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Bagozzi and Yi (1989) recently introduced new procedures 

for usmg structural equation models in experimental designs 

with I.ISREL. We extend their research by showing that the 

structural equation analysis of experimental designs can be 

accomplished via Wold’s partial least squares (PLS) approach, 

which can be used without many of the assumptions necessary 

for maximum likelihood estimation in LISREL. We show that 

PLS is applicable not only to the basic design, but also to other 

complex designs. We also identify two restrictive assumptions 

imphctt in Bagozzi and Yi’s step-down analysis procedures, 

and describe a more general approach that can be used even 

when these assumptions are not met. The proposed procedures 

are illustrated with Bagozzi and Yi’s data, and the conditions 

suitable for alternative procedures are discussed. 

1. Introduction 

Bagozzi and Yi (1989) recently introduced 
new procedures for the analysis of experimen- 
tal data especially in MANOVA designs (see 
also Kiihnel, 1988). They described the ana- 
lytic procedures for various experimental de- 
signs with the widely used computer program 
LISREL (Jijreskog and S&-born, 1986). Given 
the frequent use of experimental designs and 
the popularity of LISREL in marketing, their 
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procedures can be potentially useful to 
marketing researchers (Yi, 1990). 

Although Bagozzi and Yi’s (1989) proce- 
dures provide a powerful means for analyzing 
experimental data, the use of their procedures 
might be limited for several reasons. First, 
experimental data often do not satisfy the 
requirements of maximum likelihood estima- 
tion in LISRBL such as multivariate normality, 
interval scaling, and large sample sizes. Also, 
improper or non-convergent solutions some- 
times occur in LISREL analyses, which will 
reduce the interpretability of estimates (e.g., 
Gerbing and Anderson, 1987). It would be 
desirable to have an alternative procedure for 
analyzing such data to which LISREL is not 
well suited. Second, Bagozzi and Yi’s proce- 
dures for the step-down analysis, one particu- 
lar type of MANOVA, make two implicit as- 
sumptions: (1) variances and covariances of 
dependent variables are equal across groups, 
and (2) causal paths among dependent varia- 
bles are invariant across groups. When these 
assumptions are violated, their step-down 
analysis procedures are not appropriate. In 
fact, as shown below, the first assumption is 
invalid for Bagozzi and Yi’s data. Thus, we 
need more general procedures which do not 
rely upon such restrictive assumptions. 

The purpose of the present paper is to 
extend Bagozzi and Yi’s (1989) research in 
these two respects. First, we demonstrate that 
the structural equation analysis of MANOVA 
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step-down analysis). Second, we suggest an 
alternative procedure for step-down analyses 
which does not require the two restrictive 
assumptions implicitly made in Bagozzi and 
Yi’s procedures. We close with a discussion of 
the conditions when one procedure might be 
preferred over the other. Throughout the 
paper, the proposed procedures are illustrated 
with the data used in Bagozzi and Yi’s (1989) 
original article. 

2. MANOVA with PLS 

2.1. LISREL formulation of MANOVA 

To demonstrate the use of structural equa- 
tion models for the analysis of experimental 
data, we use MANOVA designs with three de- 
pendent variables ( Y,, Y,, Y3) and two groups 
(experimental and control groups). Fig. 1A 
illustrates the LISREL specification for this de- 

A. LISRECL Specifkafion 
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Fig. 1. LISREL and PLS models for MANOVA for three dependent variables (for PLS specification, see Appendix A). 
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sign (see Bagozzi and Yi, 1989, p. 273). There 
are two parts in the specification: measure- 
ment and structural models. 

(a) Measurement model: 

Dummy = <i, 

One=<,, 

x=77, fori=l,2,3, 

where Dummy = 
l 

0, control group, 

1, experimental group. 

(b) Structural model: 

77,=~~&+~~+~5~+& for i=l,L 3. 

Note that the dummy variable is an exoge- 
nous latent variable (<i) that represents two 
groups : control and experimental groups. 
There is a single indicator with a fixed load- 
ing of unity and no corresponding residual. 
Also note that a pseudo-variable (i.e., “One”) 
is used as another exogenous latent variable 
( t2) to capture the means or locations of 
dependent variables. Because the “Dummy” 
variable is 0 for the control group and 1 for 
the experimental group, the paths (i.e., y4, y5, 
y6) from the “One” latent variable to depen- 
dent variables correspond to the means of 
dependent variables for the control group, 
and the paths (i.e., yi, y2, y3) from the dummy 
variable to dependent variables reflect the 
differences in their means across the two 
groups. For example, the means of Y, are y4 
and (yi + y4) for the control and experimen- 
tal groups, respectively, and thus yi is the 
mean difference in Y, between the two groups. 
The significance of the mean differences can 
be tested either individually with the critical 
ratios (t-values) for the parameters or glob- 
ally with the cl&square difference tests of the 
zero restrictions for these parameters (Bagozzi 
and Yi, 1989). 

2.2. General PLS model 

Before we present the PLS formulation of 
MANOVA, we present a brief overview of the 

general PLS model, including specification and 
estimation. Section 5 considers the assump- 
tions made in the PLS model and compares it 
with LISREL. For more details, see Wold (1982, 
1985). 

