG we then cons t ruc ted  the G r a s s b e r g e r -  

Proeaccia  cor re la t ion  integrals  [3] 

1 y .  1 i i ( 6 )  ' (3a) 
pairs 
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where 

d 

t~j(~) = 1-1 o(~ - ] v A i )  - v , ( j ) [ ) ,  (3b) 
k - 1  

u is the number  of  pairs of  vectors (v( i ) ,v( j ) ) ,  

and e is a positive real number  which controls the 

tolerance (or uncertainty) with which we observe 

the dynamics of  the discrete system. Ca(e) is 

the probability that all the components  of  two 
d-dimensional  vectors, v(i)  and v( j ) ,  are within e 

of  each other.  Using the Ca's one can construct  
condit ional  probabilities which indicate the ex- 

tent to which an e lement  of  the sequence,  x i, 
depends  on previous elements  of  the sequence,  or 
in o ther  words whether  or not vl(i) depends  on 

v 2 ( i )  through Ud(i). 

For cont inuous time series, x( t ) ,  we are inter- 

ested in dependencies  of  a function on its deriva- 
tives. Therefore ,  we consider, instead of  the 

vector v(i),  the vector whose elements  consist of  

successively higher derivatives of  x( t ) .  In particu- 
lar, we choose a sampling interval, z, and from 
the time series x ( t )  form d-tuples of  derivatives 

at times t = nr,  1 < n < N, which we will consider 
to be vectors in a d-dimensional  space: 

. ( n z )  = ( x ( . ¢ ) ,  x[ ' ] ( .¢)  . . . . .  x I" - ' ] ( . z ) )  

-- (/A{}(/'/T ), //1( HT ) . . . . .  //d_ i{ BT)) .  (4)  

Next, we have to modify the definition of  the 

indicator function li~(e). In the discrete case, 
each coordinate  of  the vectors v(i) samples a 
large subset of  the sequence xg, i =  1 , . . . , N ,  so 

we use the same parameter  e to measure  the 
separat ion of  all coordinates.  In the cont inuous 

case we must  choose a separate  value of  e, ek, for 
each coordinate  uIk](nr), k = 0 , . . . ,  d - 1. In this 
paper,  we choose 

ek = / z .  st. dev. {xlk](n~-), n = 1 . . . . .  N} (5) 

(st. dev, = s tandard deviation of), where the toler- 
ance with which we examine the data is now 
described by the positive real number  /x. Note 

that since we are assuming in general  that the 
coordinate  projections of  the vector u ( n z )  are 

different, the methods  we derive in this paper  will 

apply equally to any case in which we are pre- 
sented with a sequence of  vectors u(n~'), n = 
1 . . . . .  N and we wish to discover the dependen-  

cies among  the coordinates  of  the vectors. Hence,  

this technique may be used to probe correlat ions 

among measurements  of  several different time 
dependent  quantit ies of  a system, not just among 

derivatives of  a single function. For example the 
pressure, volume, and tempera ture  of  an expand- 

ing gas may be combined into the three-dimen-  
sional vector  

u(nz )  = ( P ( n z ) , V ( n r ) , T ( n r ) )  

= ( . , ( n . ) ,  u 2 ( n ¢ ) ,  . 3 { n ¢ ) ) ,  

and that vector subjected to the analysis de- 
scribed below. 

Using (5) the indicator function (3b) becomes  

d - I  

l~j(~) = I-I o ( ~ k - i u k ( i ~ ) - u , ( j ~ ) [  ). (6) 
k - {} 

We may then define the correlat ion integral of  
dimension d as 

cId l(p.) = 1 y:~ l i t ( # )  , (7) 
1) 

pairs  

where u is the number  of  pairs of  vectors 
(u(iz) ,  u( jz)) ,  and where the notat ion a - 1  indi- 

0 
cates that c{d-l(/x) contains information about 

the first d coordinates  (u 0 through Ua_ 1) of  u(t)  
as shown in (4). 

Consider  two vectors u( iz )  and u( jr ) .  It is easy 
to see that cd-0 1,t/x) is the probability that uk( ir )  
and uk ( j z )  are within e k of  each other  for k = 
0 , . . . , d -  1. That  is, 

C{ d-  ' ( / z )  = P (  Do, D l . . . . .  Dd-1) ,  (8) 

where D~ stands for the s ta tement  "]uk ( i ' r ) -  
uk(/r)l _< e / ' .  
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We now want to test whether  the time series 

x( t )  has deterministic dependence  on its deriva- 

tives, as one would expect if, for example, x( t )  
had been genera ted  from a differential equa- 
tion of  the form (1) with x t l l ( t )~  {x[k](t)}. TO 

do so we examine the condi t ional  proba-  

bility, P(Do[D1), that  ] x ( i r ) - x ( j r ) {  <_ e o given 
that [x[ll(ir)--x[ll(jr)l <_e I. Since P(D o, Dj)  = 
P(DolD 1) P(Dn), we see that  

P(DoD1 )  
P(Do[DI)  p (D1  ) (9) 

P(Do). The size of  ~1 is thus a measure  of  the 

extent to which P(Do[D 1) 4= P(Do) , i.e. the ex- 
tent to which knowledge of  xI~l(t) to within +E~ 
increases our  ability to predict  x( t )  to within 

~/ : ' 0"  
Next, we want to know if knowledge of xt21(t) 

to within ___e 2 increases the predictability of  x( t )  
(to within _+s 0) over the predictability already 
achieved through knowledge of  xILl(t) (to within 

-+at). Examine  the condi t iona l  probabi l i ty  

P(Do[DID2). Since P(DoDtD 2)= P(DIIIDID 2) 
× P(DID 2) we have 

If  knowledge of  x[1](ir) to within ej does not 

increase one 's  ability to predict  the value of  x ( i r )  
to within e 0, then P(DolD l) = P(Do), or from (9) 

P (  D o D  1 ) 
P ( D , )  - P ( D ° ) "  (10) 

Since, unlike the discrete case (2), the coordinate  
project ions of  u(ir)  in (2) are generically all dif- 

ferent,  it is not  correct  to set P ( D 1 ) = P ( D  o) = 
C~](I-t). Instead,  we must  calculate P(D 1) explic- 
itly. P(D~) is the probability that lu[~l(ir) - 
uIll(jr)l < e 1, or 

1 P(D,) = 7  E O ( e , - l u [ n l ( i r ) - u t ' ] ( j ' r ) l )  
pairs 

--= C I ( # ) ,  (11) 

where the notat ion i indicates that CI ( / , )  is a 
1 

correlat ion integral containing information only 

about  the first derivative of  x(t) .  Then (10) be- 
comes 

p(  DI)ID,D2) - 
P( DoD ~ D2) C~ 

P(D1D2) C 2" 
14) 

where for notat ional  convenience,  we have 
d ropped  the variable p.. If knowledge that D e is 

true does not increase the probability that D 0 is 
true, then 

c,', 
P ( D ° [ D ' D 2 ) = P ( D ° I D 1 ) -  " (15) 

Using (14) and (15) we define 

-1 2 
CoCI 

~2(~)  = 1 C2C I . (16) 

The size of  ~'2(#) is a measure  of  the extent to 

which P(Do[DID 2) 4~ P(DoLD I ). 
In general,  we may define 

c -'ci 
~' j( / . / , )  = 1 J i 1 " ( 1 7 )  

CoCI 

c,',( ) 
(12) 

cl( ) 

and in analogy with the discrete case we define 

cl(u)cS( ) 
c , (u)  = 1 -  (13) 

In a statistical sense, ~'l is zero if P(DoID 1) = 

~'j(/,) is statistically zero if P(DotD 1 . . . . .  Di )= 
P(DoID ~ . . . . .  Di_ I) and so the size of  ~'j(/~) is a 
measure  of  how much knowledge of x[Jl(t) (to 
within +_e i) increases our  ability to predict  x( t )  
(to within _+e 0) over the predictability already 
obtained through knowledge of  xH( t )  to within 

_+eg for i = 1 . . . . .  j -  1. 
In a practical implementa t ion of  this p rocedure  

on a digital computer ,  we must  approximate  the 
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derivatives in (4) by finite differences. This re- 
quires that  in addit ion to the sampling interval z 
we choose an interval At to use in forming the 

finite differences. We must  then ask whether  
aliasing affects our  results. Since we assume the 

derivatives of  x( t )  exist, we may Taylor expand 

x( t )  and write 

x(  t ) = x ( t 0 )  + ( t - to)xI'l( to) + . . .  

1 ( t -  to)mxlml(to) +-N-f. 

-]-( t - -  t o ) t u R i n ( t o ) .  