Specification. Relations among latent vari- 
ables are expressed in the following system of 
equations: 

77=Po+P77+y, (1) 

where q is a vector of latent variables, & is a 
location parameter vector, /? is a matrix of 
coefficients relating the q’s among them- 
selves, and v is a vector of residuals for the 
q’s. Equation (1) is sometimes referred to as 
the theoretical relations or the structural 
equation model. Latent variables are con- 
nected to observations through the following 
system of equations: 

y=n,+ITTJ+&, (2) 

where y is a vector of manifest variables, II, 
is a location parameter vector, II is a matrix 
of loading coefficients (analogous to factor 
loadings), and E is a vector of residuals for 
the y ‘s. Equation (2) is usually referred to as 
the measurement model. It is assumed that 
COV(Y, E) = 0. 

The covariance matrix for the g’s is written 
as 

P= (I- p)-‘Ylql- By, (3) 

where I is an identity matrix and q = Cov( v). 
For the y’s, the covariance matrix is 

Z=IIPti’+8, (4 

where 19 = Cov( E). 
Estimation. To facilitate the discussion of 

estimation, the following equation is added to 
equations (1) and (2): 

q=Gny+&, (5) 
where 1(2 is a matrix of coefficients making 
latent variables dependent upon manifest 
variables, and S is a vector of residuals. 
Estimation under the PLS algorithm then pro- 
ceeds in three steps. In the first, iterative 
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estimations of Sz are performed. This consists 
of a sequence of ordinary least squares (OLS) 

regressions, linear operations, and square root 
extractions. In the second step, p and 7~ are 
estimated non-iteratively using the latent 
variables estimated in the first step. This is 
done assuming that the location parameters 
are zero. Finally, in the third step, the loca- 
tion parameters and generative relations are 
estimated. This is done non-iteratively with 
0Ls regressions. 

More intuitively, the PLS program proceeds 
iteratively by first estimating each latent vari- 
able from its observed indicators and then 
refining it by relating each latent variable to 
other latent variables’ indicators. Once the 
latent variables have been estimated, they are 
then correlated, and the structural parameters 
of the model are estimated via path analysis 
using OLS regression. The resulting coeffi- 
cients are interpreted as standardized partial 
regression coefficients. 

2.3. PLs formulation of MANOVA 

We propose that MANOVA designs can also 
be analyzed with PLS. Fig. 1B shows the 
specification of the PLS model that is equiv- 
alent to the LISREL model in Fig. 1A. Like the 
LISREL model, the PLS model has two parts: 

(a) Measurement model: 

Dummy = ~~5,) 

x=rrqi for i=l, 2,3. 

(b) Structural model: 

q,=Z,+y,*tl+l,* fori=l,2,3, 

where 1, is the intercept that reflects the 
location of the dependent variable (17,). To 
make the comparisons of our LISREL and PLS 
formulations of MANov.4 as simple as possi- 
ble, we have made several redefinitions of 
variables and parameters found in Wold’s 
(1982, 1985) original exposition. Namely, /3,,, 
= I,, Pi, = P2, = P3* = 0, P4; = Ye*, v4 = &, and 
v, = 3;*. 

We can note two differences between PLS 

and LISREL specifications. First, the pseudo- 
variable of one is not used in the PLS specifi- 
cation, whereas it is necessary in the LISREL 

specification. This is because PLS estimates 
the location parameters as intercepts without 
the need for introducing such a pseudo-varia- 
ble. Second, the loadings relating latent varia- 
bles to observed measures are set free and 
estimated in the PLS formulation, whereas they 
are fixed to unity in the LISREL formulation. 
For example, the loadings (i.e., rZ,) for endog- 
enous variables are free for PLS but fixed to 
1.0 for LISREL. The path coefficients (i.e., y:, 
y;, y:) from the dummy latent variable to 
endogenous variables can be examined in 
order to test whether the means are signifi- 
cantly different across groups. 

We will now show the equivalence of the 
LISREL and PLS models by combining the 
measurement and structural parts of each 
model. This will permit us to compare the 
parameters of one model with those of the 
other. 

LISREL model: 

K = 77, 

= Yi51 + Yi+3<2 + !Tj 

since qi = Y,& + Y,+& + Si 

=Y,+~+Y, Dumw+L 

since ,$i = Dummy, t2 = 1 .O. 

PLS model: 

K = rlr,g, 

= QT; ( 1, + yi*ti + 5;* ) 

since vi = Ii + y,*<i + li* 

= ~~1, + r,y,* (1,‘~~) Dummy + ~T,S;* 

since <i = (l/~~) Dummy. 

Then, we have the following equations: 

Y r+3 = 77[1,, 

Y, = o/%d)YL*7T,> 

{, = n-J,* for i = 1, 2, 3. 
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Note that all the parameters in the LISREL 

model are functions of the parameters of the 
PLS model. For example, y,, the mean dif- 
ference parameter for y in the LISFCEL model, 
can be calculated by (l/rd)y,*ri from the PLS 
solutions. That is, the models are equivalent 
in terms of specification. However, important 
differences exist with respect to estimation, 
the properties of estimators, test statistics, 
and related issues which dictate the choice of 
the model. These issues are discussed below. 