Then,  using the s tandard second order  differenc- 

ing scheme [4] (in which odd ordered  differences 
are averaged to fall on a lattice point  instead of  

between two lattice points) it is easy to show that 

ak(x(to)) xlkl(t0) + (ht)Zxlk+zl(to)Ak 
(At) 

+ ~ ( a t )  3, (18) 

where  gk(x(to)) indicates the k t h  difference of  

x( t  o) on a lattice of  spacing At. The first ten 
coefficients, A k, are listed in table 1. The  only 
place the values of  the derivatives enter  our  cal- 

culations is in the indicator function (6), so the 
only requirement  necessary to ensure that our  

results are unaffected by use of  the k th differ- 
ence (18) instead of  the k th  derivative xtkl(t) is 

Table 1 
The first ten coefficients A k from eq. (18). 

k A k k A k 

1 1 / 6  6 1 /2  
2 1/12 7 1 /6  
3 1/12 8 1/3 
4 1/6 9 5/24 
5 1/8 10 5/12 

that  on average 

[ak(x(i~-)) - a~(x(j~-)) [ 
<--6 k ( A t )  k 

** I xt~J( i t )  -- Xtkl( jr)[  _< e k . 

Hence,  the error  due to finite differencing will 

not  affect our  results so long as it is smaller, on 

average, than e k, the tolerance with which we 

observe k th  derivatives. That  is, our  results will 
be accurate  so long as 

(A t )2 l x l k+2 l ( t ) lAk<e  k, k = 1 , 2  . . . . .  

where  [xLk+21(t)[ is the average magni tude  of  the 

second derivative of  xlkl(t). Accordingly we de- 

fine the indicator 

R k-= ek k = 1,2 . . . . .  (19) 
( at)2lxtk+21(t)lAk ' 

Barring any unusual pathologies,  if R k is greater  

than one then typically any of  our  calculations 
involving xikl(t) should be accurate,  and the 

larger the value of  R k, the more  accurate the 
results. We will see in section 3 that when 
the tolerance,  ~,  is 1 / 2  we obtain accurate re- 
sults with surprisingly large values of  At. 

We may further  inquire as to how the choice of  

the sampling interval, r, affects our  results. 
Clearly, the indicators ~'j (17) can only indicate 

dependence  among elements  of  those vectors 
u(n'r) which are included in our  sampling (4). 

This sampling may not include all the information 
about  the system being examined. For  example, a 

small enough port ion of  a periodic function may 
appear  to be simply linear, or a small enough 
port ion of  a chaotic system may in some cases 

appear  to be periodic. In most  cases, it is desir- 
able when investigating a periodic system to in- 
clude at least several periods in the sampling, and 
many points within each period. Similarly, if we 
are investigating a chaotic system with a strange 
attractor,  our  sampling of  vectors u ( n r )  (4) should 
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contain enough points to reveal a large portion of 
the structure present. 

Through numerical simulations we have ob- 
served that so long as N and ~- are chosen consis- 
tent with the above requirement,  the value of ~- 
does not seem to strongly affect our results, at 
least on a wide class of representative systems. 
This effect, though somewhat surprising, can be 
understood by examining the C~- l ( /z )  defined in 
(7). Cg 1 is a sum of the indicator function lij(l~) 
defined in (6) over all possible pairs of d-dimen- 
sional vectors (u( iz ) ,  u(j~-)). It follows that one 
can permute  the labels of the vectors {u(iz)} in 
any way (exchanging, for example u(2z) for 
u(100z)) without changing the value of any of the 
correlation integrals, since the same pairs of vec- 
tors will contribute to the sum (7) with any label- 
ing. Hence,  once all of the necessary derivatives 
are computed (a process involving At but not T), 
the time ordering of the data points is irrelevant. 
We are investigating only the relationship be- 
tween the components  of the vectors, not the 
relationship between two successive vectors. 
We may conclude that any collection of vectors, 
{ u ( t  i)  = (x[O](t i ) ,  xUl(ti)  . . . . .  x [d- II(ti)), i = 
1 . . . . .  N}, which samples sufficiently the structure 
of the function being examined, may be used to 
compute the correlation integrals and the indica- 
tors ~'. For simplicity, in the examples studied in 
this paper  we have chosen to employ even spac- 
ing. 

3. Predictability index 

In SG we developed a predictability index, S, 
which indicates quantitatively to what extent a 
value in a discrete sequence is predictable given 
the values of previous elements of the sequence. 
In addition, we showed that 

S =  lim P ( t d l t d _ l , t d _  2 . . . . .  /1), 
d ~  

l' d k+l( j ) ]  ~<~'" and the t ' k ( i )  are defined in (3). 
The corresponding expression for our continuous 
system, under the hypothesis (1), is 

S = lira P ( D o I D  ,, D~ . . . . .  Dd). (20) 
d - - )  ~c 

S is 1 if x ( t )  is completely predictable (to within 
s0) given the values of all the derivatives of x at 
time t (to within their respective tolerances), and 
S = P ( D  o) =- C[] if knowledge of the derivatives of 
x ( t )  does not increase predictability. Note that it 
is highly unlikely to find S near 1 in cases in 
which the dynamics of the system are character- 
ized by having one or more positive Lyapunov 
exponents. In this case nearby trajectories will 
diverge, thus limiting reproducibility of the sys- 
tem given any small uncertainty in measurement.  

In practice, we do not have knowledge of 
the derivatives of x ( t )  to all orders. Hence we 
a p p r o x i m a t e  S by the quan t i t i e s  Sj --- 
P(Do[D j . . . . .  Dj), the predictability index taking 
into account information from the first j deriva- 
tives of x( t ) .  S/ is 1 if x ( t )  is completely pre- 
dictable (in the sense of being reproducible to 
within + s  0) given the value of the first j deriva- 
tives of x at time t (to within _+si), and S i =  
P ( D  o) = C~] if knowledge of these derivatives does 
not increase predictability. It often happens that 
there is an integer U for which (i is sensibly 
negligible for all j > U. In that case S U will be a 
good approximation to S. To express S/ in terms 
of the (j(p.) we use (13) in the form 

1 - ( l  1 - ( ,  C I  
P ( D o I D , )  

and (17) in the form 

1 C lCf 
1-c  '/c¢ 

P(DoLD 1 . . . . .  D k )  
k = 2 . . . . . .  j 

w h e r e  t k stands for the s t a t e m e n t  " [ U d _ k + l ( i ) - -  P(DoID~ . . . . .  D k  I ) '  
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to get 

S j=P(DoJD , . . . .  ,Dj) 

= ( 1 -  • , ) ( 1 -  ( 2 ) . . .  ( 1 -  ~'j) " (21) 

Finally, from (20) and (21) we see that 

S ~--- l _ i j = l ( 1  __ ~.j) ( 2 2 )  

in analogy with the discrete case [1]. The deriva- 

tion of the predictability index proceeds in an 

analogous manner if we consider more general 
sets of dependent time series. Of course, if we 

consider only a finite set of independent vari- 

ables, the upper limit in (22) will be equal to the 
number of independent variables. 

4. Application to mathematical examples 

In the following examples, we have used se- 

quences of only 1000 vectors. One might expect 

significant errors to occur with the use of so few 
points. However, with 1000 points we have (1000) 2 
pairs of vectors, and it is the number of pairs that 

is relevant to the accurate determination of the 
correlation integrals. Further, because we gener- 

ate the time sequences from known equations, we 
know which variables occur in a simple phase 

space representation of the equations. The choice 
of different variables inevitably distorts this rep- 

resentation so that a larger number of points and 
greater accuracy may be required to obtain the 

same results we achieve here with 1000 vectors 
and /, = 0.5. This point is discussed further in 
section 4.6. Finally, note that with /z = 0.5, we do 

not require great precision in the estimation of 
derivatives. This allows us to investigate depen- 
dencies even among derivatives of order as high 
as 10. If we required greater precision than /z = 
0.5 the accuracy of our approximation of deriva- 
tives would have to become correspondingly 
greater as well. 

4.1. Random walk 

We first apply our test to a particle executing a 

random walk in one dimension. For each i from 1 

to N, let r/i be a random variable equal to + 1 or 
- 1  with equal probability. Then we describe the 

trajectory of the particle by the function 

intO) l 

x ( t )  = ~ ~7i+ [ t - i n t ( t ) ]  ~7(int(t)) (23) 
i = 0 

so that 

x[ ' l ( t)  = r / ( in t ( t ) ) ,  (24) 

where int is the integer function. Note that x( t )  
is continuous and x[U(t) is piecewise continuous. 

According to these equations, the particle moves 
with speed 1 in the positive or negative direction 
for a time interval of length 1, at which point a 

new direction (positive or negative) is indepen- 

dently and randomly determined. 
We formed the vectors 

u(i)  = [x ( i  + 0.001), x['l(i + 0.001)], 

i = 1  . . . . .  N 

and applied our test to 1000 independent se- 
quences of length N = 1000, choosing a tolerance 

1 /z = ~. Because the velocity of the trajectory is 
determined independently and randomly, knowl- 
edge of x[U(t) cannot increase our ability to pre- 

dict x(t). Hence we expect ~'1(/z) to be consistent 

with zero, indicating no one dependence. Indeed 
our results give the average value of ~'z to be 
- 4 . 5  x 10 -s  _+ 5.8 x 10 -5 with a standard devia- 

tion of 1.8 × 10 -3. This gives us an indication of 

what values for sr~ are consistent with zero for 
sequences of 1000 points. 

In the following examples, we take a value of ~'j 
much greater than ---- 10 -3 as an indication of j 

dependence in an underlying differential equa- 
tion explaining the data. This is a reasonable 
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thing to do for our  illustrative purposes.  But 

statistically a more rel iable procedure  would be 

to randomly shuffle the t ime series in quest ion 

and repeat  the calculat ions of the fj 's  on the 

shuffled series to de te rmine  expected sizes of null  

values unde r  a hypothesis of lack of statistical 

dependence .  This is a special case of a more  

general  p rocedure  in statistics called bootstrap-  

ping (see ref. [5] for a review). 

initial condi t ions  x(0) = 0, and x['i(0) = 1 we have 

l=(1 - [xl'l(,)]:). 
09 ~ 

(26) 

Hence  x( t )  does depend  on its first derivative, 

but  knowledge of xl~l(t) does not predict  x( t )  
completely.  Wri t ing (26) in the form of (1), we 

have 

4.2. The sine function 

Next, we apply our  test to the funct ion x ( t ) =  
sin(wt),  We choose a f requency ~o = v / 2 ,  a toler- 

ance Iz = 0.5, and a sampling interval r = 1 /3 ,  

We also require  R k to be greater  than or equal to 

4.0 for k = 1 . . . . .  5. According to eq. (19) this 

restricts At to be less than  or equal  to 0.82. We 

choose At = 0.82 to i l lustrate the accuracy of our  

results with this surprisingly large value. We ap- 

plied our  test to a sequence  of length N = 1000. 

The  ~'j and Sj, j = 1 . . . . .  5 are shown in table 2. 

Note that ~', and  ~'2 are both large while the ~i 

for j = 3 . . . . .  5 are quite small indicat ing that 

x( t )  = F(xIq(t) ,  xtZl(t)). On the other  hand,  we 

know that  if x( t )  = sin(cot), 

x ( t )  = - 4 x I 2 1 ( t ) .  (25) 
( 0  

We may ask, why is there an indicat ion of depen-  

dence  on xI ' l(t) ,  when  clearly informat ion  about  

the second derivative is sufficient to predict  the 

value of x ( t ) ?  In tegra t ing  (25) and  using the 

. ( t / =  +_-z v / l -  
O) 

(27) 

Knowledge of the value of xE=l(t) allows us to 

resolve the sign ambiguity. 

Also shown in table 2 are the results of apply- 

ing our  test to the same funct ion with the same 

pa ramete r  values except that  now At = 0.01, giv- 

ing a value for Ra greater  than  or equal to 27 000. 

Note that the values of ~'j and Sj in the two cases 

are close, and in par t icular  there is no difference 

in the eventual  predictabil i ty S 5. It may be sur- 

prising that  we get such accurate results using 

At = 0.82, when  the per iod of the funct ion is just 

4.0. However,  according to eqs. (19) the average 

magn i tude  of the aliasing errors in t roduced  by 

using At = 0.82 is still, on average, only about  

25% of the tolerance,  e, which we set to be one 

half the s tandard  deviat ion of the data  points. 

There  are several lessons to learn from our 

examinat ion  of this simple system. First, often the 

most na tura l  form in which to express a non l inea r  

differential  equa t ion  is not  in the explicit form 

Table 2 
{i, I 2 .~ 4 5 } a n d r r t = { 0 ,  ~ 3 4 s} ~'j and predictability index for the sin function with finite differencing interval At. r% = 0 I 3 4 5 i) 2 I 1, 4 ' 

j P e r m u t a t i o n  = ~ r 0 A t  = 0.82 Permutation = % ) A t  = 0.01 Permutation = r r  i A t  = 0.82 

~'j S j ~j S i ~', Sj 

0 0.295 0.295 0.295 
1 0.312 0.429 I).311 0.428 0.705 1.0 
2 0.571 1.0 0.572 1.0 -2.2 X Ill ~7 1.0 
3 -3 .6×10 17 1.0 -1 .1×10 is, 1.0 -3 .6×10 17 1.0 
4 -3 .6×10 17 1.0 -1 .1×10 t, 1.0 -3 .6×10 17 1.0 
5 -3 .6x  10 17 1.0 -1.1 × 10 l~ 1.0 -3 .6× 10 17 1.0 
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(1), but in an implicit form struct the statistics 

G ( t ,  x ( t ) , x l l l ( t )  . . . .  , x t 'q ( t ) )  = O. 
-) 

( 2 8 )  = 1 - ( 3 0 )  

Since the ~'i indicate dependences of the form (1), 
it will often be necessary, at least in principle, to 

solve for the roots of the implicit equation (28) as 

a function of x( t ) .  If there are multiple roots, as 
in (28), and more than one root is present in the 
data, as in the present case, then any explanation 

of the data of the form (1) will have to involve 
derivatives of order higher than n. 

Second, differential equations are often inte- 

grable. It should be clear from this example that 

if knowledge of the lowest-order derivatives of 
x ( t )  increases the predictability of x( t ) ,  the ~'j 

will indicate dependence on these derivatives re- 
gardless of whether this leads to the simplest or 

most convenient explanation of the data. This is a 
consequence of the choice of the form (2) for the 

vectors u(nr ) .  Since the lowest-order derivatives 

appear first, dependence on these derivatives is 
indicated first. Larger values of j correspond to 
tests for additional marginal dependence on suc- 
cessively higher derivatives. If we permute the 

order of the coordinates in (2) and apply our 
method to the resulting vectors, we can develop 
statistics which indicate dependence on, say, the 

jth order derivative, without first considering de- 
pendence on the lower order derivatives. 

For example, define the permutation ~-= 

0123.. .  --* 0213.. .  and the vectors 

u ( n %  Tr) 

= ( x ( n , ) ,  x l ' l ( , , , ) ,  

x[3](nT) . . . .  , x  [a 1](n7)) 

= ( u o ( n ~ ' , z r ) , u , ( n z , z r )  . . . .  , u  d ~(nz, Tr)). 

(29) 

From these vectors, it is straightforward to con- 

The ~'i(/z, ~-) and Sj(~, ~-) for the sine function 

are shown in table 2. Note that only r(p.,Tr) is 

significantly different from zero. From (29) we see 
that this indication is consistent with eq. (25): 

Once we know the second derivative of the sine 
function we get no additional information for the 

purposes of determining x ( t )  by knowing, in ad- 
dition, the first derivative. In general, it may be 

necessary to apply our test to several different 
permutations of the vector u ( n r )  in order to 

discover the simplest form of differential depen- 
dence that explains the data to within the toler- 
ance/x •]. 

4.3. The Lorentz equations 

The Lorentz equations [6] 

xm -x) ,  

y[l] = rx - y - xz,  

z [q = xy - bz 

are one of the most commonly studied examples 

of a continuous system which exhibits chaotic 
behavior. We chose parameter values r = 28, 
b = s  ~, and ~r = 10, which are well into the chaotic 

regime for the Lorentz equations. We integrated 
these equations and chose to examine the contin- 

uous time series x( t ) .  Table 3 shows the results 
of our test applied to x( t ) .  We chose a sampling 

interval z =  1.0, a tolerance (or uncertainty) 
1 /~ = 5, and a lattice spacing At=0 .06 ,  which 

implied R k > 4.0 for k = 1 . . . . .  5. As before, we 

#1There are physical systems in which we observe a small 
value of 6j and a large value of ~2 no matter how the first two 
coordinates are permuted. This indicates that predictability is 
increased by knowledge of both variables, while knowledge of 
either variable alone does not increase predictability. This 
point will be discussed further in an upcoming publication by 
the present authors. 
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T a b l e  3 
0 I ( j  and pred ic tab i l i t y  index fo r  the Lo ren tz  equat ions.  Tr~ = ~ I 

j P e r m u t a t i o n  = v- 0 P e r m u t a t k m  = 7r I 

~ Sj 

0 0 .268 

1 0 .282 0 .374 

2 0 .482 0 .722 

3 0 .157 0.856 

4 2 . 1 ×  10 2 0 .874 

5 1.4 x 10 - 7  0 .874 

2 ~ 4 ~ } ' ' ~ ' 1 = {  II I 2 g 4 3  4 41 2 ~ ~ 4 s S } a n d ~ = {  ~ I z ~ 4 -  ~ ~ i 4 ~ }  

P e r m u t a t i o n  = ~-,, 

g'i S~ (j S i 

0.268 0 .268 

0.435 0.475 I).330 0.401 

0.323 0.701 I).268 ().547 

0.181 0 .856 0.361 0.856 
2 . 1 x  10 2 0 .874 2.1 × 10 2 0 .874 

1.4 × 10 4 0 .874 1.4 × 10 4 (I.874 

chose a sequence of 1000 points. Note that there 
is a strong indication of dependence on the first 
three derivatives and a much weaker but still 
significant indication of dependence on the fourth 
derivative. The value of ~5 is less than 1.8 × 10 3, 

the value we determined from the random walk 
which represents no significant dependence.  