2.4. An illustration 

Bagozzi and Yi’s (1989) data are used to 
illustrate the equivalence of results using the 
PLS analysis and results from the LISREL anal- 
ysis. Specifically, the three behavior measures 
are used as the dependent variables in 
MANOVA designs with two groups (see Bagozzi 
and Yi, 1989, and our Table 1 and Fig. 1). 
Table 1 reports the means, standard devia- 
tions, and correlations for the input data. The 
LISREL solutions are obtained by using the 
LISREL VI program (Jbreskog and Siirbom, 
1986). The PLS model is estimated with the 
LVPLS 1.6 program (Lohmbller, 1984), and crit- 
ical ratios for the PLS estimates are calculated 
by the jackknifing of parameter estimates 
(Efron and Gong, 1983). Specifically, LVPLX 

was employed because we needed to estimate 
location parameters, and option 4 was selected 
for the data metric. Appendix A provides the 
specification for the PLS model in Fig. 1. 
Standard errors of parameters were estimated 
by using the jackknife procedures which were 

Table 1 

Data for LISREL and PLS models 

Measure n =152 

Behavior 1 1.000 
Behavior 2 0.689 1.000 
Behavior 3 0.658 0.941 1.000 
Dummy 0.424 0.481 0.508 1.000 

Mean 2.204 1.013 2.388 0.520 
Standard deviation 4.456 1.483 3.491 0.501 

Table 2 

MANOVA results for LISREL and PLS models 

LISREL model PLS model 

Mean differences y, = 3.84 (5.7) ’ y,* = 0.424 (10.3) 

y2 = 1.42 (6.7) y; = 0.481 (9.0) 

y3 = 3.54 (7.2) y;” = 0.508 (9.2) 

Other parameters y4 = 0.20 (0.4) ?T, = 4.531 (13.7) 

ys = 0.27 (1.8) 9 = 1.478 (20.0) 

y6 = 0.55 (1.6) 9 = 3.479 (22.9) 

r‘, = 0.500 (312.7) 

I, = 0.045 

I, = 0.185 

I, = 0.157 

’ Critical ratios are given in parentheses. 

developed by Barclay (1983) (see, e.g., Fen- 
wick, 1979; Cooil, Winer and Rados, 1987). 
Table 2 summarizes the key results from the 
LISREL and PLS analyses. 

The full LISREL model specified in Fig. lA, 
which allows for the differences in means, is 
exactly identified and gives a perfect fit to the 
data: x*(O) = 0.00, p = 1.00. The restricted 
model with the zero constraints for the mean 
difference parameters (i.e., yr = y2 = y3 = 0) 
gives the following results: x2(3) = 48.21, p 

< 0.001. An omnibus test of mean difference 
can be conducted by comparing the fit of 
these two models. The significant &i-square 
difference (x$(3) = 48.21, p -C 0.001) suggests 
that the means on at least one dependent 
variable are significantly different across 
groups. The estimates for individual mean 
difference parameters are examined to test 
whether each dependent variable is different 
across groups. The mean differences, denoted 
as y, in the LISFLEL analysis, are 3.84 (t = 5.2), 
1.42 (t = 6.7), and 3.54 (t = 7.2), respectively. 
They are all significant, suggesting that the 
means of all dependent variables are signifi- 
cantly different across groups for these par- 
ticular data. 

On the other hand, the PLS model in Fig. 
1B gives the following results: y: = 0.424 
(t = 10.3), y: = 0.481 (t = 9.0) and y: = 
0.508 (t = 9.2). These results suggest the same 
conclusion: the means of the three dependent 
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variables are significantly different between 
the two groups. In fact, the solutions for the 
LISFLEL analysis can be calculated from the 
solutions from the PLS analysis. For example, 
the mean difference for Y, can be computed 
as (1/rd)y1*7r1 = 2.00 x 0.42 x 4.53 = 3.84. 
Note that this value is identical to the esti- 
mate of yi in the LISREL model. Similarly, y2 
and yj can be calculated from the PLS solu- 
tions. Also, y4 - y6 can be obtained from the 
PLs solutions: Y;+~ = ~~1,. For example, the 
mean ( y4) of Y, for the control group can be 
obtained by ~~1, = 4.53 X 0.045 = 0.20. 

3. PLS models for various MANOVA designs 

We have shown that PLS can be used to 
analyze experimental data with an example of 
the basic MANOVA design. However, PLS is 
applicable not only to the basic design, but 
also to other MANOVA designs (e.g., latent 
variable MANOVA, step-down analysis, MAN- 

COVA), which were discussed by Bagozzi and 
Yi (1989). In this section, we will examine 
some of these MANOVA designs and illustrate 

the application of PLS models. Because these 
extensions are rather straightforward, they are 
discussed briefly in this paper. However, the 
full results and corresponding specifications 
are available from the authors. 

3.1. Latent variable MANOVA 

Bagozzi and Yi (1989) extended the struct- 
ural equation approach to MANOVA on latent 
variables, whereas the traditional MANOVA 

analysis is conducted only at the level of 
manifest variables (observed measures). This 
extension is motivated by several considera- 
tions (Bagozzi and Yi, 1989, pp. 273-274). 
First, if individual measures of the variables 
show excessive random error, the traditional 
tests may be lacking in statistical power to 
detect valid experimental effects. Second, cer- 
tain variables might be inherently unobserva- 
ble constructs such that they can be measured 
only indirectly with multiple indicators. Third, 
one might be concerned more with explana- 
tion and understanding of latent variables or 
constructs than with prediction or description 
of observed variables or measures per se. 