It is easy to eliminate y and z from eqs. (31) 
and derive the third order differential equation 
for x, 

( 1 + 1 ]  (xI21o']~ x (x['])2)x 2 

+ - -  + x  + x  
o- x x 2 

1 x ill x [21 ] 
- b  r - l - ( l + ~ )  x ~ ]  O. (32) 

Although one might expect from the form of (32) 
that knowledge of the first three derivatives of x 
might be sufficient to determine x(t) this does 
not necessarily mean that only ~'~, ~'2 and ~'3 will 
be significantly different from zero, as we see in 
table 3. We have already seen two examples 
which argue against this expectation. In SG we 
showed that, although the logistic map has ex- 
plicit dependence only on the first lag, 62 (and 
probably also ~j's for large j )  are non-zero. As 
explained in SG, this is because of the non-trivial 
curvature in the logistic function. In addition, we 
saw in our discussion of the sine function, that 
multiple solutions to x(t) may be resolved given 

the values of higher derivatives which will lead to 
non-zero values of the ~'j associated with thosc 
derivatives. 

These two examples imply that the conditional 
probability measures of dependences in empirical 
time series which we arc proposing may not be as 
closely tied to explicit analytic representations of 
those time series when such representations exist. 
Indeed, from an observational (or logical posi- 
tivist) point of view, we believe that our measures 
of dependence may be more f u n d a m e n t a l - t h e y  
are certainly more g e n e r a l -  than an analytic rep- 
resentation. We shall see an even more startling 
example of this when we study the Mackey-Glass  
equation, below. In addition, this point will be 
discussed further in section 5. 

Also shown in table 3 are the results of permut- 
ing the order of derivatives as discussed in the 
previous section. Note especially the value of ~L 
for each of the permutations. The size of ~t is an 
indication of predictability of x( t )  due to knowl- 
edge of whichever derivative of x occurs first in 
the permuted order. Thus we see that x depends 
most strongly on its second derivative and de- 
pends about equally on its first and third deriva- 
tives. 

Finally, examine the predictability index in table 
3. For each permutation,  the eventual predictabil- 
ity is equal to about 0.89, much larger than S~ -= 
C~]-= 0.27. As we expect, this is a strong indica- 
tion that the data are explainable by an under- 
lying deterministic process. This should be 
contrasted with the results from analysis of the 
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Lorentz equations using the methods of SG. 
To implement that analysis we form the vectors 
v( i )  = (x(i~'), x(( i  - 1)7) . . . . .  x(( i  - d + 1)T))), 
i =  1 . . . .  , N  and we examine the dependence 
among the elements of these vectors. When the 
sampling rate ~- is small, there is a strong indica- 
tion of one dependence because x ( t )  depends on 
its first derivative. However, as ~- increases the 
pattern of dependence varies in a complicated 
manner  as the sampling interval becomes equal 
to the periods of the various Fourier components 
of the solution x( t ) .  It is very difficult to deter- 

mine the underlying stationary dynamics from 
such information. Thus, enlarging the space of 
dependent  functions, as we have done in this 
paper,  can lead to very simple results even where 
the strictly lag-based methods of SG are of lim- 
ited utility. 

4.4. The H~non-Heiles equations 

The H6non-Hei les  equations [7] are a system 
of two coupled second order nonlinear equations, 

originally proposed by H6non and Heiles as a 
simplified model of galactic dynamics. For certain 
initial conditions these equations exhibit chaotic 
motion with a strange attractor. We integrated 
these equations using the initial conditions, 

qlq(0) = 0.1, q[2'](0) = 0.467618, 

q l ( 0 ) = 0 . 1 ,  q 2 ( 0 ) = 0 . 1 ,  

and examined the function ql(t).  Using parame-  
ter values ~- = 1.0, /~ = 0.5, and At = 0.20 so that 

R~ > 4.0, we obtained the values for (j and St, 
j =  1 . . . .  ,10 shown in table 4. Note that S 4 

through $10 are much larger than So, strongly 
indicating that the data are explainable by a 
deterministic differential process. 

As noted in section 2, our test may be applied 
to examine the correlations among several vari- 
ables even if those variables are not successive 
derivatives of one function. To illustrate this type 
of application, we form the vectors 

u ( t )  = ( q l ( t ) , q l ' ] ( t ) , . . . ,  

d2ql q[5](t) q2(t) ,q~21]( t ) , . . . ,q[51(t)) .  (34) 
d t  2 = --ql  -- 2 q l q 2 ,  (33a) ' 

(33b) 
d2q2 

d t  2 
- q 2 - q ( + q 2 ,  

Table 4 shows the results of applying our method 
to these vectors using parameters  7 = 1.0,/~ = 0.5, 

Table  4 

srj and  pred ic tab i l i ty  index  for the H ~ n o n - H e i l e s  equat ions .  The  first two co lumns  show the d e p e n d e n c e  of  ql(t) on its first ten deri-  
vatives.  Rows  zero  th rough  five of  the  last  two co lumns  are equa l  to rows ze ro  th rough  five of  the first two columns.  Rows six th rough  
ten of  the  last  two co lumns  show the marg ina l  d e p e n d e n c e  of  ql(t) on q2(t)  and  its first four derivat ives.  Hence ,  in the last two 
co lumns  ~ + j  and  $6+ j refer  to d e p e n d e n c e  on q~J], j = 0 . . . .  ,4. 

D e p e n d e n c e  of q~(t) on its der ivat ives  D e p e n d e n c e  of  ql(t) on q2( t )  and  its der ivat ives  

;, sj ¢, s, 

0 0.263 
1 6.32 x 10 -~ 0.281 6.32 x 10 2 

2 0.537 0.607 0.537 
3 9.04 × 10 2 0.667 9.04 x 10 -2  

4 0.122 0.760 0.122 
5 - 2 . 1 6 X  10 3 0.758 - 2 . 1 6 ×  10 -3  
6 4.59 x 10 4 0.758 7.22 x 10 -2  
7 9.94 x 10 -3 0.766 8.76 x 10 2 
8 9.31 x 10 -3  0.773 6.48 x 10 2 

9 1.33 x 10 -2  0.783 2.50 x 10 -2  
10 1.02 X 10 4 0.784 7.93 × 10 -3 

0.263 
0.281 
0.607 
0.667 
0.760 
0.758 
0.794 
0.871 
0.931 
0.955 
0.963 
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and At = 0.20 (R k >__ 4.0). Note  that  we obtain a 

predictability of 0.97, a value much larger than 

the predictability of  0.78 obta ined in table 4 using 
just one variable and its derivatives. This may be 

unders tood  through an examination of  the defin- 
ing equat ions (33). We may rewrite (33) as 

--q121 l 

q2 -- 2q t 2'  

= - q ? -  o2 + 

(35a) 

(35b) 

Eq. (35b) shows the dependence  of  q~ on q2 and 
its derivatives. In addition, we may substitute 

(35a) into (35b) to obtain the fourth order  equa- 

tion for q~ 

, q141 q~3]qll] { qll]) 2 
q l - -  2q  1 q2 ~ - j  

q12]( q~l])- q~21 3 

+ q~ + ql 4"  (36) 

So ql depends  on its first four derivatives, consis- 
tent with the results of  table 4, and similarly to 

previous examples we also observe weak depen-  

dence on higher order  derivatives of q j due to 
ambiguities and nonlinearit ies in (36). However,  
it is apparen t  f rom (35b) that  some of  the infor- 

mation conta ined in the higher order  derivatives 

of  q~ is conta ined much more  succinctly in the 

function q2 and its derivatives. On  the o ther  
hand, it is not  obvious f rom examination of  (35) 
and (36) that  knowledge of q2 and its derivatives 
increases our  ability to predict  q j above the pre- 
dictability gained by knowledge of  the first four 

derivatives of  q). Nevertheless,  that  is what  our  
test indicates. We see here again that the depen-  
dences indicated empirically by the ~r i cannot  be 
too closely identified with those implied by an 
analytic representa t ion of  the process genera t ing 
the data, as we shall discuss below. 