A.LISRELSpecifxation 

1. 
0. dummy 

Q 21 

1. 
0. 

B. PLS Specification 

o.++L@L(&g-~~ 
Fig. 2. LISREL and PLS models for MANOVA on three measures of a latent variable. 
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Fig. 2A presents the LISREL specification 
for a latent variable MANOVA design ap- 
propriate to the data in Table 1. Note that 
three behavioral measures are used here as 
multiple indicators of a single latent variable. 
We wish to test whether the experimental 
manipulation affects the mean of the theoreti- 
cal construct as measured by three indicators. 
The path (yi) from the dummy variable (ti) 
to the latent dependent variable (17) reflects 
the difference in the means of the behavioral 
construct. When the LISREL model is fit to the 
data in Table 1, the estimate of y1 is 3.21 
with t = 6.43. These results show that the 
means of n are significantly different across 
the two groups. 

Fig. 2B provides a diagram of the corre- 
sponding PLS model for the same data. We 
note that the PLS specification is quite similar 
to the LISREL specification. One difference 
concerns the pseudo-variable of “One”. In 
the LISREL model, the pseudo-variable of 
“One” is introduced to estimate the means 
for the control group. In contrast, introducing 
such a pseudo-variable is not necessary in the 
PLS model, where location parameters can be 
estimated directly. When the PLS model in 
Fig. 2B is fit, the estimate of y: is 0.51 with 
t = 11.0, suggesting the rejection of the null 
hypothesis of equal means for the two groups. 
Thus, both LISREL and PLS give the same 
conclusion in the latent variable MANOVA. 

Remark. One can show the equivalence of the 
LISREL and PLS models as follows: 

LISREL model: 

r;=hi'?J + Ei 

= A, (Y151 + Y252 + S) + E, 

= h,y, + Xiyl Dummy + hi{* + ET. 

PLS model: 

r, = 7Ti7j + &* 

Then, we have the following equations: 

xiy2 = 7TiI, 

AiYl = (1/Td)YT7TiT 

XJ+E~=TJ*+E* for i=l,2,3. 

Since all the parameters of the LISREL model 
are functions of the parameters in the PLS 

model, the models are equivalent in terms of 
specification. 

3.2. Step-down analysis 

Bagozzi and Yi (1989, pp. 274-276) de- 
scribe and illustrate step-down analyses with 
structural equation models. When there is a 
causal order among the dependent variables, 
step-down analyses provide useful informa- 
tion as to whether the mean difference in a 
certain variable is due to the direct effect of 
the experimental manipulation or its depen- 
dence on other variables (Roy and Bargmann, 
1958). The first stage of a step-down analysis 
begins with a MANOVA test performed on all 
dependent variables. If the omnibus test 
points to a rejection of equal means, then the 
next step consists of testing the final variable 
in the hypothesized causal chain while partial- 
ling out all remaining dependent variables as 
covariates. A significant omnibus test would 
indicate that the final variable differs even 
after controlling for its dependence on previ- 
ous variables. In contrast, a non-significant 
test suggests that the difference in the final 
criterion is wholly due to the causal relation 
between the final variable and other varia- 
bles. 

Fig. 3 shows the step-down analysis proce- 
dures for the MANOVA design with two latent 
dependent variables (i.e., decision and behav- 
ior), which has been illustrated by Bagozzi 
and Yi (1989). In Step One, the mean dif- 
ferences in decision (0) and behavior (B) are 
tested while their covariation is unexplained. 
In the next step, the difference in B is tested 
while controlling for the causal path from D 
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A. Step One 

B. Step Two 

1. 
0. dummy 

I L 

$ 21 

3 
1. 

0. 

Fig. 3. Step-down analysis with two latent variables: dummy variable approach. 

to B. This procedure is called the dummy 
variable approach, because an indicator varia- 
ble is used to test the mean difference across 
groups. 

PLS can also be applied to step-down anal- 
ysis. The LISREL specifications for step-down 
analysis for the data, which were originally 
illustrated by Bagozzi and Yi (1989), are pre- 

Table 3 
Data for step-down analyses 

Measure High impedance group ( n = 73) Low impedance group (n = 79) 

Behavior 1 1.000 1.000 
Behavior 2 0.774 1.000 0.641 1.000 
Behavior 3 0.736 0.945 l.OOiI 0.580 0.921 1 .ooo 
Decision 1 0.256 0.425 0.430 1.000 0.255 0.173 0.171 1 .ooo 
Decision 2 0.263 0.426 0.430 0.907 1.000 0.263 0.205 0.181 0.882 1 .ooo 

Mean 0.206 0.274 0.548 4.027 3.932 4.050 1.696 4.089 4.899 4.760 
Standard deviation 0.726 0.838 1.633 1.462 1.456 5.686 1.620 3.877 1.446 1.398 
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sented in Fig. 3. Table 3 reports the means, 
standard deviations, and within-group corre- 
lations for the input data. The corresponding 
PLS specifications can easily be obtained by 
dropping the pseudo-variable of “One” and 
the latent variable associated with it (see Figs. 
1 and 2 for examples). In Step One, MANOVAS 

are conducted on the two latent variables (D 
and B) which are measured with several indi- 
cators. The LISREL model gives the following 
results: y1 = 0.86 (t = 3.8) and yz = 3.20 (t = 
6.4). The PLS model gives the following re- 
sults: yi* = 0.29 (t = 3.4) and y: = 0.51 (t = 
11 .O). Thus, both LISREL and PLS results sug- 
gest that the mean differences for D and B 
are statistically significant. 