4.5. The forced Brussels model 

Next we examine an example of  a forced non- 
linear oscillator, known as the forced Brussels 

model  [8] or more  commonly the forced Brussela- 

tor. This model is described by the equat ions 

x[ll=x2y-- (B+  l ) x - A - a c o s ( ~ o t ) ,  (37a) 

ylll = Bx - x2y. (37b) 

We choose parameters  A = 0.4, B = 1.2, a = 0.05, 

and o )=  0.95 for which solutions to (37) are 

chaotic. Using pa ramete r  values r -- 1.0, /x = {).5, 
and At = 10 .3 so that  R k >_ 4.0 we obta ined the 

values for ~'j and Sj, j = 1 , . . . ,  10 shown in table 
5. Note  the strong indication of dependence  on 

the second derivative, consistent with the second 

order  system (37). Note also that as in the previ- 
ous examples, there is weaker  dependence  on 

higher order  derivatives. However,  the pre- 
dictability S m is only 0.566. While this is still 

larger than S(~ =0.271,  indicating that x( t )  de- 
pends  strongly on its derivatives, it is smaller than 

the eventual predictability in the previous exam- 
ples of  sections 4.2 through 4.4. The predictability 

is smaller in this case because in the forced 
Brusselator,  x( t )  depends  not only on its deriva- 
tives, but also depends  explicitly on time through 

the term cos(~ot). The ~t indicate only depen-  
dence  of  x( t )  on a small number  of  its derivatives 
and in many cases may be unable to account  for 

the effects of  explicit time dependence  in the 

underlying dynamics. However,  we may derive 

indicators for the dependence  of  x( t )  on func- 
tions o ther  than its own derivatives, just as we did 
in the analysis of  the H d n o n - H e i l e s  equations.  

In order  to analyze the explicit time depen-  
dence in this equation,  we formed the vectors 

, , ( t )  = ( x ( t ) , c o s ( / ~ ) ) ,  (3s) 

and plot ted the value of  ~'1 for (1 < f_<4 .0 .  In 
every case we chose pa ramete r  values r = 1.0, 
/ , t=0 .5 ,  and A t =  10 3 ( R  k > 4.0). The plot of ~ 

versus f is shown in fig. 1. The five largest peaks 
occur  at f =  ~o, 2~o, 5 7 ~o,_ 3w, and ~-w. Addit ional  

peaks occur  at values f =  ( n / m ) w ,  where n and 
m are integers. At  first it may be surprising that 
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Table  5 
~j and  predic tabi l i ty  index for the forced Brussels  osci l la tor .  The  first two co lumns  show the d e p e n d e n c e  of  x( t )  on its first ten deri-  

vatives.  Row six of the last two co lumns  (marked  with an as ter isk)  shows the marg ina l  d e p e n d e n c e  of x( t )  on the funct ion cos(0.95t).  
The  last four rows of the last two columns  show the marg ina l  d e p e n d e n c e  of x( t )  on y ( t )  and  its first th ree  derivat ives.  Hence ,  in the 

last two columns  ~'7+j and $7+ j refer  to d e p e n d e n c e  on y[Jl, j = 0, . . .  ,4. 

D e p e n d e n c e  of x( t )  on its der ivat ives  D e p e n d e n c e  of x( t )  on y ( t )  and  its der ivat ives  

~j Sj ¢j Sj 

0 0.271 0.271 
1 3 . 7 2 ×  10 2 0.281 3 . 7 2 ×  10 -2 0.281 

2 0.470 0.530 0.470 0.530 
3 4.35 × 10 -2 0.554 4.35 × 10 2 0.554 

4 3.33 × 10 2 0.573 3.33 × 10 2 0.573 
5 4.38 × 10 3 0.576 4.38 × 10 -3 0.576 

6 - 3 . 1 9  x 10 2 0.558 0.147" 0.685* 
7 8.07 × 10 . 3  0.562 9.24 x 10 2 0.754 

8 9.30 × 10 3 0.567 0.185 0.925 
9 5.18 x 10 3 0.571 - 1.51 × 10 -4 0.925 
10 - 7 . 3 7 x  10 -3 0.566 - 7 . 6 2 ×  10 4 0.924 

1 6  ~ ,  , , i . . . .  . i  . . . .  i . . . .  r . . . .  i . . . .  i . . . .  i . . . .  

1 4  

. 1 2  

. 1 0  

.5 

0 4  
0 . 5  1 . 0  1 , 5  2 . 0  2 . 5  3 0  3 , 5  4 0  

f 

Fig. 1. D e p e n d e n c e  of a solut ion to the forced Brussels  equa-  

tion on cos(f t ) .  

we get peaks at rational multiples of ~o rather 
than just integer multiples of w. Recall, though, 
that our statistics indicate whether one time se- 
ries is functionally dependent  on another  time 
series. This is quite different than the concept of 
orthogonality of functions indicated by Fourier 
expansions, cos(wt) and cos[(n/m)o)t] are com- 
mensurate  and therefore functionally dependent  

on each other, but they are also, in general, 
orthogonal so that their relative Fourier ampli- 
tude is zero. Another  important point is that any 
family of periodic functions may be used to probe 
dependence in this map. For example replacing 
cos(f t)  in (38) by mod( t ,2w/ f )  does not signifi- 
cantly alter our results. This is a strong indication 
that, while x(t) is not itself periodic, it depends 
on a periodic function (not necessarily sinusoidal) 
of period w = 0.95. 

Finally, we formed the vectors 

u ( t )  = ( x ( t ) ,  x m ( t )  . . . . .  xlSl(t),  

cos (wt ) ,  y ( t ) ,  y[ ' ] ( t )  . . . . .  y[51(t)). (39) 

Table 5 lists the results of applying our test to 
these vectors using the same parameters  as be- 
fore. Notice that the predictability increases 
sharply from 0.576 to 0.685 after inclusion of the 
function cos(~ot). Hence in this case, knowledge 
of the underlying periodicity in the dynamics in- 
creases our ability to predict x(t) above the abil- 
ity to predict x(t) gained by knowledge of the 
first five derivatives of x. Notice also, that with 
inclusion of y(t) and its first five derivatives, the 
predictability index increases to 0.924, a value 
much greater  that the predictability gained by 
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knowledge of the derivatives of x(t)  alone. Again 

we see that the conditional probabilistic depen- 

dence of a function as measured by the (j is 
related to, but not identical with, the depen- 

dences implied by an analytic representation of 
the underlying deterministic process. See section 

5 for further discussion. 

4.6. The Mackey-Glass delay equation 

Next we study a system introduced by Mackey 
and Glass [9] as a model for thc regeneration of 

blood cells in leukemia patients. It is 

x{,}(t ) = a x ( t - t o )  - b x ( t ) .  (40) 
1 + [x( t  __p)]lO 

This equation is different from those studied thus 
far because of the presence of the time delay p. 

Usually, the parameters a and b are fixed at the 
values a = 0.2 and b = 0.1 and the behavior of 

the solutions is studied as the delay p is varied. 
For this paper we will study the case p = 

17.0. We performed the integration of this equa- 

tion following the methods of Grassberger and 
Procaccia [2]. Table 6 shows the g'j and S i, j = 
1 . . . . .  7 for the variable x(t). We generated these 

results using parameter values r = 1.0, ~x = 0.5, 
and A t=0 .08 ,  giving R k>4 .0 ,  for k = l  . . . . .  7. 

Note the large value of ~'j and the smaller but 

still significant value of (2- Note also the low 
value of S 5 compared to the value of S 5 for the 
systems discussed in subsections 4.2 through 4.4. 

This value is indicating that the data are not 
completely explained by dependence of x(t)  on 

its derivatives. The time delay dependence in (40) 

T a b l e  6 

~'j a n d  p red i c t ab i l i t y  index  for  the  M a c k e y - G l a s s  e q u a t i o n .  

J ~-i Sj J ~i Sj 

0 0.271 4 4.5 X 10 3 0 .390 

1 0.121 0 .308 5 3.2 X 10 3 0 .392 
2 0 .183 0 .377 6 3.2 X 10 4 0 .392 
3 2.9 x 10 2 0 .389 7 4.4 x 10 3 0.393 

suggests that some ideas developed in SG for 
discrete time series may be useful here, when 

combined with the more general methods devel- 
oped in this paper. 

To examine this possibility, we first study the 
dependence of x( t )  only on x ( t - r ) .  To do this 

we varied the sampling rate r from 1.0 through 

30.0. For each value of r we form a discrete 
series yi=x( ir ) ,  and from this series we form 

d-dimensional vectors as in (3), so that 

, ' , - (x( i r ) ,x( ( i -  l ) r ) , x ( ( i - 2 ) v )  . . . . .  

x( ( i -d+ 1 ) r ) ) .  

In SG we derived indicators 6j(a-) of dependence 
among the components of these vectors, just as 
the indicators r j(#) of this paper signal depen- 

dence among components of vectors such as (4). 

Choosing the tolerance e equal to one half the 

standard deviation of the sequence {Yi}, we plot 
in figs. 2 through 5 a l through 67 as a function of 
r. Observe in fig. 2, the initial peak of 61 at small 
r. This peak simply indicates that if we have 

knowledge of values of x(t') to within ~, which 
are nearby (in time) to x(t), we can accurately 

predict the value of x(t)  to within e, i.e., the 
function x(t)  is relatively slowly varying over time 

intervals corresponding to small values of r. This 
interpretation is supported by fig. 6, in which we 

plot 10000 pairs of points ( x ( t - 3 ) , x ( t ) ) .  This 
figure shows a band of width approximately 0.2 
oriented along the line x ( t ) = x ( t - 3 ) .  If we 
choose e greater than about 0.1, then this plot 

becomes virtually indistinguishable to our statis- 

tics from a plot of the function x ( t ) = x ( t -  3). 
Indeed, when e = 0.11 (one half the standard 
deviation of the function x(t)), the predictability 
index S(1) is about 0.7 at r = 3 ,  and it rises 
steeply to near 1.0 as r becomes smaller. Hence, 
this initial peak marks a relatively uninteresting 
regime of linear dependence. 