In Step Two, MANOVAS are conducted while 
controlling for the causal relation (/3) be- 
tween D and B so that the effect of D on B 
can be partialled out. The LISREL model gives 
the following results: yi = 0.86 (t = 3.8) y2 = 
2.74 (t = 5.6) and p = 0.54 (t = 3.21). The 
PLS model gives the following results: yi* = 
0.29 (t = 3.4), y: = 0.44 (1 = 9.5), and ,f? * = 
0.23 (t = 4.3). The results show that D has a 
significant effect on B, as hypothesized. The 
results also show that the two groups differ 
significantly in B even after controlling for its 
dependence on D. In sum, both LISREL and 
PLS can be applied to step-down analysis, and 
they give the same conclusions. 

3.3. Homogeneity and multiple-group approach 

In the previous example of step-down anal- 
ysis. we have employed the dummy variable 
approach in both LISREL and PLS analyses. 
However, the dummy variable approach as- 
sumes that variances and covariances of de- 
pendent variables are equal across groups. 
This assumption is imposed because the co- 
variance matrices among dependent variables 
are collapsed into one (i.e., the submatrix of 
the covariance matrix after dropping the 
dummy variable column) under the dummy 
variable approach. The homogeneity assump- 

tion is made implicitly under the dummy 
variable approach, whether one employs 
LISREL Or PLS. 

When the homogeneity assumption is 
violated, the multiple group approach can be 
used instead (see Remark below). As we will 
see in the next section of this paper, for 
instance, LISREL can be used for the multiple 
group approach to step-down analysis. Then, 
a natural question would arise: can PLS be 
applied to the multiple group approach (e.g., 
for step-down analysis)? Unfortunately, mul- 
tiple group (simultaneous) analysis, which is 
needed for the multiple group approach to 
MANOVAS, is not available at this time for 
PLS.' Thus, although PLS can be applied to 
various MANOVA designs such as manifest 
variable MANOVA, latent variable MANOVA, and 
step-down analysis, it cannot be applied to 
the multiple group approach. 

Remark. A reviewer suggested that when the 
homogeneity assumption is violated, two other 
alternatives than the multiple group approach 
can be used. One alternative can be used 
when variances are heterogeneous. In such a 
case, one can identify which variable shows 
heterogeneous variance (e.g., via Cochran test) 
and use transformations to stabilize the vari- 
ance. When the relationship between the mean 
and variance is known, one can find a trans- 
formation of the variable, which makes the 
variance approximately constant. For exam- 
ple, if the standard deviation is proportional 
to the mean, one can used the logarithmic 
transformation. Or if the variable (e.g., Y) 
follows the Poisson distribution, one can use 

Y 112 or Yi/2 + ( y + 1)i12. The resulting vari- 
ance will be constant (see Bartlett, 1947, or 
Kendall and Stuart, 1968, pp. 88-92, for more 
details). On the other hand, when the rela- 

’ Some effort is currently being made to develop formal PLS 
procedures for the simultaneous analysis of multiple sample, 

but they are not yet available (Fornell, 1990, personal com- 

munication), although it is impossible to say at this time 
when, or even if, the effort will bear fruit. 
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tionship between the mean and variance is 
unknown, one can examine the Box-Cox di- 
agnostic plot to select the appropriate trans- 
formation (Box and Cox, 1964) (see the BMDP 

Multiple group approach to step-down 
analysis 

Fig. 3 shows the step-down analysis proce- 
dures for the MANOVA design with two latent 
dependent variables, which has been il- 
lustrated by Bagozzi and Yi (1989). This pro- 
cedure is called the dummy variable ap- 
proach, because an indicator variable is used 
to test the mean difference across groups. 

The dummy variable approach to step- 
down analysis, however, makes two implicit 
assumptions. First, it assumes that the vari- 
ances and covariances of dependent variables 
are equal across groups. This is also a stan- 
dard assumption in traditional MANOVA 

analyses (e.g., BMDP, SAS, SPSS~). Second, the 
causal relations among dependent variables 
are assumed to be invariant across groups. 
That is, the effects of one variable on other 
variables are assumed to be identical for all 
groups. This assumption is also implicitly 
made in traditional analyses (e.g., SPSS’). It is 
not likely that these assumptions are valid for 
all MANOVA designs. To the extent that these 
assumptions are violated, the procedures sug- 
gested by Bagozzi and Yi (1989) could be 

misleading. 2 It seems desirable to consider 
an alternative procedure which does not make 
such restrictive assumptions. At least, it is 
necessary to make such assumptions explicit 
and test whether they are valid or not in any 
particular application. 

In this regard, we suggest a multiple group 
approach to step-down analyses. Fig. 4 shows 
the general procedure. In Step One, yi and y2 
correspond to the means of latent variables D 
and B, respectively. Thus, the equality of 
means can be tested by comparing these 
parameters (i.e., y,“’ vs. y,“‘) across groups. 
This can be accomplished via a simultaneous 
analysis of both groups. In Step Two, y2 
would correspond to the portion of the mean 
for B that is not due to the effect of D. Thus, 
a comparison of y2 across groups indicates 
whether the means of B differ between the 
group when the effect of D on B is partialled 
out. 

One advantage of this approach is that it 
allows one to test the aformentioned assump- 
tions, i.e., (1) homogeneity of variances and 
covariances, and (2) invariance of causal 
paths. Specifically, before conducting the first 
step of the analysis noted in Fig. 3, one can 
test the homogeneity assumption in the multi- 
ple group approach. Then, in Step One the 
differences in D and B can be tested under 
either homogeneity or heterogeneity assump- 
tions. One can also test the invariance of 
causal paths (i.e., ,0(i) = pc2’) across groups. 
If this test is significant, a subsequent step 
would be to test for the significance of the 

2 It should be acknowledged that Bagozzi and Yi (1989) noted 

that the dummy variable approach assumes homogeneity 

like the traditional MANOVA analyses. They also considered a 
multiple group approach to other MANOVA designs which 
can handle violations of the homogeneity assumption. How- 

ever, their procedures did not explicitly address the homo- 
geneity assumption in step-down analyses. Furthermore, the 
invariance of causal paths was not mentioned in Bagozzi 

and Yi’s (1989) paper. As a consequence, there is some 

potential for misunderstanding among readers. This paper 

attempts to clarify these issues by explicitly pinpointing 

these implicit assumptions and illustrating the consequences 

of violating the assumptions. 
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A. StepOne 

135 

B. StepTwo 

Fig. 4. Step-down analysis with two latent variables: multiple-group approach. 

mean difference while allowing for different 
causal paths across groups. Thus, another ad- 
vantage of the multiple group approach is 
that it allows for step-down analyses even 
when these assumptions are violated. 

4.1. An illustration 

The suggested procedures for step-down 
analyses are illustrated with the example used 
by Bagozzi and Yi (1989). There are two 
latent variables: decision (0) and behavior 
(B), which are measured with two (d,, d2) 
and three indicators (b,, b,, b3), respectively 
(see Tables 4 and 5 for a summary of the 
results from Bagozzi and Yi’s, 1989, proce- 
dures and the suggested procedures, respec- 
tively) . 

Results from the dummy variable approach 
are examined first. In Step One, the mean 
difference are 0.86 (t = 3.8) and 3.20 (t = 6.4) 
for D and B, respectively. The chi-square 
difference test also indicates that the mean 
differences are statistically significant; x2(2) 
= 45.97, p < 0.001. In Step Two, one can test 
the mean difference in B after considering 
the causal order between D and B. The chi- 
square difference test indicates that the mean 
difference in the final dependent variable (i.e., 
B) is significant; xi(l) = 31.69, p -C 0.001. 
Thus, the two groups still differ significantly 
in B even after considering its dependence 
on D. 

Next, the multiple group approach is used. 
We begin by testing the homogeneity of vari- 
ance and covariances across groups. This test 
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Table 4 

Step-down analysis with a dummy variable approach 

First stage 

Full model Restricted model with y, = y2 = 0 

,$(lO) = 7.88 

p = 0.64 

y, = 0.86 (3.76) a 

y2 = 3.20 (6.42) 

~‘(12) = 53.85 

p = 0.000 
Hence: x$(2) = 45.97, p = 0.000 

Second stage 

Full mode1 Restricted mode1 with yz = 0 

~‘(10) = 7.88 x2(1 1) = 39.57 
p = 0.64 p = 0.000 
yz = 2.74 (5.56) Hence: x:(l) = 31.69, p = 0.000 

’ Critical ratios are given in parentheses. 

is conducted by comparing the model 
free covariance matrices and the model 
equal covariance matrices for residuals, 

Table 5 

Step-down analysis with a multiple group approach 

with 
with 
The 

Homogeneity test 

Full mode1 Restricted mode1 with 

equal variances 

x2(0) = 0.00. p = 1.00 x2(15) = 351.96, p = 0.000 
Hence: x2(15) = 351.96, 

p = 0.000 

First stage 

Full model Restricted mode1 with 
yl’l’ = #) 

x*(14) = 7.89, p = 0.90 

y/l’ = 4.03 (0.17) a 

y/2) = 4.90 (0.16) 

y:” = 0.19 (0.07) 

$2’ = 4.01 (0.55) 

x*(16) = 66.08, p = 0.000 
Hence: x:(2) = 58.19, 

p f 0.000 

Invariance of causal path test 

Full mode1 Restricted mode1 with 
p(l) = pc2, 

x2(14) = 7.89, p = 0.90 x2(15) = 9.35, p = 0.86 
,!3(‘) = 0.18 (0.05) Hence: x:(l) =1.46, 
/I(‘) = 0.58 (0.32) p > 0.10 

Second stage 

Full model Restricted model with 

Y2 
(1) = .42’ 

x2(15) = 9.35, p = 0.86 

y;” = -0.58 (0.19) 

#’ = 3.04 (0.59) 

x*(16) = 60.58, p = 0.000 
Hence: x:(l) = 51.23, 

p = 0.000 

It Standard errors are given in parentheses. 

results indicate that the homogeneity assump- 
tion should be rejected for the data; x:(15) = 
351.96, p < 0.001. Thus, the subsequent 
analyses are conducted while allowing for dif- 
ferent variances and covariances for the two 
groups. 