Before discussing the more interesting non- 
linear delay dependence of this system, it is 
worthwhile to comment on the difference be- 
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Fig. 3.  6 2 versus sampling rate r, for the Mackey-Olass 
equations with delay p = 1 7 . 0 .  

tween the use of  a lagged variable with a small 
value of  ~', and a derivative. These  two variables 
are related by a linear transformation. Neverthe-  
less, the values of  the (j computed with these two 
different choices of  dependent  variables may be 
markedly different. The reason is not difficult to 
see. In the case of  a continuous time series nearby 
values of  the series are close in value, so that a 
plot of  x ( t )  versus x ( t - z )  lies in a narrow 
diagonal band, as, for example,  in fig. 6. On the 

0.200 

0.150- 

0.100 - 

5C00E-02 
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I 

5.C)0 ,o'o ,`51o ' 20.0 2,5.0 
T 

Fig. 5. 64 versus sampling rate r, for the Mackey-Glass 
equations with delay p = 17.0. 

other hand, a plot of  x ( t )  versus  x l l l ( / )  is not 

necessarily so confined, and may range over the 
entire two-dimensional  plot. Al though both plots 
may contain essentially the same information, 
more details may be easily apparent in the uncon- 
strained plot of  x ( t )  versus xlll(t). For given 
values of  /x and N,  therefore, the values of  rj 
may be quite different for the two choices of  
independent  variables. These  comments  also ap- 
ply to other cases in which different choices of  
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Fig. 6. Phase space plot of a solution to the Mackey-Glass 
equation, x( t )versus  x(t 3). 

var iab les  which are  appa ren t l y  simply r e l a t ed  may 

signif icantly d is tor t  the  locus of po in ts  so that  

in fo rmat ion  is eas ie r  or  h a r d e r  to obtain .  

Tu rn ing  now to the  non l inea r  de lay  d e p e n -  

dence ,  we observe  in figs. 2 th rough  5 tha t  6 i has 

a b r o a d  p e a k  nea r  r = 22/ j ,  j = 1 . . . . .  4 and  also 

that  some of  the  3j exhibi t  more  than  one  peak  e2. 

Since a s ind ica tes  d e p e n d e n c e  on j r ,  this is, in 

par t ,  an ind ica t ion  tha t  x ( t )  d e p e n d s  on x ( t  - 22). 

To u n d e r s t a n d  fu r the r  the  or igin of  these  peaks ,  

recal l  tha t  s ince the  6j a re  based  on cond i t iona l  

p robabi l i t i es ,  a i does  not  ind ica te  d e p e n d e n c e  on 

the  j t h  lag tha t  is mere ly  i nduced  by d e p e n d e n -  

cies on prev ious  lags. Such previous  lag depen -  

dence  is a l r eady  accoun ted  for by one  or  more  of  

the  ind ica tors  6 i, i = l , . . . ,  j - 1 .  The re fo re ,  in 

o r d e r  to observe  a peak  of  6j at a va lue  of  the  

sampl ing  rate ,  r ,  we requ i re  not  only tha t  x ( t )  

d e p e n d  on x ( t - j r )  but  also that  this d e p e n -  

dence  be new in fo rmat ion  and not  s imply in- 

d u c e d  by d e p e n d e n c e  of  x ( t )  on x ( t - i t ) ,  i =  

1 , . . . ,  j - 1. As  an example  no te  tha t  63 (fig. 4) as 

#2Note that the precise location of the peak varies from 
r = 21/j  to r = 23/ j  for different values of j. We use the 
value of 22 in the text primarily to simplify notation. 

a tunct ion  of  r has two peaks ,  one at r = 7 ~ 22, 

and also one  at r = 14 ~ 2 × 2~. To u n d e r s t a n d  

the origin of  the  first of  these  peaks ,  we examine  

the indica tors  6j, for j = 1,2, 3 at the  fixed value  

r = 7. Both  6~ and 32 are  small  at r = 7 because  

x ( t )  has no s t rong d e p e n d e n c e  on x ( t - 7 )  or 

x ( t -  14). In this case there  is l i t t le d e p e n d e n c e  

on the first or  second  lag and hence  l i t t le induced  

d e p e n d e n c e  on the th i rd  lag, so the  d e p e n d e n c e  

of  x ( t )  on x ( t - 2 1 )  is ind ica ted  by the large 

value of 33 at r = 7. Similarly,  if we examine  the 

indica tors  3i, for j = 1, 2, 3 at the  value r = 14, we 

see that  3~ and 32 are  small  because  x ( t )  does  

not  d e p e n d  s trongly on x ( t - 1 4 )  or x ( t - 2 8 ) .  

Accordingly ,  3~ is large  at r =  14 because  x ( t )  

does  d e p e n d  on x ( t  - 42) and this d e p e n d e n c e  is 

not  induced  by d e p e n d e n c e  on the  previous  lags. 

By contras t ,  t he re  is no peak  of  62 at r = 22 even 

though x ( t )  d e p e n d s  on x ( t - 4 4 ) .  This is be-  

cause  most  of  the  d e p e n d e n c e  of  x ( t )  on x ( t  - 44) 

is induced  by the d e p e n d e n c e  of  x ( t )  on x ( t -  
22), which is a l r eady  accoun ted  for by the large 

value of ,31 at r = 22. The  pa t t e rn  of  peaks  of  3/ 

for j > 3 can be unde r s tood  in a s imilar  manner .  

These  resul ts  indica te  that  of  the  class of  lag 

de pe nde nc i e s ,  x ( t )  d e p e n d s  most  s t rongly on 

x ( t -  22). This  is somewha t  surpr is ing  given the 

fact that  the series  was g e n e r a t e d  with explicit  

d e p e n d e n c e  on x( t  - 17). To make  ma t t e r s  even 

more  puzzl ing,  we note  that  we have s tud ied  the 

lag d e p e n d e n c i e s  of  this ser ies  for smal le r  values  

of  /z. Even if we set /x = 0.01, so that  the  to ler -  

ance with which we observe  the  sequence  is only 

one o n e - h u n d r e d t h  of  the  s t a n d a r d  devia t ion,  we 

still have the  larges t  lag d e p e n d e n c e  on x ( t  - 22). 

W e  can get  some intui t ive u n d e r s t a n d i n g  of  

this resul t  by looking at  figs. 7 -9 .  In these  figures 

we have p lo t t ed  10000 pairs  of  poin ts  ( x ( t  - r), 

x ( t ) ) ,  where  the  sampl ing  ra te  is r = 13, 17 and 

22 for figs. 7, 8, and  9, respect ively.  Roughly  

speaking ,  these  plots  a p p e a r  to show a (more  or  

less) r igid body ro ta t ing  as a funct ion of  r in 

some space.  T h e  pro jec t ion  on the  ( x ( t  - r), x ( t ) )  

p lane  is significantly na r rower  when r = 22 than  

when  r = 13 or  17, so that  knowledge  of the  value  
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Fig. 7. Phase space plot of a solution to the Mackey-Glass 
equation, x ( t )  versus x ( t  - 13). 

of x ( t  - 22) will lead to a more accurate predic- 
tion of x( t ) .  

This visual representation suggests that the ap- 
parent paradox may be related to missing infor- 

mation which would be represented by one or 
more additional dimensions in the phase space of 

variables. Since the analytic form of the 
Mackey-Glass equation has explicit dependence 
on xIll(t), we are led to study the dependence of 

x ( t )  on the two variables, xtq( t )  and x ( t  - 7). In 
particular, let us ask how predictable x ( t )  is given 
the information contained in xtq(t) and x ( t -  "r) 
for different values of ~-. To do this, we consider 
the 3-vector 

u ( t )  = ( x ( t ) ,  xl ' l (  t ) ,  x (  t - ) 

x(t-17) 

Fig. 8. Phase space plot of a solution to the Mackey-Glass 
equation, x ( t )  versus x ( t  - 17). 

tion about the differential dependence, we still 

gain predictability through knowledge of values 

of x( t ' )  for t '  close to t, as indicated by the peaks 
in these figures at ~- = 0. Further, observe that the 
initial peak in the predictability index is much 
narrower when /~ = 0.01 (fig. 13) than when /z = 

for ~ between 0 and 30. Fig. 10 shows ((2) as a 
function of ~-, and fig. 11 shows the predictability 
index, S(2) as a function of ~-, for the case/z = 0.5. 
In this case, the maximum predictability is still at 
~-= 22. However, if we decrease /z, the peak 
predictability shifts toward 17, as shown in figs. 12 
and 13. Note that even when we include informa- 

- 1 , 4  - 1 . 3  - 1 . 2  - 1 . 1  - 1 . 0  - . 9  - , 8  - . 7  - . 6  - . 5  - . 4  

x(t-22) 

Fig. 9. Phase space plot of a solution to the Mackey-Glass 
equation, x ( t )  versus x ( t  - 22). 
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Fig. 10. Dependence of a solution, x(t), of the Mackey Glass equation on xIq(t) and on x(l - r). This ligure shows ~'(2) versus r 
for the case where the tolerance # = 0.5. 

0.5 (fig. 11). This supports our interpretation of 
this peak as an indicator of continuity of  the time 
series. 

It is worthwhile discussing these results at some 
length. First, it is important to realize that even 
in the case in which a time series is generated by 
an analytically expressible process, such as eq. 
(40), the empirical analysis of  the series may not 
optimally involve the same variables that appear 
in the analytic form itself. There may be several 

r e a s o n s  why  th i s  is so. F i r s t ,  o n e  m a y  n o t  h a v e  

c h o s e n  a se t  o f  v a r i a b l e s  to  use  to  s t u d y  t h e  

d e p e n d e n c e  w h i c h  i n c l u d e s  all t h o s e  v a r i a b l e s  o f  

t h e  u n d e r l y i n g  a n a l y t i c  f o r m .  T h i s  was  t h e  ca se  in 

o u r  f i rs t  ana ly s i s  o f  t h e  M a c k e y - G l a s s  p r o c e s s ,  in 

w h i c h  we d id  n o t  i n c l u d e  d e p e n d e n c e  o n  xl~l(t) .  

S e c o n d ,  e v e n  if t h e  se t  o f  v a r i a b l e s  i n c l u d e s  all 

t h o s e  expl ic i t ly  c o n t a i n e d  in t h e  a n a l y t i c  f o r m ,  

t h e  m a x i m u m  i n f o r m a t i o n  f r o m  a g i v e n  n u m b e r  

o f  t h o s e  v a r i a b l e s  m a y  n o t  c o m e  f r o m  t h e  se t  t h a t  
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Fig. 11. Dependence of a solution, x( t ) ,  of the Mackey-Glass equation on x{q(t ) and on x(t - r). This ligure shows S(2) versus 7 
for the case where the tolerance /x = 0.5. 
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Fig.  12. Dependence of a solution, x(t), of the Mackey-Glass  equation on x[Jl(t) and on x ( t  - r) .  This figure shows ~'(2) versus r 

for the case where the tolerance # = 0.01. 

appear in the analytic expression. We see this in 
fig. 10 for the Mackey-Glass  system. In this case, 
the reason is that the fuzziness in one's analysis 
of  the process (induced by a nonzero  value of ~ )  
may induce a qualitative restructuring of one's 
(fuzzy) perception of the attractor. What must be 
true, though, is that in the limit /~ goes to zero, 
the predictability of  a noiseless analytically gener- 
ated time series cannot exceed the predictability 

computed using the set of  independent variables 
in the completely deterministic analytic form. The 
broader implications of  these observations will be 
discussed in the next section. 

Finally, we remark that since a combination of 
the methods of SG and this paper explain the 
dependence in the Mackey-Glass  equation very 
well, we are lead to investigate the possibility that 
there is a way to incorporate both of these meth- 
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Fig .  13. Dependence of  a solution, x(t), of the Mackey-Glass equation on x[ll(t) and on x ( t  - r) .  This figure shows S(2) versus r 

for the case where the tolerance p~ = 0.01. 
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ods into a generalized formalism. This is the 

subject of the appendix. 

5. Summary and conclusions 

In this paper we have presented an extension 

of the methods of SG to cover the case of contin- 
uous time series, and more generally, interdepen- 

dence among different time series. In several 
examples of both chaotic and periodic functions 

generated by low order systems of differential 

equations, we have demonstrated that these 

methods are capable of identifying dependence 

of a function on its derivatives. In addition, we 
have derived a predictability index which indi- 

cates quantitatively the extent to which a time 
series has an underlying deterministic explana- 

tion based on the choice of independent func- 
tions included in the analysis. We have also 

explored the flexibility and generality of these 
methods by demonstrating their usefulness in in- 

dicating nonlocal effects and in probing depen- 

dence among functions which are not simply 

derivatives or integrals of each other. 
One other very important feature of our statis- 

tics is that it is possible to analytically derive their 

asymptotic behavior, in the limit of a very large 
data set, under null hypotheses of statistical inde- 
pendence. For example, the asymptotic behavior 

of the statistics discussed in SG have been de- 
rived under the null hypothesis that the time 

series is l iD (independent and identically dis- 

tributed). This will be discussed in detail else- 

where. 
The methods of this paper and SG advance our 

ability to analyze complicated experimental data 
which appear random to standard linear statisti- 
cal methods. It is clear that this new approach 
has wide potential application in the general area 
of time series analysis including the study of 
chaotic physical and biological systems. In addi- 
tion, we believe that the methods are applicable 
to noise reduction and signal analysis. We are 
also using them to study other mathematical ex- 

amples of interest including quasi-periodic func- 

tions. 
It is obvious that our methods provide useful 

information about the dependencies of broad 
band systems. But one might also be led to see in 

this study more profound epistomological impli- 
cations: Historically, most systems studied by the 

physical sciences have had simple output and 
have been simple in description. Indeed, the 

search for simplicity has been a hallmark of much 
scientific research for centuries. Whether that 

point of view was engendered by human limita- 

tions, by historical or cultural accident, or by 

other causes is a question we do not wish to 
address here. But there is no question that such a 

view has been a guiding fl)rce in much of our 

most basic scientific inquiry. The recognition that 
systems may have intrinsically complex behavior, 
and that that is an interesting thing to study is 

fairly recent. 
Much of the work on systems with complex 

behavior has focused on those systems which arc 

simple in description, often having an underlying 

analytic mathematical form. While it is surely of 
great importance to understand how complexity 
can arise from intrinsically simple systems, it 

should be recognized that such systems arc prob- 

ably a set of measure zero in the space of physi- 
cal, biological and social systems with interesting 
complex behavior. Given that most systems with 

this kind of behavior may not have a simple 
analytic explanation, one is led to ask in what 

terms such systems should be described. It is our 
view that the most fundamental description of a 
process must proceed directly from the analysis 
of the output of the process itself, and that the 

description will be conditioned on the precise 
question one is asking. 

Consider the problem of analyzing a general 
broad band time series. Such a series, if it con- 
tains nonrandom effects, may be generated by an 
underlying process with deterministic elements 
which may not be representable analytically, and 

which also contains noise. In general, one's 
knowledge of the underlying process will be lira- 
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ited. One might be guided by some general no- 
tions about what the important variables might 
be, but such insights are likely to be only partial. 
Since, except in rare cases, one cannot know 
a priori whether the system with which one is 
dealing has a simple explanation, the most pro- 
ductive course may be to at tempt to characterize 
the system from the data themselves. It is cer- 
tainly true (as we have shown in our examples) 
that for such characterizations to be most effec- 
tive some understanding of the relevant variables 
in terms of which to describe the system is impor- 
tant. We believe that, generally, this is the role of 
model building for complex systems. It is usually 
vain to expect that a model will accurately repre- 
sent and explain the data generated by a complex 
system. Instead, the insights gained from studying 
models can be useful in helping to identify possi- 
ble relevant variables. This attitude is much dif- 
ferent from that traditionally adopted in the phys- 
ical sciences, in which models built to describe 
relatively simple physical systems are taken very 
seriously indeed. There are of course cases in 
which an underlying simple analytic (or even al- 
gorithmic) form is possible. If so, such a form will 
generally be preferable because of its economy 
and, often, aesthetic appeal. Nevertheless, such 
cases are probably quite rare in the space of all 
broad band systems. Generically, a description of 
the system based on indicators that encapsulate 
the degree of dependence of the series on a set of 
independent variables, supplemented,  perhaps 
with algorithms of predictive power, or methods 
of control, may be the most fundamental  descrip- 
tion possible. 

We consider the results of our analysis of the 
Mackey-Glass  equation as strong support for this 

point of view. In that case, even though the time 
series was generated by a noiseless analytic pro- 
cess, the variables that contained the most infor- 
mation about the time series were not necessarily 
the independent variables that appear  in the 
Mackey-Glass  equation. Even when the space of 
variables was enlarged to include the derivative 
of the time series, the opt imum choice of depen- 
dent variables for the purposes of empirical anal- 
ysis depended on the choice of e. Thus, the most 
efficient description of even this analytically gen- 
erated process depends on the precise empirical 
circumstances and the precise question being 
asked. If this is true in a case in which the 
underlying process has an analytic explanation, 
how much more true is it in the general case in 
which such a simple explanation is not possible. 
We cannot emphasize this conclusion too strongly: 
The most efficient description of a system with 
complex behavior depends on the precise ques- 
tion being asked and the precise context of that 
question. Even if the system has an underlying 
simplicity (as in the Mackey-Glass  case), the best 
description of the system for a given purpose may 
not involve those variables that generated the 
complex behavior in the first place. 