When the mean parameters (y,‘s) are al- 
lowed to differ across groups, the model gives 
satisfactory results: x2(14) = 7.89, p > 0.89. 
The estimates of mean parameters for both 
groups are 4.03 and 4.90 for D, and 0.19 and 
4.01 for B, respectively. When the mean 
parameters are fixed to be invariant across 
groups, the model fit is not satisfactory; 
x2(16) = 66.08, p =c 0.001. The &i-square dif- 
ference is 58.19 with 2 degrees of freedom, 
which is significant at the 0.001 level. Thus, 
the equality constraints (i.e., y,(l) = y,(2) for 
i = 1, 2) produce a significant increase in the 
&i-square values, suggesting the rejection of 
the null hypothesis that means are equal 
across groups. 

Before moving to the second stage, the 
invariance of the causal path (i.e., /?(I) = pC2)) 
is tested by comparing the full model without 
the equality constraint and the restricted 
model with the constraint. The full model 
without the constraint gives the following re- 
sults: x2(14) = 7.89, p > 0.89. The restricted 
model with the constraint yields the following 
result: x2(15) = 9.35, p > 0.85. The chi-square 
difference is 1.46 with 1 degree of freedom, 
which is not significant at the 0.10 level. One 
cannot reject the hypothesis that the causal 
path between D and B is invariant across 
groups. That is, the assumption of invariant 
causal paths is plausible for this data set. 
Subsequent analyses are thus conducted using 
the invariant causal path in the model. 

The next step examines the equality of 
means in B while controlling for the effect of 
D (see Step Two in Fig. 3). The model allow- 
ing for different means of D shows satisfac- 
tory results: x2(15) = 9.35, p > 0.95, whereas 
the restricted model hypothesizing equal 
means for D reveals unsatisfactory results: 
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x2(16)= 60.58, p < 0.001. The &i-square dif- 
ference is 51.23 with 1 degree of freedom, 
which is significant at the 0.001 level. These 
findings suggest that the hypothesis of equal 
means for behavior be rejected even after 
controlling for the effect of decision. 

Note that this &i-square difference test 
(x;(l) = 51.23) is different from that (x;(l) 
= 31.69) in the dummy variable approach 
(see Table 4). This illustrates that the multiple 
group approach and the dummy variable ap- 
proach differ in handling the two assump- 
tions. In this example, since we found that the 
homogeneity assumption is not valid, the 
multiple group approach is conducted while 
allowing for heterogeneous variances and co- 
variances. In contrast, the dummy variable 
approach analyzes the data as if the variances 
and covariances were equal across the groups 
when in fact they are not. Thus, the two 
approaches can yield different results. Al- 
though the final conclusions happen to be the 
same in this particular case, the two ap- 
proaches could suggest different conclusions 
in other cases. 

5. Discussion 

We have seen that both LISREL and PLS 

models can be used to analyze experimental 
data. The question arises: under what condi- 
tions should one model be preferred to the 
other? A comparison of estimation methods 
between the two models would be useful in 
this regard (Fornell and Bookstein, 1982; 
Jbreskog and Wold, 1982). PLS, which uses 
fixed point estimation (see, e.g., Wold, 1965) 
differs from LISFCEL which uses maximum like- 
lihood (ML) estimation in its basic assump- 
tions and principles. The ML estimation in 
LISREL maximizes the probability of observing 
the data given the hypothesized model assum- 
ing interval scales and multivariate normality 
of variables. However PLS uses a series of 
interdependent OLS regressions to minimize 

residual variances without making any as- 
sumptions with respect to the population or 
scales of measurement. Hence, no distribu- 
tional assumptions are required. The PLS pro- 
cedure is also applicable even when the sam- 
ple size is small. Wold (1986) reports an anal- 
ysis with a sample of 10, and Fornell and 
Bookstein (1982) use PLS on a sample of 24. 
In the former study, 28 manifest variables 
were included in the model. Analyses of such 
data sets by maximum likelihood procedures 
are often not feasible (Wold, 1989). Sampling 
errors or too many parameters to estimate 
can yield non-convergent and improper solu- 
tions in LISREL analyses, which make it dif- 
ficult to interpret the solutions (see, e.g., 
Gerbing and Anderson, 1987). In contrast, 
PLS does not suffer from non-convergent or 
improper solutions (Fornell and Bookstein, 
1982). 

An examination of the preceding assump- 
tions suggests that the use of PLS is preferred 
over LISREL when (1) the multivariate normal- 
ity assumption is violated, (2) the sample size 
is small, and (3) non-convergent or improper 
solutions are likely to occur (e.g., a complex 
model with many parameters). A reviewer 
noted that the second situation (small sample 
size) is the most important one in experimen- 
tal designs. The assumption of multivariate 
normality can be relaxed with elliptical esti- 
mation or asymptotic distribution-free esti- 
mation (see, e.g., Browne, 1984) but this re- 
quires a large sample size (typically, the sam- 
ple size must be 200 or more, depending on 
the number of variables in the model). Also, 
non-convergent or improper solutions are less 
likely to occur for large sample sizes (see, e.g., 
Anderson and Gerbing, 1984). Nevertheless, 
obtaining a large sample size might be dif- 
ficult in typical experimental designs. 

Some problems of the PLS approach also 
need to be mentioned. First, PLS tends to 
overestimate loadings and underestimate path 
coefficients (Dijkstra, 1983). In fact, as the 
proposed methodology is primarily concerned 
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with path coefficients (which are underesti- 
mated), the significant results in a PLS analy- 
sis can be given more credence, because the 
test would be more conservative. 3 Another 
problem with PLS concerns the interpretation 
of parameter estimates. 4 The substantive in- 
terpretation of LIsREL estimates is clear. In 
Fig. lA, for example, y1 - y3 correspond to 
the mean differences of dependent variables 
across the control and experimental groups, 
whereas y4 - y6 reflect the means of depen- 
dent variables for the control group. In con- 
trast, the parameter estimates in the PLS 

specification do not have such direct interpre- 
tations. Rather, they are multiplicative com- 
ponents of the means or mean differences, as 
shown earlier. Still another problem with PLS 

applications is that jackknife or bootstrap 
procedures are needed to obtain estimates for 
the standard errors of the parameter esti- 
mates, which are potentially subject to biases 
(Dijkstra, 1983; Efron and Gong, 1983). Fur- 
thermore, because it is a limited-information 
estimation method, PLS parameter estimates 
are not as efficient as full-information esti- 
mates (Fornell and Bookstein, 1982). Finally, 
PLS does not provide formal statistical tests or 
multiple sample analysis procedures, which 
are available for LISREL. 

We have also shown that the dummy varia- 
ble approach to step-down analysis makes 
two assumptions: (1) homogeneity of vari- 
ances and covariances, and (2) invariance of 
causal paths. The homogeneity assumption is 
often violated and its violation can have seri- 
ous consequences especially when the sample 
size is unequal across groups (see, e.g., Bray 
and Maxwell, 1985; Kiihnel, 1988). Indeed, 
we have seen that this assumption is rejected 
for the data used in Bagozzi and Yi’s (1989) 
step-down analyses. The second assumption 
can also be problematic, because experimen- 

We thank a reviewer for bringing this point to OUT attention. 
4 We thank a reviewer for pointing out to us this problem 

with PLS. 

tal manipulations are often designed to in- 
fluence causal paths among variables, as well 
as their means. 

The multiple group approach to step-down 
analysis, which is proposed in this article, 
does not make these restrictive assumptions. 
Instead, it tests these and provides informa- 
tion regarding how reasonable the two as- 
sumptions are. Further, it allows for step- 
down analysis even when these assumptions 
are violated. However, the multiple group ap- 
proach has several limitations that deserve 
mention. It requires a relatively large sample 
size, because the sample is divided into ex- 
perimental groups. If the example size is too 
small for each group, improper solutions and 
non-convergence might occur, a greater 
chance of making a Type II error exists, and 
asymptotic properties of the estimation are 
not obtained (see, e.g., Bearden, Sharma and 
Teel, 1982). Thus, the multiple group ap- 
proach seems useful for step-down analysis 
when (1) variances and sample sizes are un- 
equal across groups, (2) the experimental 
manipulation influences the theoretical rela- 
tions among the dependent variables, and (3) 
the sample size is large enough for each group. 

In this article, we have extended the use of 
structural equation models in experimental 
designs with respect to estimation methods in 
general and step-down analysis in particular. 
The analysis can be accomplished via PLS, 

which can be used even when certain assump- 
tions for LISREL do not hold. We have also 
proposed a step-down analysis procedure 
which can be used even when the data do not 
meet the two restrictive assumptions implicit 
in Bagozzi and Yi’s (1989) procedures. 

Given the two extensions, a question arises 
naturally: can PLS be applied to the multiple 
group approach to step-down analysis? Un- 
fortunately, the answer is no at this point in 
time. A multiple sample analysis, which is 
necessary for the multiple group approach, is 
not available for PLS. Thus, PLS cannot be 
used for the multiple group approach to 
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MANOVA designs in general and step-down 
analysis in particular. Such procedures should 
be developed in future research. 

Still more extensions need to be made to 
the structural equation approach to experi- 
mental data. For example, one should in- 
vestigate more complex design issues such as 
multiple factors and levels. Such extensions 
will provide researchers with useful insights 
for making better applications of structural 
equation models in experimental designs. 

Appendix A. F’LS specification for Fig. 1 

Number of blocks = 4. 
Number of cases = 152. 
Number of dimensions = 0. 
Output quantity = 3377. 
Inner weighting scheme = 1. 
Number of iterations = 100. 
Estimation accuracy = 5. 
Analyzed data metric = 4. 
* Read Matrix, Unit = 0, Rewind = 0, 

Format = (2A4, 4F2.0). 

Block N-MV Deflate Direction Model 

ZAIl 1 0 Outwards Exogenous 

ETA1 1 0 Outwards Endogenous 

ETA2 1 0 Outwards Endogenous 

ETA3 1 0 Outwards Endogenous 

4 Mode A 

Path design matrix 

ZAIl ETAI ETA2 ETA3 

ZAIl 0.00 0.00 0.00 0.00 

ETA 1 1.00 0.00 0.00 0.00 

ETA2 1.00 0.00 0.00 0.00 

ETA3 1 .oo 0.00 0.00 0.00 

* Read Matrix, Unit = 0, Rewind = 0, 
Format = (2A4, F5.1, 19X, 3(F5.1, 1X)). 

* The matrix format is optional, because it is specific to each 
research design. 
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