It is important to realize that this point of view 
is not a position adopted as the result of philo- 
sophical speculation. Instead, it appears  forced 
on us by the recognition that as our questions and 
tools to analyze the world become more sophisti- 
cated, and as the systems we study become more 
complex, our ability to simplify them in the terms 
to which we have become used, while at the same 
time retaining the features which we perceive to 
be the most important, may be limited. 

Appendix 

At the end of section 4.6, we noted the possibility of developing a set of generalized indicators of 
dependence of which the indicators of this paper  and the indicators of SG would become special subsets. 
In this appendix we describe one possibility for such a generalization. 

Suppose we have a set of functions, x[Jl(t), j = 1, 2 . . . .  For the purposes of this appendix, in order to 
simplify notation we will let the set {x[il(t), j = 1,2 . . . .  } stand for an arbitrary collection of smooth 
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functions and derivatives of  those functions, instead of  simply successive derivatives of  one function as 

defined in the main body of  the paper.  We may then choose a sampling interval ~-, and form the matrices 
W ( l , J , n ) ,  1Ni<_N, 

[ x(n'~) 
W(1,  J , n )  = / x[ ' l (n~')  

/YI( , , , )  

x ( n - c + r )  x(n~- + 2~-) . . .  x ( n r + l ~ - )  

xlU(n.r+~-) x[~l(nr+2r) . . .  x m ( n ~ - + l . r )  

xtJ l (n~-+~ -) x[Jl(nr+2-c)  .. .  xtJ](n'r  + l~ ") 

(A.I) 

where 1 denotes  the number  of  delays included in the matrix and J denotes  the number  of  functions. 

These  matr ices replace the vectors v,, of  SG and u(n~) of this paper.  In fact, the vector v,, of  dimension 
d is just W(d  - 1,0, n), and the vector u(nT) of  dimension d is W(0, d - 1, n). Hence,  in our  generaliza- 

tion, ( I  + 1)(J + 1) replaces the dimension of the vectors in the two previous formalisms. In the following 
we will use the notat ion Wij(n) to denote  the (i, j)  componen t  of  the matrix W ( l , J , n )  with 1 > i  and 

J >~j. Note  that we do not need to specify the dimensions I, J when we denote  the componen t  W,j(n) 
since for all I > i, and J >_j, l/Vii(r/) ~x[Jl((r/ + i)~'). 

Next, we must  develop an indicator function and correlat ion integrals for the matrices W. In order  to 

do this we must first define a tolerance eij for each e lement  of  the matrices. In anology with the 
definition of  E k in this paper,  we define e~j to be a fraction p. of the s tandard deviation of  the set 
{xbl((n + i)~-), n --- 1 . . . . .  N}. However,  following SG note that when N >> I the s tandard  deviation of 

this set is approximately independent  of  the value of  i, so that for all values of  i, e,l ~- e b. Accordingly,  
we define a single value of  e for each row of W(1, J, n). This allows us to define the indicator function, 

J 1 

l,m(/X) = 1--I FI o( j- Iw, j(.) - W , j ( m ) l ) ,  (A.2)  
i = 0 i = 0 

and the correlat ion integral, 

1 
C,,(U) = 7 E /,,,,,(n), (A.3) 

p a i r s  

where  u is the number  of  pairs of  matrices ( W ( I , J , n ) , W ( l , J , m ) ) ,  and ej is the product  of  /x and the 
s tandard  deviation of  the set (xbl(nT), n = 1 . . . . .  N}. 

We wish to develop statistics which indicate dependence  of Woo(n), on the other  e lements  of 

W(l ,  J, n). In particular,  if M(I,  J, n) is the set containing those elements  of  W ( l  + 1, J + 1, n) which are 
not also in W(l ,  J, n) (see fig. 14), we wish to investigate the marginal increase in our  ability to predict  
the value of  Woo due to knowledge of  some or all of  the elements  of  M(l ,J ,n ) .  Let P be a subset of 
{(I + 1, j)l j  = 0 . . . . .  J + 1} U {(i, J + 1)1i = 0 . . . . .  I + 1} and let M(P,  n) stand for the corresponding sub- 
set of  M(I,  J, n). We may then generalize (A.2) by defining 

T( I , J ) U P  

where  T( I ,  J ) =  {(i, j ) [0  _< i _< I and 0 _<j _< J}. And we may generalize (A.3) by defining the correlat ion 



M.L. Green and R. Sacit /Broad band continuous time series 543 

x(n'r) x(n'r+~) ... x(nr+I 'r)  x(n'r + (I + 1 ) r )  

x[1](rt7 - ) x[1](r t , r  + 7 - ) . . .  x[1](n~'+I'r) xt'l(n.r + (I + l) , r)  

x[J](n.r) x[Jl(n~-+~ -) ... x[J](n~-+l~ ") x l J l ( n . r + ( I + l ) , r )  

xlJ+q(n,r)  xlS+ll(n-r + "r) . . .  xlJ+ll(n~-I-r) xlJ+ll(n,r + (I + 1)-r) 

Fig. 14. The matrix W ( I +  l , J +  1,n) with the margin set M(I,J,n) shown in bold face. Our generalized statistics indicate the 
increase in the ability to predict x(n'r) due to knowledge of some specific subset of M(I, J, n)  over our ability to predict x(n'r) due 
to knowledge of the elements  shown in italics above. 

integral 

l 
Ctj+p(/.t) = ~ Y'~ Inm(/Z). (A.5) 

pairs 

Next we wish to define the conditional probability that IW00(n)-Woo(m)[ < e  0 given that IWu(n) -  
W,.j(m)t < ej for all (i, j) • T(1, J) w P - {(0, 0)}. Let Q be any set of ordered pairs (i, j )  and define D(Q) 
to be the statement " [ W u ( n ) - W u ( m ) l  _<ej for all ( i , j ) •  Q". Then in order to write the conditional 
probabilities in terms of the correlation integrals we may use the identities 

and 

P ( D ( T ( I , J )  U P ) )  
P(D{(O,O)}ID(T(I,J ) U P -  {(0 ,0)}) )  = P ( D ( T ( I , J )  U P -  {(0 ,0)}) )  (A.6) 

P( D( T(1, J) U P ) )  = Cij+p(lZ ). (A.7) 

We must also define new correlation integrals 

C,j (,+p(/X) = P ( D ( T ( I , J )  u P - { ( 0 , 0 ) } ) ) .  (A.8) 

Hence, 

CIJ+P(I'L) ( A . 9 )  P(D{(O,O)}ID(T(I,J) U P -  { ( 0 , 0 ) } ) ) =  C,j ,,+p(~)" 

If knowledge of D(P) does not increase our ability to predict the value of Woo above our ability to 
predict Woo given knowledge of D(T(I, J)),then 

P(D{(O,O)}tD( T( I ,J  ) U P -  {(O,O)} ) ) =P( D{(O,O)}ID(T( I ,J  ) - { ( 0 , 0 ) } ) ) ,  (A.10) 

or using (A.9) to write (A.10) in terms of correlation integrals, 

Clj+p(],L) Clj(/.L ) 
- ( A . 1 1 )  

CIJ-O+p(/-L ) CIj-(,(/-L) " 
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Finally, we may define the general ized indicator 

c,,(u) c,,_,,+p(u) 
~e(#)  = 1 -  CH o(~) CH+P(>) " (A.12)  

The size of  ~p(p,) is an indication of  the degree  to which knowledge of  D(P)  increases our  ability to 
predict  Woo above our  ability to predict  Woo gained by knowledge of  D ( T ( I , J ) - { ( 0 , 0 ) } ) .  Note that 

these general ized statistics reduce to the statistics of  SG in the case P =  {(i,0)[ 1 _< i<  d -  11 and to the 
statistics of  this paper  in the case P = {(0,j111 _<j_< d -  1}. 

We may also define a general ized predictability index, S. Following the development  of  the predictabil- 
ity index in section 3, we define 

and 

S, j= P( D{(O,O)}ID(T(  I , J  ) - { ( 0 , 0 ) } ) ) ,  (A.13) 

S =  lira S H. (A.14) 
1, J-- ,~ 

Using (A.12) and some algebra, it is easy to write S I j  in terms of  the ~'a4(>) as 

C00 
S I J -  f I  l.J i: " (A.15)  

i, j : 0 5 P ( i ,  j) 

where  P( i , j )  = {(i + 1, j ' ) [ j '  = 0 . . . . .  j + 1} ~) {(i',j + 1)1i' = 0 . . . . .  i + 1}. 
Clearly, this general ized formalism is cumbersome;  however, such a formalism or a suitable variation 

may be necessary in order  to systematically analyze very complicated systems such as the Nav ie r -S tokes  
equat ions in regions of  turbulent  fluid flow. 
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